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RANDOM BRAIDS AND RANDOM WALKS ON FINITE GROUPS

In this paper, we study properties of random walks on finite groups and later use

them to obtain the limiting braid length expectation and component number of
braid closure in a model of random braids, which is constructed by lifting elements

of random walk on a Coxeter group to a braid group.

1. Introduction

We will consider random walks where at each step with some probability an element
of a group can be multiplied by one of the generators from the presentation of this
group. We will be interested in finding the limiting expectations of different functions
on this group, especially the length function. In [3], a similar construction of loop-erased
random walks on finite groups is studied where loops are erased in order they appear.
Also, in [4] and [2] results of the same type as in Proposition 3.1 are given, but for the
symmetric group Sn, and [9], where the same problem is considered for certain Coxeter
groups. Furthermore, we mention [8], [10] where random walks on braid groups are also
considered.

2. Braids and braid groups

Braid on n strings is an object consisting of two horizontal lines La and Lb in R3

containing two ordered sets of points a1 = (1, 0, 0), . . . , an = (n, 0, 0) ∈ La and b1 =
(1, 0, 1), . . . , bn = (n, 0, 1) ∈ Lb, and n strands that satisfy the following properties:

• Each strand connects ai with bj for some i, j and strands are pairwise disjoint.
• Strands have to strictly ascend all the way up.

Instead of thinking about braids in space, we can project them on a plane passing
through La and Lb. Additionally, through ambient isotopy, it can be achieved that there
are only finitely many double crossings, which results in a braid diagram.
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Figure 1. Geometric
braid on 5 strands

Figure 2. Closure of a
braid
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Braid β can be turned into a link by connecting the opposite nodes of a braid. This
operation is called the closure of a braid β, and we will denote it by β.

The braid group on n strands is a group of braid equivalence classes under ambient
isotopy where the composition is braid concatenation. Let σi and σ−1

i be two types of
crossings in the braid diagram as shown in the figure below.

1 · · · i i+ 1 . . . n

σi

1 · · · i i+ 1 . . . n

σ−1
i

This setting was first considered by Artin and in [1] he proved the following theorem.

Theorem 2.1. The braid group is isomorphic to the group with generators σ1, . . . , σn−1

subject to braid relations:

• σiσj = σjσi for |i− j| > 1,
• σiσi+1σi = σi+1σiσi+1 for i = 1, n− 1.

Further we will denote it by Brn.

3. Random walks on finite groups

Let S be a set and ⟨S⟩ be a free group on S. Define a word on S as some product
of elements in S ∪ S−1. And let R be a set of words on S. In order to form a group G
with presentation ⟨S | R⟩, take the quotient of ⟨S⟩ by the smallest normal subgroup N
containing R. The elements of S are called generators and the elements of R are called
relations or relators.

Define the length function ℓG(g) of g ∈ G = ⟨S | R⟩ to be the smallest positive integer
r such that there exists a word of length r representing g. We call such an expression g
reduced. By convention, ℓ(1) = 0 where 1 is the empty word.

There is a natural way to represent a group G with its generators using a Cayley graph.
Cayley graph Γ = Cay(G,S) is a directed graph Γ that satisfies the following conditions:

• Each element of G is assigned a vertex in Γ.
• Vertex a is connected to vertex b (a → b) if and only if b = aσ for some σ ∈ S.

It is obvious from the above definition that graph Γ is connected, since there is a path
from 1 to each vertex. Also note that the length of an element g ∈ G corresponds to the
length of the shortest path between vertices 1 and g in Γ.

To illustrate the above definitions, we provide an example of the Cayley graph of
the symmetric group S3 in Figure 3 given by the presentation ⟨σ1 = (12), σ2 = (23) |
σ2
1 = σ2

2 = (σ1σ2)
3 = 1⟩ and the Cayley graph of the dihedral group D4 given by the

presentation ⟨a, b | a4 = b2 = 1, aba = b⟩.
Finally, we define a random walkRW(G,P ) to be a Markov chainX0, X1, . . . (Pr(X0 =

0) = 1) with state space G and transition probability matrix P = (pij) such that when-
ever there is an edge a → b in Γ, probability pab is strictly positive.

We say that the sequence of random variables X0, X1, . . . converges in distribution to

a random variable X (write Xn
d−→ X) if ∀g ∈ G limn→∞ Pr(Xn = g) = Pr(X = g). The

following theorem, which is a direct consequence of the general theory of Markov chains,
provides a complete description of the asymptotic behavior of the sequence {Xn}∞n=0

under the assumption that P is doubly stochastic.

Theorem 3.1. For the random walk RW(G, P ) with doubly stochastic matrix P the
following statements hold:
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Figure 3. Cayley graphs of S3 and D4

If there is a relator of odd length in G, then Xn
d−→ X where X is uniform in G.

Otherwise, X2n
d−→ Xeven, where Xeven is uniform in {g ∈ G | ℓ(g) is even},

X2n+1
d−→ Xodd where Xodd is uniform in {g ∈ G | ℓ(g) is odd}.

Corollary 3.1. For the random walk RW(G, P ) with doubly stochastic matrix P and
any function f with the domain G, the following statements hold:

If there is a relator of odd length in G, then limn→∞ E[f(Xn)] =
1
|G|
∑

g∈G f(g).

Otherwise, limn→∞ E[f(X2n)] =
2
|G|
∑

g∈G,2|ℓ(g) f(g) and

limn→∞ E[f(X2n+1)] =
2
|G|
∑

g∈G,2∤ℓ(g) f(g).

Proof. By Theorem 3.1 we know that Xn
d−→ X, so it follows that f(Xn)

d−→ f(X) and
limn→∞ E[f(Xn)] = E[f(X)] = 1

|G|
∑

g∈G f(g). The other case is done similarly. □

Further we will often use this corollary for f = ℓG. Now we compute the limiting
length expectation for several examples of groups.

Proposition 3.1. For the random walk RW(Zm, P ) with doubly stochastic matrix P
the following statements hold:

m ≡ 1, 3 (mod 4) : lim
n→∞

E[ℓ(Xn)] =
m

4
− 1

4m
.

m ≡ 2 (mod 4) : lim
n→∞

E[ℓ(X2n)] =
m

4
− 1

m
and lim

n→∞
E[ℓ(X2n+1)] =

m

4
+

1

m
.

m ≡ 0 (mod 4) : lim
n→∞

E[ℓ(Xn)] =
m

4
.

Proof. We will repeatedly use Corollary 3.1 throughout the proof. Let us consider three
cases:

• m ≡ 1, 3 (mod 4):

lim
n→∞

E[ℓ(Xn)] =

∑
g∈G ℓ(g)

m
=

2
(
1 + . . .+ m−1

2

)
m

=
m

4
− 1

4m
.

• m ≡ 2 (mod 4):

lim
n→∞

E[ℓ(X2n+1)] =
2

m

∑
g∈G, 2∤ℓ(g)

ℓ(g) =
m

4
+

1

m
.

lim
n→∞

E[ℓ(X2n)] =
2

m

∑
g∈G, 2|ℓ(g)

ℓ(g) =
2

m
·
(
2
(
2 + 4 + . . .+

m

2
− 1
))

=
m

4
− 1

m
.
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• m ≡ 0 (mod 4):

lim
n→∞

E[ℓ(X2n+1)] =
2

m

∑
g∈G,2∤ℓ(g)

ℓ(g) =
2

m
· 2
(
1 + 3 + . . .+

m

2
− 1
)
=

m

4
.

lim
n→∞

E[ℓ(X2n)] =
2

m

∑
g∈G,2|ℓ(g)

ℓ(g) =
2

m

(
2
(
2 + 4 + . . .+

m

2

)
− m

2

)
=

m

4
.

Hence these two limits coincide and we arrive at

lim
n→∞

E[ℓ(X2n)] = lim
n→∞

E[ℓ(X2n+1)] =
m

4
.

□

Given groups G and H, denote by G ×H their direct product. It is not hard to see
that if G ∼= ⟨SG | RG⟩ and H ∼= ⟨SH | RH⟩, then G×H ∼= ⟨SG × SH | RG ∪ RH ∪ RC⟩,
where RC is a set of relations specifying that elements of SG and SH commute. So when
we further consider a random walk on a direct product of groups, this presentation of a
group is meant. Now we will give the formula for the limiting length expectation for the
direct product of groups in the following proposition.

Proposition 3.2. For two non-trivial groups G1, G2 and the random walk RW(G1 ×
G2, P ) with doubly stochastic matrix P the following holds:

lim
n→∞

E[ℓG1×G2
(Xn)] =

∑
g1∈G1

ℓG1
(g1)

|G1|
+

∑
g2∈G2

ℓG2
(g2)

|G2|
.

Proof. We begin by observing that ℓG1×G2((g1, g2)) = ℓG1(g1) + ℓG2(g2). If at least one
of G1 and G2 has a relator of odd length, then by Corollary 3.1 we have

lim
n→∞

E[ℓG1×G2(Xn)] =

∑
g∈G1×G2

ℓG1×G2
(g)

|G1 ×G2|
=

∑
g1∈G1,g2∈G2

ℓG1(g1) + ℓG2(g2)

|G1||G2|
=

|G2|
∑

g1∈G1
ℓG1

(g1) + |G1|
∑

g2∈G2
ℓG2

(g2)

|G1||G2|
=

∑
g1∈G1

ℓG1
(g1)

|G1|
+

∑
g2∈G2

ℓG2
(g2)

|G2|
.

Otherwise, all relators of G1 and G2 have even length. Notice that in this case the
Cayley graph of G1 is regular and does not have odd cycles, therefore it is also bipartite.
However, it is not hard to see that this implies that there is the same number of even
and odd elements in G1. The same argument applies to G2. Hence, the sum of lengths
of even elements is equal to

∑
2|ℓG1

(g1)

 |G2|
2

ℓG1
(g1) +

∑
2|ℓG2

(g2)

ℓG2
(g2)


=

|G2|
2

∑
2|ℓG1

(g1)

ℓG1
(g1) +

|G1|
2

∑
2|ℓG2

(g2)

ℓG2
(g2).

An analogous expression can be obtained for the sum of lengths of odd elements.

|G2|
2

∑
2∤ℓG1

(g1)

ℓG1
(g1) +

|G1|
2

∑
2∤ℓG2

(g2)

ℓG2
(g2).

Therefore, if we sum these two expressions and take into account the factor of 2
|G1×G2| =

2
|G1||G2| , the proposition follows from Corollary 3.1. □



RANDOM BRAIDS AND RANDOM WALKS ON FINITE GROUPS 133

Corollary 3.2. For the random walk RW(Zn1
×· · ·×Znk

, P ) with k, n1, . . . , nk > 1 and
doubly stochastic matrix P we have the following:

lim
n→∞

E[ℓ(Xn)] =

k∑
i=1

ni

4
−
∑
2∤ni

1

4ni
.

Proof. It is not difficult to find the average length in the Cayley graph of Zn. If n is odd,

then from Proposition 3.1 it is equal to n
4−

1
4n . If n is even, then it is

2·(0+1+...+n
2 )−n

2

n = n
4 .

Thus, from Proposition 3.2 the result follows. □

Applying the fact that each finite abelian group is isomorphic to a direct product of
cyclic groups, we can find the limiting length expectation in a certain presentation for
any finite abelian group using Corollary 3.2.

4. Coxeter groups, reflection groups and invariant polynomials

We begin by outlining some terminology and facts regarding finite Coxeter groups
and reflection groups, which will be needed later to construct a random walk on a braid
group. More details can be found in [6].

Coxeter group W is a group with presentation ⟨ s1, . . . , sn | (sisj)m(i,j) = 1 ⟩ where
m(i, i) = 1 ∀i = 1, n and m(i, j) = m(j, i) ≥ 2 is an integer or ∞ for i ̸= j.

The Artin-Tits braid group of a Coxeter groupW is a group with generators σ1, . . . , σn

subject to the relations:

σiσj . . .︸ ︷︷ ︸
m(i,j)

= σjσi . . .︸ ︷︷ ︸
m(i,j)

.

Let V be a Euclidean space over a field K of characteristics 0. Define a reflection sα
as a nonidentical operator of the Euclidean space, which fixes pointwise the hyperplane
Hα orthogonal to the vector α. Groups generated by a finite set of reflections are called
finite reflection groups. It occurs that finite Coxeter groups are precisely finite reflection
groups.

LetG be a finite subgroup ofGL(V ). Denote by S the symmetric algebra on dual space
V ∗. Fixing a basis in V , S can be performed as an algebra K[x1, . . . , xn] where x1, . . . , xn

are coordinate functions. There is a natural action of G on S (g ·f)(v) = f(g−1v), where
g ∈ G, v ∈ V, f ∈ S. In addition, f is said to be G-invariant if g · f = f ∀g ∈ G.

Theorem 4.1. (Chevalley) Every subalgebra of K [x1, . . . , xn] consisting of W -invariant
polynomials is generated as an K-algebra by n algebraically independent homogeneous
elements of positive degree (together with 1).

Polynomials from the above theorem are called basic invariant polynomials, and denote
their degrees by d1, . . . , dn. Although there can be many sets of generators, their degrees
turn out to be unique up to reordering.

We also provide a table of degrees of basic invariant polynomials for irreducible Coxeter
groups. In addition, any finite Coxeter group W can be represented as a direct product
of such groups.
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W d1, . . . , dn
An 2, 3, . . . , n+ 1

Bn/Cn(n ≥ 2) 2, 4, 6, . . . , 2n
Dn(n ≥ 4) n; 2, 4, 6, . . . , 2n− 2

E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6
H3 2, 6, 10
H4 2, 12, 20, 30

I2(m)(m ≥ 3) 2,m

Define a map w 7→ w̃ from W to the Artin-Tits braid group of W as follows: if
w = si1 . . . sir is a reduced expression of w in W , then w̃ := σi1 . . . σir . This mapping is
well-defined by Matsumoto’s Theorem stated below.

Theorem 4.2. (Matsumoto) Any two reduced expressions of w ∈ W are connected by a
sequence of braid moves.

Although w 7→ w̃ is not a group homomorphism, it still preserves the length function
ℓW (w) = ℓ

W̃
(w̃). Now using this map, we will construct a random walk on a braid group

by first considering a random walk on a Coxeter group W and then lifting it into W̃ .
In the next proposition, we will compute the limiting expectation of the braid length

in our model.

Proposition 4.1. If W ̸= WA1
,WI2(m) for odd m, then for the random walk RW(W,P )

with double stochastic matrix P we have the following:

lim
n→∞

E[ℓ
W̃
(X̃n)] =

Ref W

2

where Ref W is the reflection number of W , which is equal to the length of the longest
element in W .

Proof. First, recall that ℓ
W̃
(β̃) = ℓW (β). It is well known that the generating function

of ℓ(w) is given by its Poincaré polynomial which admits the following factorization:

PW (t) :=
∑
w∈W

tℓ(w) =

n∏
i=1

tdi − 1

t− 1
.

Differentiate it with respect to t in order to obtain∑
w∈W

ℓ(w)·tℓ(w)−1 =

n∑
i=1

(1+. . .+td1−1) . . . (1+. . .+tdn−1)· (1 + 2t+ . . .+ (di − 1)tdi−2)

(1 + . . .+ tdi−1)
.

Evaluating it at t = 1 using the identities d1 · . . . ·dn = PW (1) = |W |, d1+ . . .+dn−n =
deg PW = Ref W , gives us the sum of the lengths of all elements in W∑

w∈W

ℓ(w) = P ′
W (1) =

|W |
2

·
n∑

i=1

(di − 1) =
Ref W

2
· |W |.

From the classification of finite Coxeter groups, we know that W is a direct product of
irreducible Coxeter groups that are listed in the table above. Additionally, a multiset of
degrees of basic W -invariant polynomials is a union of degree multisets of its individual
irreducible components (in the sense that multiplicities of respective elements are added).
However, W ̸= WA1

,WI2(m), so it can be seen from the table above that W has at least
two basic invariant polynomials of even degree. Note that the case of WA2

is already
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covered since Coxeter groups WA2
and WI2(3) have the same presentations. Denote their

degrees di and dj , then each summand in P ′
W (−1) contains either 1 + . . . + qdi−1 or

1 + . . .+ qdj−1 both of which vanish at q = −1, so we get
∑

w∈W (−1)ℓ(w)ℓ(w) = 0 from
which we deduce that∑

w∈W, 2|ℓ(w)

ℓ(w) =
∑

w∈W, 2∤ℓ(w)

ℓ(w) = |W | · Ref W

4
.

Since all relations in the presentation of W have even length by Corollary 3.1 we obtain
the desired result. □

Now notice that in the exceptional cases we do actually get two distinct limits. The
case of WA1 is trivial and observe that the case of WI2(m) with odd m was already
considered in Proposition 3.1 since the Cayley graph of WI2(m) is a 2m-cycle, which also
gives us two distinct limits.

lim
n→∞

E[ℓ(X2n)] =
m

2
− 1

2m
and lim

n→∞
E[ℓ(X2n+1)] =

m

2
+

1

2m
.

Figure 4. Example of a torus braid

Remark. There is a geometrical realization of the random walk in type B obtained
by lifting the braids into the so-called ”torus braid group” Br1,n. Torus braids are
constructed in a similar way to usual braids. We just consider a braid on n+ 1 strands
where one strand is fixed as shown in Figure 4. Then define Br1,n to be the group of
equivalence classes of torus braids under ambient isotopy with concatenation of braids

as the group operation. In [7] it is proved that Br1,n is isomorphic to W̃Bn
.

Recall that the symmetric group Sn is a Coxeter group of type An−1. We will now
find the limiting expectation for the number of connected components of random links
obtained by closing braids in the random walk on Brn.

Proposition 4.2. For the random walk RW(Sn, P ) with doubly stochastic matrix P the
following holds:

lim
N→∞

E[c(X̃2N )] = Hn − (−1)n

n(n− 1)
,

lim
N→∞

E[c(X̃2N+1)] = Hn +
(−1)n

n(n− 1)

where c(L) denotes the number of connected components of a link L and Hn =
∑n

i=1
1
i .

Proof. Let c(w) denote the number of cycles in the cycle decomposition of w ∈ Sn, then

c(w) = c(w̃) since each cycle in the cycle decomposition of w ∈ Sn after closure will



136 H.M. ZHYLINSKYI

become a connected component of an obtained link. It is well known that the generating
function for c(w) is

F (x) =
∑
w∈Sn

xc(w) = x(x+ 1) . . . (x+ n− 1).

If we differentiate it and evaluate at x = 1, we will obtain

F ′(x) = x(x+ 1) . . . (x+ n− 1) ·
(
1

x
+ . . .+

1

x+ n− 1

)
,

F ′(1) =
∑
w∈Sn

c(w) = n!Hn.

Now evaluation at x = −1 and the fact that ℓ(w) and n − c(w) have the same parity,
give us that

xn+1F ′(x) =
∑
w∈Sn

c(w)xn+c(w),

∑
w∈Sn

c(w)(−1)ℓ(w) =
∑
w∈Sn

c(w)(−1)n−c(w) =
∑
w∈Sn

c(w)(−1)n+c(w)

= (−1)n+1F ′(−1) = (−1)n(n− 2)!.

Now putting these two results together and using Corollary 3.1, we will get

lim
N→∞

E[c(X̃2N )] =
2

n!

n!Hn + (−1)n(n− 2)!

2
= Hn +

(−1)n

n(n− 1)
,

lim
N→∞

E[c(X̃2N+1)] =
2

n!

n!Hn − (−1)n(n− 2)!

2
= Hn − (−1)n

n(n− 1)

which finishes the proof.
□

Observe that Hn ∼ log n, and thus both expected numbers of connected components
are asymptotically equivalent to log n as n → ∞.

5. Large deviations

Let {Xi}∞i=1 be a sequence of uniform i.i.d. random variables in {σ ∈ Sn | ℓ(σ) is even}.
Given X̃1 = β1, . . . , X̃N = βN we will now shift indices for each separate braid and com-
pose them into a ”block-diagonal form”, so that any two of them commute.

X̃1

X̃2

X̃3

Figure 5. Example for X̃1 = σ1σ
−1
2 , X̃2 = σ2

1 , X̃3 = σ1.
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The random variable describing the length function of the obtained braid composition
is

LN :=

N∑
i=1

ℓBr(X̃i).

Next, we will show that the probability of the event LN = 2Nx where Nx is an integer

and x ∈
[
0; M = ⌊n(n−1)

4 ⌋
]
is exponentially small.

Proposition 5.1.

lim
N→∞

logPr(LN = 2Nx)

N
= −I(x) where

I(x) =



(
1− 1

M + 1− x

)M+1

+ (M − x) log(M − x)− (M + 1− x) log(M + 1− x)

+ log

(
n!

2

)
, for x ∈ [0; M ]

+∞, otherwise.

Proof. Let κ(n, j, k) denote the number of ordered integer tuples (x1, . . . , xk) such that

x1 + . . .+ xk = n and 0 ≤ xi < j.

From [5] we know the asymptotics of the number of restricted compositions κ(Nx,M +
1, N)

κ(Nx,M + 1, N) ∼ 1√
2πN

· (M + 1− x)N(M+1−x)+ 1
2

(M − x)N(M−x)+ 3
2

· exp

(
−N

(
M − x

M + 1− x

)M+1
)
.

The number of solutions to the equation
y1
2

+ . . .+
yN
2

= Nx with 0 ≤ yi
2

≤ M and yi even for i = 1, N.

is exactly given by κ(Nx,M + 1, N). Since X1, . . . , XN are uniform i.i.d. random vari-

ables in {σ ∈ Sn | ℓ(σ) is even}, then Pr(X̃1 = x1, . . . , X̃N = xN ) =
(

2
n!

)N
. Thus, it is

not difficult to verify the asymptotics

Pr(LN = 2Nx) = κ(Nx,M + 1, N)

(
2

n!

)N

= exp (−NI(x) +O(logN))

from which the desired result immediately follows. □
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