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H.M. ZHYLINSKYTI

RANDOM BRAIDS AND RANDOM WALKS ON FINITE GROUPS

In this paper, we study properties of random walks on finite groups and later use
them to obtain the limiting braid length expectation and component number of
braid closure in a model of random braids, which is constructed by lifting elements
of random walk on a Coxeter group to a braid group.

1. INTRODUCTION

We will consider random walks where at each step with some probability an element
of a group can be multiplied by one of the generators from the presentation of this
group. We will be interested in finding the limiting expectations of different functions
on this group, especially the length function. In [3], a similar construction of loop-erased
random walks on finite groups is studied where loops are erased in order they appear.
Also, in [4] and [2] results of the same type as in Proposition 3.1 are given, but for the

symmetric group S,, and [9], where the same problem is considered for certain Coxeter
groups. Furthermore, we mention [8], [10] where random walks on braid groups are also
considered.

2. BRAIDS AND BRAID GROUPS

Braid on n strings is an object consisting of two horizontal lines L, and L; in R3
containing two ordered sets of points a; = (1,0,0),...,a, = (n,0,0) € L, and by =
(1,0,1),...,b, = (n,0,1) € Ly, and n strands that satisfy the following properties:

e Each strand connects a; with b; for some 4, j and strands are pairwise disjoint.
e Strands have to strictly ascend all the way up.

Instead of thinking about braids in space, we can project them on a plane passing
through L, and L,. Additionally, through ambient isotopy, it can be achieved that there
are only finitely many double crossings, which results in a braid diagram.
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Braid 8 can be turned into a link by connecting the opposite nodes of a braid. This
operation is called the closure of a braid 3, and we will denote it by 3.

The braid group on n strands is a group of braid equivalence classes under ambient
isotopy where the composition is braid concatenation. Let o; and o, ! be two types of
crossings in the braid diagram as shown in the figure below.
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This setting was first considered by Artin and in [1] he proved the following theorem.

Theorem 2.1. The braid group is isomorphic to the group with generators o1,...,0,-1
subject to braid relations:

o 0,0, =0j0; for|i—j| >1,

® 0,0,410; = 0i4+100;41 fori=1,n—1.

Further we will denote it by Br,,.

3. RANDOM WALKS ON FINITE GROUPS

Let S be a set and (S) be a free group on S. Define a word on S as some product
of elements in S U S~!. And let R be a set of words on S. In order to form a group G
with presentation (S | R), take the quotient of (S) by the smallest normal subgroup N
containing R. The elements of S are called generators and the elements of R are called
relations or relators.

Define the length function ¢;(g) of g € G = (S | R) to be the smallest positive integer
r such that there exists a word of length r representing g. We call such an expression g
reduced. By convention, ¢(1) = 0 where 1 is the empty word.

There is a natural way to represent a group G with its generators using a Cayley graph.
Cayley graph T' = Cay(G, S) is a directed graph I" that satisfies the following conditions:

e Each element of G is assigned a vertex in I'.
e Vertex a is connected to vertex b (a — b) if and only if b = ao for some o € S.

It is obvious from the above definition that graph I' is connected, since there is a path
from 1 to each vertex. Also note that the length of an element g € G corresponds to the
length of the shortest path between vertices 1 and ¢ in T'.

To illustrate the above definitions, we provide an example of the Cayley graph of
the symmetric group S3 in Figure 3 given by the presentation (o7 = (12), oo = (23) |
0? = 03 = (0102)® = 1) and the Cayley graph of the dihedral group D, given by the
presentation (a,b | a* = b? = 1, aba = b).

Finally, we define a random walk RW (G, P) to be a Markov chain Xy, X1, ... (Pr(X, =
0) = 1) with state space G and transition probability matrix P = (p;;) such that when-
ever there is an edge a — b in I, probability p.p is strictly positive.

We say that the sequence of random variables Xg, X1, ... converges in distribution to
a random variable X (write X, 4 X)if Vg € G lim,—, 00 Pr(X,, = g) = Pr(X = g). The
following theorem, which is a direct consequence of the general theory of Markov chains,
provides a complete description of the asymptotic behavior of the sequence {X,}22,
under the assumption that P is doubly stochastic.

Theorem 3.1. For the random walk RW(G, P) with doubly stochastic matriz P the
following statements hold:



RANDOM BRAIDS AND RANDOM WALKS ON FINITE GROUPS 131

y (123) \OZJ ab \ /a%
(132) (213) «
: ; |
(312) ‘Q y (231) / - \

(321) b a’b
FI1GURE 3. Cayley graphs of S5 and Dy

If there is a relator of odd length in G, then X, 4 X where X is uniform in G.
Otherwise, Xa, 4, Keven, Where Xeyen s uniform in {g € G | £(g) is even},
Xont1 L Xogq where Xoaq is uniform in {g € G| L(g)isodd}.

Corollary 3.1. For the random walk RW(G, P) with doubly stochastic matriz P and

any function f with the domain G, the following statements hold:
If there is a relator of odd length in G, then lim, . E[f(X,)] = |—Cl;‘ > gec f(9)-
Otherwise, lim, o E[f(X2,)] :2 % 2 gea2ig f(9) and
limp, 00 B[f (X2n+1)] = GT dec,m(g) f(9)-
Proof. By Theorem 3.1 we know that X,, % X, so it follows that f(Xn) 4, f(X) and
lim,, 00 E[f(X)] = E[f(X)] = \%I >_gec f(g)- The other case is done similarly. O
Further we will often use this corollary for f = ¢g. Now we compute the limiting
length expectation for several examples of groups.

Proposition 3.1. For the random walk RW (Z,, P) with doubly stochastic matriz P
the following statements hold:

. m 1
m=1,3 (mod 4) : nlggoE[é(Xn)] =T
1 1
m =2 (mod 4) : li_)m El((X2,)] = % - and li_>m E[¢(Xant1)] = % + —.
. m
m =0 (mod 4) : nh_}rrgo E¢(X,)] = R

Proof. We will repeatedly use Corollary 3.1 throughout the proof. Let us consider three
cases:
e m=1,3(mod 4):
0 2(1+...+ 2L 1
lim E[e(x,)] = 22ec 19 _ 2( 7)) _m_ 1
n—00 m m 4

e m =2 (mod 4):
lm E[f(Xoni)] = = 3 Hg) =

n—oo
9€G, 21t(g)

2 2 m
lim E[((X5,)] = — lg)=—=-(2(2+4+...+ = —1)) =
n—00 2 m gEG,Z;I@(g) m ( ( 2 ))

m_1
4 m
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o m =0 (mod 4):

. 2 2 m m
Jim E[(Xp)] = — > E(g)—a-2<1+3+...+5—1)_z.
9€G 2Ht(9)
. 2 2 m m m
Jim E[f(Xan)] = — ) e(g)f5(2(2+4+...+5)—5)fz.
g€G,2|¢(g)

Hence these two limits coincide and we arrive at

lim E[((Xzn)] = lim E[f(Xzn41)] = -

n—oo

O

Given groups G and H, denote by G x H their direct product. It is not hard to see
that if G = (Sg | Rg) and H = (Sy | Ry), then G x H = (Sg X Sy | Re¢ U Ry U Re),
where R¢ is a set of relations specifying that elements of S¢ and Sy commute. So when
we further consider a random walk on a direct product of groups, this presentation of a
group is meant. Now we will give the formula for the limiting length expectation for the
direct product of groups in the following proposition.

Proposition 3.2. For two non-trivial groups G1,Gs2 and the random walk RW(G; X
Ga, P) with doubly stochastic matriz P the following holds:

. Egl eG1 gGl (gl) Z:92€G2 EGQ (92)
nh_)rr;o]E[@Glez (Xn)] = 1G4 |G|

Proof. We begin by observing that g, xa, ((91,92)) = €a,(g1) + la,(g2). If at least one
of G; and G has a relator of odd length, then by Corollary 3.1 we have
_ ZQGGl X Ga EGIXG? (g) Zg1€G1,92€G2 eGl (91) + £G2 (92)

lim E[lg, xa,(Xn)] = _
i Elle <, (X)) Gy < G TeATeN

|G2| ZgleGl EGI (gl) + |G1‘ ZQQGG2 EGQ (92) o ZgleGl eGl (gl) ZQQEGQ €G2 (92)

1G1]|Ga| (€1 |Ga|
Otherwise, all relators of G; and G5 have even length. Notice that in this case the
Cayley graph of GG; is regular and does not have odd cycles, therefore it is also bipartite.
However, it is not hard to see that this implies that there is the same number of even
and odd elements in GG;. The same argument applies to G2. Hence, the sum of lengths
of even elements is equal to

> <, 501 g+ Y. Laulg2)

2|4, (91) 2|LGy(92)
G G|
G S e+ S Y )
2|Lc, (91) 2|€a, (92)

An analogous expression can be obtained for the sum of lengths of odd elements.
\Gz 1G4
Z la, 5 Z e, (g2)-
2fc, (91) 2fG, (g92)

Therefore, if we sum these two expressions and take into account the factor of ﬁ =

lc;lfw, the proposition follows from Corollary 3.1. O
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Corollary 3.2. For the random walk RW (Zy, X -+ X L, , P) with k,ny,...,ng > 1 and
doubly stochastic matrixz P we have the following:

=

2fn;

Proof. 1t is not difficult to find the average length in the Cayley graph of Z,,. If n is odd,

then from Proposition 3.1 it is equal to 7 — %. If n is even, then it is 2O+1++5)-5 _
n n

T
Thus, from Proposition 3.2 the result follows. ]

Applying the fact that each finite abelian group is isomorphic to a direct product of
cyclic groups, we can find the limiting length expectation in a certain presentation for
any finite abelian group using Corollary 3.2.

4. COXETER GROUPS, REFLECTION GROUPS AND INVARIANT POLYNOMIALS

We begin by outlining some terminology and facts regarding finite Coxeter groups
and reflection groups, which will be needed later to construct a random walk on a braid
group. More details can be found in [6].

Coxeter group W is a group with presentation ( s1,...,s, | (s;s;)"™") = 1) where
m(i,i) = 1Vi=1,n and m(i,j) = m(j,4) > 2 is an integer or oo for i # j.
The Artin-Tits braid group of a Coxeter group W' is a group with generators oy, ...,o,

subject to the relations:

005 ... =0404....

m(%,5) m(i,5)

Let V be a Euclidean space over a field K of characteristics 0. Define a reflection s,
as a nonidentical operator of the Euclidean space, which fixes pointwise the hyperplane
H,, orthogonal to the vector c. Groups generated by a finite set of reflections are called
finite reflection groups. It occurs that finite Coxeter groups are precisely finite reflection

groups.
Let G be a finite subgroup of GL(V'). Denote by S the symmetric algebra on dual space
V*. Fixing a basis in V', S can be performed as an algebra K[z1, ..., z,] where z1,...,z,

are coordinate functions. There is a natural action of G on S (g- f)(v) = f(g~'v), where

ge G, veV, feS. Inaddition, f is said to be G-invariant if g - f = f Vg € G.

Theorem 4.1. (Chevalley) Every subalgebra of K[x1,...,x,] consisting of W -invariant
polynomials is generated as an K-algebra by n algebraically independent homogeneous
elements of positive degree (together with 1).

Polynomials from the above theorem are called basic invariant polynomials, and denote
their degrees by dy, . ..,d,. Although there can be many sets of generators, their degrees
turn out to be unique up to reordering.

We also provide a table of degrees of basic invariant polynomials for irreducible Coxeter
groups. In addition, any finite Coxeter group W can be represented as a direct product
of such groups.
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W v, .d,

A, 2.3,....n+1
Bn/Cn(n > 2) 2,4,6,....2n

D,(n>4) n;2,4,6,...,2n — 2

Fo 2.5,6,8,9,12

By 2.6,8,10,12, 14,18

Fx 2,8,12, 14, 18, 20, 24, 30

Fy 2.6,8,12

Gs 2.6

2P 2.6,10

H, 2,12,20,30
Ir,(m)(m > 3) 2,m

Define a map w — w from W to the Artin-Tits braid group of W as follows: if
w=8;, ...8;, is a reduced expression of w in W, then w := oy, ...0;,. This mapping is
well-defined by Matsumoto’s Theorem stated below.

Theorem 4.2. (Matsumoto) Any two reduced expressions of w € W are connected by a
sequence of braid moves.

Although w — w is not a group homomorphism, it still preserves the length function
by (w) = £ (w). Now using this map, we will construct a random walk on a braid group
by first considering a random walk on a Coxeter group W and then lifting it into W.

In the next proposition, we will compute the limiting expectation of the braid length
in our model.

Proposition 4.1. If W # W, , Wy, for odd m, then for the random walk RW (W, P)
with double stochastic matriz P we have the following:

)?n)] _ Ref W

lim E[¢

n—oo

where Ref W is the reflection number of W, which is equal to the length of the longest
element in W.

i

Proof. First, recall that (3 (8) = fw(B). It is well known that the generating function
of ¢(w) is given by its Poincaré polynomial which admits the following factorization:

n

¢ td —1
Py(t):= Y '™ =T] —

weW i=1

Differentiate it with respect to t in order to obtain

D l(w) =N (1) (L),
weW i=1

Evaluating it at t = 1 using the identities dy ... -d, = Pw (1) = |W|, d1 +...+d, —n =
deg Py = Ref W, gives us the sum of the lengths of all elements in W

n

S tlw) = Py (1) = 03 a1y = BLW gy
weW i=1

(I+2t+...+ (di — 1)tdi—2)
(14...+tdi—1) .

From the classification of finite Coxeter groups, we know that W is a direct product of
irreducible Coxeter groups that are listed in the table above. Additionally, a multiset of
degrees of basic W-invariant polynomials is a union of degree multisets of its individual
irreducible components (in the sense that multiplicities of respective elements are added).
However, W # Wa,, Wr,(m), so it can be seen from the table above that W has at least
two basic invariant polynomials of even degree. Note that the case of W4, is already
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covered since Coxeter groups Wy, and Wy, (3) have the same presentations. Denote their
degrees d; and d;, then each summand in P, (—1) contains either 1 + ...+ ¢%~! or
1+...+¢% ! both of which vanish at ¢ = —1, so we get >, cy-(—1)*“¢(w) = 0 from
which we deduce that

S tw= Y E(w):|W|-Re£W.

weW, 2|¢(w) weW, 2t(w)

Since all relations in the presentation of W have even length by Corollary 3.1 we obtain
the desired result. O

Now notice that in the exceptional cases we do actually get two distinct limits. The
case of Wy, is trivial and observe that the case of Wy,(,,) with odd m was already
considered in Proposition 3.1 since the Cayley graph of Wi, (,,) is a 2m-cycle, which also
gives us two distinct limits.

1 1
— 5 and lim E[{(Xon41)] = L

m n—00 2 2m

lim E[((X2,)] =

m
n— 00 a 2

FIGURE 4. Example of a torus braid

Remark. There is a geometrical realization of the random walk in type B obtained
by lifting the braids into the so-called ”torus braid group” Br,. Torus braids are
constructed in a similar way to usual braids. We just consider a braid on n + 1 strands
where one strand is fixed as shown in Figure 4. Then define Br;, to be the group of
equivalence classes of torus braids under ambient isotopy with concatenation of braids
as the group operation. In [7] it is proved that Bry ,, is isomorphic to Wg, .

Recall that the symmetric group S, is a Coxeter group of type A,_1. We will now
find the limiting expectation for the number of connected components of random links
obtained by closing braids in the random walk on Br,,.

Proposition 4.2. For the random walk RW(S,,, P) with doubly stochastic matrixz P the
following holds:

lim Ele(Xon)] = Hy, — =D

N—o0 n(n - 1) ’
lim E[C(X2N+1)] = Hn + ﬂ
N—oo n(n —1)
where ¢(L) denotes the number of connected components of a link L and H, =Y 1, %

Proof. Let c(w) denote the number of cycles in the cycle decomposition of w € S,,, then

c(w) = ¢(w) since each cycle in the cycle decomposition of w € S,, after closure will
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become a connected component of an obtained link. It is well known that the generating
function for c¢(w) is

Fz)y= > a™ =a(@+1)...(z+n-1).
wWES,

If we differentiate it and evaluate at x = 1, we will obtain
1 1
F)=z(xz+1)...(x+n-1)- (x—i—...—i—),

r+n—1
F'(1)= ) c(w) =nlH,.

wES,

Now evaluation at z = —1 and the fact that {(w) and n — ¢(w) have the same parity,
give us that

"M (2) = Z c(w)z" o),

weSy,

Z c(w)(=1)") = Z c(w)(=1)""ew) = Z e(w)(—1)n+e®)

weSy, weS,, wESy
— (—1)"™ P (=1) = (=1)"(n — 2)!
Now putting these two results together and using Corollary 3.1, we will get

(="

) = _ 2nlH, 4+ (=1)"(n—-2)!
o Bl = 5 2 BT
. = 2 nlH, — (—1)"(n —2)! -1"
N EletXenn)) = 24 =N )Iﬂg@fn

which finishes the proof.
O

Observe that H, ~ logn, and thus both expected numbers of connected components
are asymptotically equivalent to logn as n — oo.

5. LARGE DEVIATIONS

Let {X;}22, be a sequence of uniform i.i.d. random variables in {o € S,, | £(0) is even}.
Given X7 = f1,..., Xy = By we will now shift indices for each separate braid and com-
pose them into a ”block-diagonal form”, so that any two of them commute.

.

(

>

s

F1GURE 5. Example for )?1 = 010517)?2 = 0%,)}3 = 0.

~




RANDOM BRAIDS AND RANDOM WALKS ON FINITE GROUPS 137

The random variable describing the length function of the obtained braid composition
is

N
LN = ZEBT(X’L)
=1

Next, we will show that the probability of the event Ly = 2Nz where Nz is an integer
and = € [0; M = L%J} is exponentially small.

Proposition 5.1.
log Pr(Ly = 2Nzx)

1\}5%0 N = —I(x) where
1 M+1
1— —— M —x)logM —z)— (M +1—=x)log(M +1—
(1= 5rr=s) o+ O - DloR(M —a) = (M + 1 ) log(M + 1)
I(z) = |
() + log (7;) , for z € [0; M]

400, otherwise.
Proof. Let k(n, j, k) denote the number of ordered integer tuples (x1,...,xx) such that
1+ ...+zp=nand 0 < z; < j.

From [5] we know the asymptotics of the number of restricted compositions xK(Nz, M +
1,N)

1 M +1— z)NM+1-2)+3 M — M1
K/(N.’,U,M‘FI,N)N ( + x) 3 ’ - exp —N 739
V2N (M — J;)N(M*IH? M4+1—x
The number of solutions to the equation
%—F...—Fy?N:waithOg%SMandyi even for i = 1, N.

is exactly given by k(Nx, M + 1, N). Since X,..., Xy are uniform i.i.d. random vari-
ables in {0 € S, | £(0) is even}, then Pr(X; = z1,..., Xy = an) = (%)N Thus, it is
not difficult to verify the asymptotics

N
2
Pr(Ly =2Nz) = k(Nz, M 4+ 1,N) (n') =exp (—NI(z) + O(log N))
from which the desired result immediately follows. |
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