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SOME ISSUES OF THE SECRETARY PROBLEM WITH RANDOM
LIFETIMES OF SCANNED OBJECTS

We consider a variation of the secretary problem, in which n objects have random
lifetimes after their scan. After scanning each object in turn, an observer either
continues the process or chooses one of the scanned objects. In the latter case,
the selection process ends, although the selected object may already disappear. We
assume that its lifetime has a geometric distribution with parameter α. Unlike all
previous formulations of the secretary problem, in which the scanning started with
the first object, we investigate the optimal strategy of a belated observer who joined
the selection process with a delay. In the final part of the article, we investigate the
transient regime when α = α(n) → 1 as n → ∞. It turns out that the behavior of
the threshold level L = L(n) can be arbitrary, as long as lim

n→∞
L/n ≥ 1/e.

1. Statement of the problem and preliminaries

P. R. Freeman [3] in his review article on the secretary problem indicates that the
development of what has come to be known as the secretary problem began in the early
1960s. Now we see a new surge of interest in the best choice problem. The paper [8]
provides an overview of publications on the issue under consideration as of 2020.

The classical statement of the problem of optimal choice of the best among n ≥ 2
objects (the secretary problem) is given by the following conditions:

(1) All n! permutations of n objects according to their quality are equally possible.
(2) The observer scans them in turn.
(3) Having scanned anything the observer takes a decision either to continue process

or to stop and claim that the last scanned object is the best of all.
(4) The observer cannot go back and choose a previously scanned object.
(5) This decision is only based on information about the mutual arrangement of the

scanned objects.
The decision may eventually be false, so the following problem arises: to determine the
optimal strategy that provides the highest probability to correct decision.

Lindley [4] gave the first published solution of the standard problem. The optimal
strategy is as follows.

Put ar = 1
r + 1

r+1 + . . . + 1
n−1 . Let also r∗ be such that ar∗−1 ≥ 1 > ar∗ . Then the

optimal policy is to reject the first r∗ − 1 objects and then to accept the first object
thereafter, which is better than all previous ones. Both r∗/n and the probability of
winning using this policy tend to e−1, as n → ∞.

Most succeeding papers follow algebraic methods similar to Lindley’s. Dynkin [1, 2]
gave a completely different approach, which we are following. This approach allows us
to consider the problem of the optimal strategy of a latecomer.

Condition 4 indicates that the observer cannot claim any previously missed object
as the best one. Yang [9] and Petrucelli [5, 6] allowed the observer at any stage to go
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back and try to accept a previously rejected object. If it is available, it is accepted, but
otherwise, it remains unavailable ever after, and the observer must continue scanning
new items.

The paper [10] considered another extension of the secretary problem. It changed
conditions 3 and 4 by:

(6) After scanning an object, a counter of its lifetime starts. Having scanned any
object, the observer takes a decision either to continue scanning or to stop and
to claim an object already scanned as the best one among the totality. The
observer can fail due to two reasons, the first one is the same as earlier, and the
second consists in the observer’s sluggishness and, consequently, in the possible
disappearance of the chosen object.

We assume that lifetimes of different objects are independent and have common geo-
metrical distribution with parameter α. We point out that, unlike [5, 6, 9], multiple
returns are inadmissible, and the decision is final. The paper [10] considered such a case
and established the structure of the support set of a two-dimensional Markov chain that
specified the selection procedure. We continue the investigation of this model. We know
only one work [7] that considered such a variant of the secretary problem. It used an
algebraic method. Here, a system of relations between system performances was critical
for the research.

In all previous formulations of the secretary problem, the observer appeared at the
very beginning of the scan. They did not consider the possibility of the observer being
late. In our variant of the secretary problem, such an observer joins the scan and receives
data on the number i of the last scanned object, and on the number j of the best object
among all scanned. For i less than a threshold level, the observer must continue scanning.
In the opposite case, the question arises: should the observer select the object j, although
it could disappear, or should he (she) continue the scan? The first part of the article
is devoted to the study of the optimal strategy under the specified conditions. We
indicate the criterion for making a particular decision. In addition, we demonstrate the
capabilities of the proposed method in obtaining already known results. The second part
of the article considers the transient regime of the secretary problem with a geometric
distribution of lifetimes, when α = α(n) as n → ∞. It turns out that the threshold level
L = L(n) can behave arbitrarily, as long as lim

n→∞
L/n ≥ 1/e . The study makes use of

Lemma 5.1 on the monotonicity of the sequence

k →

1−
n∑

j=n−k+1

1

j − 1

 1
k

.

This result was established in [10] because of other statements. Professor Marynych
communicated another proof to the author. We give it in his edit.

2. The base process and notation

In this section, we give the main definitions, designations and conventions.
(1) The process B(k) = (k, y(k)), 1 ≤ k ≤ n, is called the base process, if k is the

number of the object just scanned, and y(k) is the number of the object, the best
among those scanned so far. It is a homogeneous Markov chain with absorbing
states (n, j). Its one-step transitions from non-absorbing states are

p((i, j), (i+ 1, j)) =
i

i+ 1
, p((i, j), (i+ 1, i+ 1)) =

1

i+ 1
.

(2) S = {(i, j) : 1 ≤ j ≤ i ≤ n} denotes the phase space of the base process.
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(3) D = {(i, i) : 1 ≤ i ≤ n} is the diagonal of S, Sn = {(n, 1), (n, 2), . . . , (n, n)} is
the last column of S, ∂S = D ∪ Sn, and IntS = S\∂S.

(4) P(i,j){A} and E(i,j)η denote the conditional probability of the event A and con-
ditional expectation of the random variable η under the condition x(0) = (i, j).

(5) Pg(i, j) = E(i,j)g(B(1)) is the one-step shift operator of the function g(·, ·).
(6) f(i, j) = αi−j i

n is the payoff function. It is the probability that the object j still
exists at the moment of scanning the object i and is the best among all, provided
that it is the best among initial i objects.

(7) The value of the game v(i, j) = supE(i,j)f(B(θ)), where supremum is taken
over the set of all Markov moments. It is known [8] that v(·) ≥ 0, v(·) =
max{f(·),Pv(·)}, i.e. the value of the game is the minimal excessive majorant
of the payoff function.

(8) Γ = {(i, j) : v(i, j) = f(i, j)} is the support set.
(9) τ = min{k : B(k) ∈ Γ} is the hitting time of the support set. It gives the optimal

strategy.
(10) L denotes the threshold level of D.
(11) m = n− L+ 1 is the number of states in D ∩ Γ.
(12) r∗ is the threshold level in the standard secretary problem.
(13) By default, from now on (x, y) ∈ S.
(14) We place the symbol □ at the end of proofs.
(15) ⇒ is the implication sign.

3. Optimal strategy of a delayed observer

Article [9] indicates the following properties of the support set:
(1) (i, j) ∈ Γ ⇒ (i, j + 1) ∈ Γ.
(2) (i, j) ∈ Γ ∩ IntS ⇒ (i− 1, j) ∈ Γ.
(3) (i, j) ∈ Γ ⇒ (i+ 1, j + 1) ∈ Γ.

Definition 3.1. The threshold of the diagonal is a point (L,L) such that (i, i) /∈ Γ for
any i < L, and (i, i) ∈ Γ for any i ≥ L. We shall call L the threshold level.

If n ≥ 2, then (1, 1) /∈ Γ, (n, n) ∈ Γ, and property 3 implies the existence of such a
level.

Definition 3.2. The threshold of the ith column is a point (i, Ri) such that (i, j) /∈ Γ
for any j < Ri, and (i, j) ∈ Γ for any j ≥ Ri. We shall call Ri the threshold level of the
ith column.

If i < L, then the threshold point of the column does not exist, because in the opposite
case from property 1 it would follow that (i, i) ∈ Γ, which cannot be the case if i < L.
If i = n, then the threshold point of the column does not exist because in this column
all points are in Γ. If i ∈ {L,L + 1, . . . , n − 1}, then the threshold point exists due to
property 1, (i, 1) /∈ Γ, (i, L) ∈ Γ because of (L,L) ∈ Γ, existence of the threshold level
L, and the condition i ≥ L. The above, with appropriate edits, concerns the threshold
of the row and the threshold of the parallel to the diagonal from property 3.

Lemma 3.1. The sequence (RL, RL+1, . . . , Rn−1) is nondecreasing. Its neighboring ele-
ments differ by no more than one.

Proof. If L < k ≤ n−1, then (k,Rk) ∈ Γ, and by property 2 (k−1, Rk) ∈ Γ. This implies
Rk−1 ≤ Rk. If Rk−1 < Rk − 1, then from property 3 it follows that (k,Rk−1 + 1) ∈ Γ.
In such a case Rk−1 + 1 ≥ Rk, which contradicts the assumption made. □

The optimal strategy requires an immediate stop at the point of the support set.
Otherwise, the scan must continue. A belated observer receives information that the
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scan result now is (i, j). In three cases, we already know the answer to the question:
whether (i, j) /∈ Γ or (i, j) ∈ Γ:

(1) If i < L, then (i, j) /∈ Γ, and the optimal strategy requires continuing scanning.
(2) If i = j, then (i, i) /∈ Γ at i < L, and one should continue scanning, and at i ≥ L

the optimal strategy is to stop.
(3) If i = n , then (n, j) ∈ Γ.

Lemma 3.2. If Ri+1 = (i+ 1, j + 1), then Pv(i, j) = i
n

(
n−1∑
l=k

1
l +

j
nα

n−j

)
.

Proof. The point (i+ 1, j + 1) is threshold, so
a) (i+ 1, i+ 1) ∈ Γ, (k, k) ∈ Γ at k ≥ i+ 1,
b) (i+ 1, j) /∈ Γ.

Property 2 implies (k, j) /∈ Γ at i+ 1 ≤ k ≤ n− 1. Further,

Pv(i, j) =
i

i+ 1
v(i+ 1, j) +

1

i+ 1
v(i+ 1, i+ 1).

Since (i+ 1, j) /∈ Γ, we have v(i+ 1, j) = Pv(i+ 1, j). Conversely, (i+ 1, i+ 1) ∈ Γ, and
v (i+ 1, i+ 1) = f(i+ 1, i+ 1) = i+1

n . So, Pv(i, j) = i
i+1Pv(i+ 1, j) + 1

n .
The obtained equality used only properties a) and b). This allows us to apply them

to calculate Pv(i+ 1, j), . . . ,Pv(n− 2, j). As a result, we obtain a system of equations

(1) Pv(k, j) =
k

k + 1
Pv(k + 1, j) +

1

n
, k = i, i+ 1, . . . , n− 2.

Since the state (n, j) is absorbing,

Pv(n− 1, j) =
n− 1

n
v(n, j) +

1

n
v(n, n) =

n− 1

n
Pv(n, j) +

1

n
.

Therefore, system (1) is valid at k = i, i+ 1, . . . , n− 1. Its solution admits the represen-
tation

Pv(k, j) =
k

n

n−1∑
l=k

1

l
+

k

n
Pv(n, j) at k = i, i+ 1, . . . , n− 1.

Again, the state (n, j) is absorbing, Pv(n, j) = v(n, j) = f(n, j) = αn−j , and eventually
we get

(2) Pv(k, j) =
k

n

(
n−1∑
l=k

1

l
+ αn−j

)
at k = i, i+ 1, . . . , n− 1.

We have established even stronger statement than in the lemma. □

Theorem 3.1. If Ri+1 = (i+ 1, j + 1), then Ri = (i, j) if and only if

(3) αi−j ≥
n−1∑
l=i

1

l
+ αn−j .

Otherwise, Ri = (i, j + 1).

Proof. By Lemma (3.1), Ri must be either (i, j + 1) or (i, j). If it is (i, j + 1), and not
(i, j), then by the threshold property (i, j) /∈ Γ and f(i, j) < v(i, j). In this situation,
v(i, j) = max{f(i, j),Pv(i, j)} = Pv(i, j), and f(i, j) < Pv(i, j). So, (i, j) /∈ Γ if and only
if f(i, j) < Pv(i, j). Pv(i, j) is indicated in (2), f(i, j) = i

nα
i−j , from which follows the

statement of the theorem (more precisely, inverse to contrary, which is equivalent). □

To summarize, let us formulate an optimal rule for an observer who, at the moment
of his arrival, finds the process in the state (i, j):

(1) If i < L, he should not stop (too few observations have passed).
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(2) If i = n, he has to choose the jth object best (he arrived too late and missed all
the opportunities to make a choice).

(3) If L ≤ i ≤ n− 1, he should check the inequality j ≥ Ri. If it is right, he should
stop and choose the jth object. Otherwise, he should continue scanning. To use
this rule, he should know the threshold levels RL, RL+1, . . . , Rn−1.

Remark 3.1. Note that RL = L. The reverse procedure for finding RL+1, RL+2, . . . , Rn−1

has no cycles in the cycle. It has 2 cycles, the first for finding Rn−1, and the second for
finding Rn−2, Rn−3, . . . , RL+1.

Remark 3.2. If in the specified procedure one gets Rk = k, then Rs = s for all s ≤ k, if
any. This follows from the threshold property of all Rs and Lemma 3.1.

Remark 3.3. The threshold level L is determined by the condition
n∑

j=L

1

j − 1
+ αn−L+1 > 1 ≥

n∑
j=L+1

1

j − 1
+ αn−L.

We establish it in the next section.

4. Embedded chain

In this section, we only consider the case B(1) = (1, 1), τ = min{i : B(i) ∈ Γ}, and
demonstrate efficiency of the approach proposed.

Lemma 4.1. If B(1) = (1, 1) and τ = min{i : B(i) ∈ Γ}, then any point (i, j) ∈
Γ ∩ IntS is unattainable for the base process. If (i, i) ∈ Γ at i ≤ n− 1, then (n, i) is also
unattainable.

Proof. The base process arrives at the given point (i, j) only along the trajectory, the
final part of which consists of points (j, j), (j + 1, j), . . . , (i − 1, j), (i, j). Since (i, j) ∈
Γ ∩ IntS ⇒ (i − 1, j) ∈ Γ, all the specified points belong to the support set, and the
selected optimal strategy would stop the base process no later than at the point (j, j),
making all later ones unattainable. The second statement of lemma is true for the same
reason. □

Lemma 4.1 allows us to reduce the problem to scanning the values of the base process
in ∂S = D ∪ Γn. Such successive observations generate an embedded Markov chain Q(·)
with the phase space ∂S, the states from Γn are absorbing. Its one-step transitions from
non-absorbing states have the form

a) (i, i) → (j, j) with probability i
j(j−1) , 1 ≤ i < j ≤ n, and

b) (i, i) → (n, i) with probability 1
n .

The values of the payoff function, the threshold level L, and the game value on the set
∂S remain unchanged. The support set of the chain Q(·) is ∆ = Γ ∩ ∂S. In addition,
τ = min{i : B(i) ∈ Γ} = min{i : Q(i) ∈ ∆}.

Let Q denote the shift operator generated by the chain Q(·).
The level L is determined by the threshold conditions

f((L,L)) ≥ Qv((L,L)), f((L− 1, L− 1)) < Qv((L− 1, L− 1)).

One can write them as

(4)
n∑

j=L

1

j − 1
+ αn−L+1 > 1 ≥

n∑
j=L+1

1

j − 1
+ αn−L.
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The probability of success when using the optimal strategy is

E(1,1)v(Q(τ)) =

n∑
j=L

L− 1

j(j − 1)
v(j, j) +

L−1∑
j=1

1

n
αn−j =

L− 1

n

n∑
j=L

1

j − 1
+

1

n

αn−L+1 − αn

1− α
.

Up to notation, these formulas are given in [10].

Remark 4.1. Condition (4) can be rewritten as

(5)

1−
n∑

j=L

1

j − 1

 1
n−L+1

< α ≤

1−
n∑

j=L+1

1

j − 1

 1
n−L

.

We got this inequality due to the existence of the threshold level L. A direct proof of

the increase of the sequence k 7→

(
1−

n∑
j=k

1
j−1

) 1
n−k+1

, provided that 1 −
n∑

j=L

1
j−1 > 0,

exists for arbitrary constant k and is given separately.

Remark 4.2. These results entail L/n → e−1 as n → ∞. The probability of success has
the same limit.

5. Transient regime

In this section, we consider the transient regime, in which α and m depend on n,
α = α(n), m = m(n), and α(n) → 1 as n → ∞. We investigate three cases:

a) m(n) is a constant;
b) m2(n) = o(n), m(n) → ∞ as n → ∞;
c) m(n) = Kn+ o(n), where K is a constant, 1− 1

e < K < 1.

Let us put α0 = 1, αk =

(
1−

n∑
j=n−k+1

1
j−1

) 1
k

for k ≥ 1, provided that

(6) 1−
n∑

j=n−k+1

1

j − 1
> 0.

Lemma 5.1. Subject to requirement (6) αk > αk+1.

Proof. Let us check that the sequence k → − lnαk is increasing. Given the Taylor series
expansion

− lnαk =
∑
j≥1

1

j

1

k

(
1

n− 1
+ . . .+

1

n− k

)j

for k ≥ 1, it is sufficient to check that the sequences k →
(

1
n−1 + . . .+ 1

n−k

)
and

k → 1
k

(
1

n−1 + . . .+ 1
n−k

)
are increasing. Then each term in the expansion increases

as the product of increasing sequences. The fact that the first specified sequence is
increasing is obvious. The monotonicity of the second follows from the elementary fact
applied to the sequence k → ck = 1

n−k : if the sequence k → ck is increasing, then the
sequence k → 1

k (c1 + . . .+ ck) is also increasing. □

By Lemma 5.1, we can define the intervals

I1 = (α1, α0], I2 = (α2, α1], . . . Im = (αm, αm−1].
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Corollary 5.1. For any natural-valued function K(n), with r∗ ≤ K(n) ≤ n, there exists
a sequence α(n) such that L = L(n, α(n)) = K(n).

Proof. Condition (5) gives

L = k ⇔

1−
n∑

j=k

1

j − 1

 1
n−k+1

< α ≤

1−
n∑

j=k+1

1

j − 1

 1
n−k

⇔ α ∈ Ik,

and it suffices to take k = K(n), as α(n) take any point of the interval Ik. □

The interval Im = (αm, αm−1] with m = n−L+1 being the number of states in D∩Γ
is of particular interest. Now we pass to investigating the asymptotic behavior of αm

and αm−1 − αm, as n → ∞.

Theorem 5.1. The following statements are true:
a) for m being a constant, not less than 2,

αm = 1− 1

n− 1
− m− 1

n2
+O(n−3)

and
αm−1 − αm = n−2 +O(n−3);

b) for m = m(n), m2 = o(n) and m → ∞ as n → ∞,

αm = 1− 1

n− 1
− m

(n− 1)
2 +O

(m
n3

)
and

αm−1 − αm = n−2 +O(mn−3);

c) for m ∼ Kn, as n → ∞, and 0 < K < 1− 1/e,

αm = 1 +
ln(1 + ln(1−K))

Kn
+ o

(
1

n

)
.

Proof. Let us begin with the statement a). Inasmuch as α1 = 1− 1
n−1 , its two equalities

are equivalent, and it suffices to prove the second one. Since m = n − L + 1, one can
write (5) as

αm =

1−
n∑

j=n+1−m

1

j − 1

 1
m

< α ≤

1−
n∑

j=n+2−m

1

j − 1

 1
m−1

= αm−1.

Let us denote

x =

n∑
j=n+2−m

1

j − 1
, p =

1

m− 1
,

y =

n∑
j=n+1−m

1

j − 1
, q =

1

m
.

Then
αm−1 − αm = (1− x)p − (1− y)q.

From the Taylor series expansion

(1− z)s = 1− sz − s(1− s)

2!
z2 − s(1− s)(2− s)

3!
z3 − . . . ,

it follows that for 0 < s < 1 and 0 ≤ z ≤ 1− ε, ε > 0

(7) (1− z)s = 1− sz − s(1− s)

2!
z2 +O(sz3).
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Here O(sz3) = sz3O(1), and O(1) is a function bounded on its domain.
We have

(8) αm−1 − αm = (1− x)p − (1− y)q =

− px+ qy − p(1− p)

2
x2 +

q(1− q)

2
y2 +O

(
px3 ∨ qy3

)
.

Further,

−px+ qy = − 1

m− 1

n∑
j=n+2−m

1

j − 1
+

1

m

n∑
n+1−m

1

j − 1

=
1

(m− 1)m

 m

n−m
−

n∑
j=n+1−m

1

j − 1


=

1

(m− 1)m

n∑
j=n+1−m

(
1

n−m
− 1

j − 1

)
= |j = k + n+ 1−m|

=
1

(m− 1)m

m−1∑
k−0

k

(n−m)(k + n−m)
.(9)

Each of the terms of the last sum in (9) has the form kn−2 +O(n−3), and

−px+ qy =
1

m(m− 1)

m−1∑
k=0

kn−2 +O(n−3) =
1

2
n−2 +O(n−3).

Furthermore,

−p(1− p)

2
x2 +

q(1− q)

2
y2 = −p

2
x2 +

q

2
y2 +

p2x2 − q2y2

2
.

Simple estimates

(10)
m− 1

n− 1
≤ x ≤ m− 1

n+ 1−m
,

m

n− 1
≤ y ≤ m

n−m

give

x2 =

(
m− 1

n

)2

+O(n−3),

y2 =
(m
n

)2
+O(n−3),

−p

2
x2 +

q

2
y2 = − 1

2(m− 1)

(
m− 1

n

)2

+
1

2m

(m
n

)2
+O(n−3) =

1

2n2
+O(n−3),

−p2x2 − q2y2

2
= − (px− qy)(px+ qy)

2
= −1

2

1

2n2
O(n−1) = O(n−3),

x3 = O(n−3),

y3 = O(n−3).

Combining these results, we get αm−1 − αm = n−2 +O(n−3), if m ≥ 2.
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Now let us turn to the case b). Instead of (8), we will use a more accurate formula

αm−1 − αm = −px+ qy − p(1− p)

2
x2

+
q(1− q)

2
y2 − p(1− p)(2− p)

3!
x3 +

q(1− q)(2− q)

3!
y3 +O

(
px4 ∨ qy4

)
.

We will evaluate terms of the same order in turn.
Let us designate

rk(n;m) =
1

(n−m)(k + n−m)
− 1

n2
=

m(2n−m)− k(n−m)

(n−m)(n−m+ k)n2
.

Then 0 < rk(n;m) < r(n,m) = m(2n−m)

(n−m)2n2 = O
(
m
n3

)
and formula (9) gives

−px+ qy =
1

(m− 1)m

m−1∑
k−0

(
k

n2 +
k

(n−m)(k + n−m)
− k

n2

)
=

1

2n2
+O

(m
n3

)
.

Estimates (10) allow us to evaluate

x =
m− 1

n−m+ 1
+O

(m
n2

)
,

y =
m

n−m
+O

(m
n2

)
,

px2 =
m− 1

(n−m+ 1)
2 +O

(m
n3

)
,

qy2 =
m

(n−m)
2 +O

(m
n3

)
,

p2x2 − q2y2 = (px− qy)(px+ qy) = O
(m
n3

)
.

Remark also that m−1
(n−m+1)2

− m−1
(n−m)2

= O
(
m
n3

)
. This gives −p

2x
2 + q

2y
2 = 1

2n2 +O
(
m
n3

)
,

and −p(1−p)
2 x2 + q(1−q)

2 y2 = 1
2n2 +O

(
m
n3

)
.

In evaluating
p(1− p)(2− p)

3!
x3 − q(1− q)(2− q)

3!
y3,

we make use of the elementary identity AB−CD = (A−C)B+(B−D)C with A = x3,
B = p(1−p)(2−p)

3! , C = y3, D = q(1−q)(2−q)
3! . It gives

p(1− p)(2− p)

3!
x3 − q(1− q)(2− q)

3!
y3 = O

(m
n3

)
.

Next, both px4 and qy4 are 1
mO

(
m4

n4

)
= o

(
m
n3

)
, so

αm−1 − αm = n−2 +O(mn−3).

To proceed to evaluating αm, let us consider harmonic numbers Hn = 1+ 1
2 +

1
3 + . . .+ 1

n ,
n ≥ 1. The Euler-Maclaurin formula, applied to the function f(x) = x−1, results in the
equality

Hn = lnn+ γ +
1

2n
+

r∑
k=1

B2k

2kn2k
− θr,n

B2r+2

(2r + 2)n2r+2
,

where 0 < θr,n < 1, γ is the Euler-Mascheroni constant, and Bi are Bernoulli num-
bers [11]. We will limit ourselves to r = 1:

(11) Hn = lnn+ γ +
1

2n
+

1

12n2
+O

(
1

n4

)
.



SOME ISSUES OF THE SECRETARY PROBLEM 127

We have αm = (1−Hn−1 +Hn−m−1)
1
m . In the case under consideration Hn−1 −

Hn−m−1 →
n→∞

0. This makes it possible to use equality (7) with s = 1
m and z =

Hn−1 − Hn−m−1, i.e. αm = (1− z)s = 1 − sz − s(1−s)
2! z2 + O(sz3). In accordance

with (11),

z = − ln

(
1− m

n− 1

)
− 1

2

m

(n− 1)(n− 1−m)
+O

(m
n3

)
=

m

n− 1
+

1

2

m2

(n− 1)
2 +

1

3

m3

(n− 1)
3 (1 + o(1))− 1

2

m

(n− 1)(n−m− 1)
+O

(m
n3

)
.

Since m2 = o(n), z = m
n−1 + 1

2
m2

(n−1)2
− 1

2
m

(n−1)2
+ O

(
m
n3

)
. The major term in − 1

2z
2 to

be taken into account is − 1
2

m2

(n−1)2
. Eventually we get

αm = 1− 1

n− 1
− m

(n− 1)
2 +O

(m
n3

)
.

Now we turn to the case c). If n → ∞, then m
n = K + o(1), and it follows from (11) that

1−Hn−1+Hn−m−1 = 1+ln(1−K)+o(1). For brevity, let us denote C = 1+ln(1−K).
We have αm = (C + o(1))

1
m . Since C > 0,

lnαm =
1

m
ln(C + o(1)) =

1

m
lnC + o

(
1

m

)
and

αm = exp {lnαm} = exp

{
lnC

m
+ o

(
1

m

)}
= 1 +

lnC

m
+ o

(
1

m

)
= 1 +

lnC

Kn
+ o

(
1

n

)
.

□
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