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GEORGII RIABOV

CONSTRUCTING STOCHASTIC FLOWS OF KERNELS

In the paper we suggest a new construction of stochastic flows of kernels in a locally
compact separable metric space M. Starting from a consistent sequence of Feller
transtition function (P(™) : n > 1) on M we prove existence of a stochastic flow of
kernels K = (Ks ¢ : —00o < s < ¢ < 00) in M, such that distributions of n-point
motions of K are determined by P("). Presented construction allows to find a single
idempotent measurable presentation p of distributions of all kernels K ; from a flow,
and to construct a flow that is invariant under p and is jointly measurable in all
arguments.

1. INTRODUCTION

Stochastic flows of kernels appear naturally as solutions to stochastic differential equa-
tions (SDE’s) in the absence of strong uniqueness. Following fundamental works of
Y. Le Jan and O. Raimond [8, 9], by a stochastic flow of kernels we understand a family
(Ksp : —00 < s <t < o0) of random probability transition kernels on a locally com-
pact separable metric space M that satisfy the evolutionary property K, ;Ks: = K4,
K s(z) = 05, 7 < s <t (equalities must be understood in a proper sense that is ex-
plained below), have independent and homogeneous increments (if t; < to < ... < ¢y,
then Ky, 4,,..., Ky, , +, are independent; the distribution of K ; depends only on ¢t —s)
and satisfy a variant of the Feller condition. Precise definition of a stochastic flow of
kernels is given in Section 2.

One of the simplest examples of an SDE for which strong uniqueness fails is the Tanaka
equation on R

(1) dXt = sign(Xt)dBt,

where (B; : t € R) is the standard Brownian motion on R [6, Ch. IV, §1]. Obviously, the
solution X of (1) follows the trajectory of B when it is strictly positive, and follows the
trajectory of —B when it is strictly negative. The reason for non-existence of a strong
solution is that once the solution X reaches zero, it can randomly choose which excursion
to follow: the excursion of B or the excursion of —B. A natural extension of the Tanaka
equation to kernels was suggested in [7] in the form

(2)  Kif(x) = f(z)+ / K. (f'sign) (w)dB(u)Jr% / Ko o(f")(x)du, t > s,

where f is an arbitrary twice continuously differentiable function on R with compact
support. If kernels K, are given by random mappings of ¢, : R — R, i.e. Ky (x) =
04, .(z), then the equation (2) is a consequence of (1) and the It6 formula. However, there
are kernel solutions of (2) that are not given by random mappings. In [7] it was proved
that all solutions of (2) are in one-to-one correspondence with probability measures m on
[0, 1] with mean %, where m is the law of K¢(0, [0,00)). An amount of similar results for
large classes of SDE’s on manifolds and metric graphs were obtained in [2, 3, 4, 10, 11, 12].
Stochastic flows of kernels with Brownian n-point motions were studied in [5, 15, 17].
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In [8, 9] it was shown that to any sequence (P(™ : n > 1) of consistent Feller transition
functions (where (P,E”) :t > 0) is a Feller transition function on M™) there corresponds
a stochastic flow of kernels (K; : —0o < s < t < o00) such that for alln > 1, ¢t > 0,
reM”

0 P @) =€ | [ ) @laRosto) (@]

where f is an arbitrary continuous function on M™ that vanishes at infinity. Consistency
of transition functions means that transition kernels Pg") (x) behave properly under per-
mutations of components of z € M"™ and define transition kernels ng)(y) for all k <n
and y € MP*. This result extends results of [1, 8, 9] on existence of stochastic flows of
mappings. In [1] it was proved that to any sequence (P(”) :n > 1) of consistent tran-
sition functions with additional property that PEQ)((a?, x)) is concentrated on a diagonal
of M? (coalescing property) there corresponds a stochastic flow of random mappings
(ps 1 —00 < s <t <o0)of M such that for alln >1,¢>0, x € M™

P f(2) = Ef (por(1), - - > po.t(wn)),

where f is an arbitrary continuous function on M" that vanishes at infinity. In the
construction of [1] the evolutionary property ¢s ;o ¢rs = @r, 7 < s < t, holds without
exceptions in r, s,t,w, for any ¢; <ty < ... <t, mappings ©¢, ty,---,Pt,_,.t, are inde-
pendent, and the distribution of ¢, depends only on ¢t —s. However, in this construction
the measurability of ¢s.(z) in any of the variables s,t or z is absent and only mea-
surability in x can be achieved under rather strong restrictions on transition functions
(P : n > 1). This limits the applicability of results of [1] in the context of equations
like (2). To overcome the issue, in [¢, 9] the Feller property of P(™) is assumed and the
definition of a stochastic flow is modified. Namely, a stochastic flow of mappings is a
family (¢, : —00 < s <t < 00) of random elements in the space of measurable mappings
of M (equipped with the cylindrical o-field) that satisfies a variant of the Feller property
and for which the evolutionary property is understood as follows:
for all r < s <t and x € M with probability 1

(4) 4107',t(-r) =Tis (@s,t) o ‘Pr,s(x)a

where J;_, is a measurable presentation of the distribution of ¢, ; in the space of mea-
surable mappings of M. The usage of a measurable presentation J;_s together with
a variant of the Feller property for ¢ allows to settle a one-to-one correspondence be-
tween stochastic flows of mappings and coalescing sequences of consistent Feller transition
functions. Similarly, the evolutionary property for stochastic flows of kernels in [8, 9] is
understood as follows:

for all r < s <t and z € M with probability 1

(5) Kr,t(x) = Kr,sptfs (Ks,t) (m)7

where p;_; is a measurable presentation of the distribution of K ; in the space of kernels
on M (see Section 2 for more details).

Presences of Ji_s in (4) and of p;—s in (5) do not look natural. However, they are
necessary due to two reasons at least. Firstly, the convolution of kernels is in general a
non-measurable operation and it is not clear how to define convolution of two indepen-
dent random kernels in a measurable way. Secondly, the presence of p;_s in (5) allows
to show that functions Pgn)(m) defined in (3) are actually transition functions. In [3, 9]
a stochastic flow of mappings (ps; : —00 < s < t < o0) was constructed in such a
way that equalities J;—s(@s.t(w)) = @s,1(w) were satisfied without exceptions in s,t, w.
The same result for flows of kernels was absent. The reason is that in [3, 9] the flow of
kernels is constructed from a certain stochastic flow of measure-valued mappings, and
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the procedure that produces the flow of kernels does not commute with measurable pre-
sentations of distributions of measure-valued mappings. In this paper we improve the
approach suggested in [8, 9]. Starting from a consistent sequence of Feller transition
functions we prove the existence of a single idempotent measurable presentation p of
corresponding distributions of kernels. Further, we construct a stochastic flow of kernels
(Ks; @ —00 < s <t < o0) in such a way that equalities K, ;(w) = p (K, (w)) are sat-
isfied without exceptions in s,t,w. Moreover, we achieve measurability of the mapping
(s,t,w) = K 4(w). Together with equalities K ;(w) = p (K, +(w)) this implies the mea-
surability of the mapping (s,t,w,x) — K, (w, z) = p(K; (w))(z) and the evolutionary
property in the usual form K, ;(z) = K, ;K (z) a.s., where exceptional sets depend on
r<s<tandaxe M.

The paper is organized as follows. In Section 2 we give definitions of consistent se-
quences of Feller transition functions, Feller convolution semigroups in the space of ker-
nels and stochastic flows of kernels on a locally compact separable metric space M. Also,
we show that a Feller convolution semigroup on M defines a consistent sequence of Feller
transition functions on M that determines finite-point motions with respect to the semi-
group, and a stochastic flow of kernels in M defines a Feller convolution semigroup in
the space of kernels on M that defines distributions of kernels in a flow. In Section 3 we
prove that any consistent sequence of Feller transition functions on M defines a unique
Feller convolution semigroup in the space of kernels on M with finite-point motions de-
termined by the given sequence of transition functions. This result was obtained in [8, 9].
Our approach enables to construct a single idempotent measurable presentation p of all
distributions from a Feller convolution semigroup (Theorem 2.1). In Section 4 we prove
that from any Feller convolution semigroup (v, : t > 0) in the space of kernels on M one
can construct a stochastic flow of kernels (Ks; : —00o < s <t < 00) in M, for which
the distribution of each kernel K, ; coincides with v;_, the mapping (s,t,w) — K, ;(w)
is measurable and equalities p(K(w)) = K;(w) hold without exceptions in (s,?,w)
(Theorem 2.2). Auxiliary Propositions 4.3 and 4.4 about approximations of stochastic
flows of kernels seem to be new and interesting on their own. Another interesting con-
sequence of our approach is that constructions of Feller convolution semigroups and of
stochastic flows of kernels are done using approximating procedures that are very similar
in their nature, but differ in the domain of approximation: the approximation is in space
for Feller convolution semigroups and is in time for stochastic flow of kernels.

Finally, we note that our definitions of stochastic flows of kernels and Feller convolution
semigroups are slightly different from the ones given in [8, 9]. To show equivalence of
definitions we give full proofs of several known statements from [3, 9].

The author is grateful to the anonymous referee for valuable comments and sugges-
tions.

2. DEFINITIONS, PRELIMINARIES AND MAIN RESULTS

Let (M, p) be a locally compact separable metric space equipped with the Borel o-
field B(M). Without loss of generality we assume that all p-bounded sets are relatively
compact. In particular, (M, p) is a complete separable metric space. By C (M) we denote
the space of bounded continuous functions on M, and by Cy(M) we denote the space
of all continuous functions f € C(M) that vanish at infinity in the sense that for any
€ > 0 there exists a compact C' C M, such that sup,cpn ¢ [f(z)| < e. With respect to
the norm || f|| = sup,, | f] the space Cy(M) is a separable Banach space. P(M) denotes
the space of all Borel probability measures on M.

Let M be the one-point compactification of M. The following construction will be
useful in our considerations. Write M as a union M = Uj’;l L; of compact sets L;,
such that L; is contained in the interior of L;;;. For each j fix a continuous function
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G M — [0,1], such that Cjlz, = 1 and the support of (; is contained in the interior of
Lj41. Sequences (Lj; : j > 1) and (¢; : 7 > 1) will be called exhaustive.

The space P(M ) equipped with the topology of weak convergence is a compact metri-
zable space. Let d be the corresponding metric on P(M). The set P(M) is a G5 subset in
P(M), hence is a Polish space [13, Ch. II, Th. 6.5]. Denote by d a metric on P(M) that
is compatible with the topology of weak convergence and turns P(M) into a complete
separable metric space.

2.1. Consistent sequences of Feller transition functions. For 1 < k < n denote
by Sk the set of all injections o : {1,...,k} — {1,...,n}. Any o € Si,,, defines the
mapping 7, : M"™ — MF*, m,x = (To(1)s > To(r))

Assume that for each n € N a Feller transition function P(™ on M" is defined.

Definition 2.1. [3, Def. 1.1] A sequence (P(™ : n € N) is called a consistent sequence
of Feller transition functions on M, if
forall1<k<n,o€Syn, r€M"andt >0

(6) P (@) oyt = P (mo).
The following Lemma contains one useful property of Feller transition functions.

Lemma 2.1. Let (P; : t > 0) be a Feller transition function on a locally compact
separable metric space M. Then for any compact C C M, T > 0 and € > 0, there exists
a compact L C M, such that
inf  Pyx,L)>1-—c.
z€C,t€[0,T]

Proof. Feller property implies that the map (¢,2) — Py(z) € P(M) is continuous. In
particular, the set {P;(z) : ¢t € [0,T],2 € C} is compact in P(M). The result follows
from Prokhorov’s theorem [13, Th. 6.7, Ch. II].

([l

2.2. Feller convolution semigroups in the space of kernels. A kernel on M is a
measurable mapping K : M — P(M). By E we denote the set of all kernels on M. For
K1, K5 € E denote by K7 K> a kernel

KlKQ(fE) = /M K2(y)Kl(xvdy)

For ;1 € P(M) we denote by uK a probability measure K (B) = [,, K(x, B)u(dz), and
for a bounded measurable function f : M — R we denote by K f a measurable function
Ki(@) = [, fW)K(z,dy).

The set F is equipped with the cylindrical o-field £, i.e. the smallest o-field on F
with respect to which all mappings K — K(x), z € M, are £/B(P(M))-measurable.

Definition 2.2. [8, Def. 1.2, Def. 2.1] A probability measure v on (E,€&) is called
regular, if there exists a mapping p : E — E, such that the mapping £ x M > (K,z) —
p(K)(x) € P(M) is measurable, and for all z € M, p(K)(z) = K(z) v-a.s.

The mapping p is called a measurable presentation of a regular measure v. Let vq, v
be regular probability measures on (F, ), and let p be a measurable presentation of vs.
Then the mapping (K1, K2) — Kip(K>2) is £92/E-measurable and its distribution with
respect to the product measure 1y ® v, is independent from the choice of p. The latter
distribution is denoted by 14 * v5 and is called a convolution of v; and vs [3].

Definition 2.3. [8, Def. 1.4, Def. 1.5] A family (v; : t > 0) of regular probability
measures on (E, £) is called a Feller convolution semigroup in the space of kernels on M,
if
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(1) for all t,8 > 0, vy * Vg = Vyis;
(2) for any f € Co(M) and any € > 0,

1 K:|K > e} =0
i, sup v (K [ f(z) = [(@)] 2 e} = 0;

(3) for any f € Co(M),t >0,z € M and € > 0,
lim vy (K |Kf(9) — K S @) = €} =0, lim v, {K ¢ [K ()| > } = 0.
y—z Y—>00

To each Feller convolution semigroup in the space of kernels (v : t > O) one can

associate a consistent sequence of Feller transition functions (P : n > 1) as follows: for
alln>1, € M™, Be B(M"),t>0,

7) PV B) = [ (@K () (B(dK)
Proposition 2.1. (P(") :n > 1) is a consistent sequence of Feller transition functions
on M.

Proof. Let p; be a measurable presentation of v;. Measurability of PE") (z,B) in z and
the Chapman-Kolmogorov equation for P follow from the representation

P(") (x, B) = /E (@1 pe (K (22)) (By(dK)

and the convolution semigroup property of v.
We verify consistency. Let o € Sk . Then

P (o (B)) = [ (91K2y) ((B) ()

= /E (&% K(20(;))) (B)(dK) = P (m,, B) .

It remains to verify the Feller property of P(™). By the Stone-Weierstrass theorem, it is
enough to consider functions f € Cy(M™) of the form f(z) = HJ 19i(x;), g5 € Co(M).
Then

P 1)~ P50 = | [ 1T KosGepmtar) = [ T] Kaptom(ar)
E;5 Bz

< / HK!J] (z5) H Ky;(y;) HKQJ (z;) HKQJ (y;) | vi(dK)

k=1 j=k+1

< /HKg] @) TT Koslu) % (Kon(on) - Kan() nldK)
k=1 j=k+1

n

n
<2n [ llgsll x s Vt{K |Kgi(xx) — Kgi(y)l > e} +ne [ [ (lg; |l +1)
Jj=1 j=1

n
H lgsll + 1), y — .

Since € > 0 is arbitrary, we deduce that PE") f is continuous on M™.
For any € > 0 there exists a compact L C M, such that

sup sup{K : |Kgi(y)| > e} <e.
1<k<n y¢L
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If x & L™ with, say, xx & L, then

PO ()] = |/ HKgJ ;)1 (dK)

H gl x v K« [Kgr(zr)| = €}+€H lg;ll +1 H lgill +1).

Jj=1

It follows that limg_. P\ f(2) = 0. So, P (Co(M™)) C Co(M™).
Further,

n

P f () |‘ / [T i) =TT i (@s) | vi(ak)

M:

/ HKQJ ;) H 9;(z;) I:IKg] (z5) H dK)

j=k+1

>
Il
=

M:

/HKgJ IJ H gj IJ X (Kgi(xg) — gr(xr)) v (dK)

1 j=k+1

>
Il

< 2nH llgsll S sup vl | Kgi(y) = ge(®)| = e} +ne [T (lg;ll +1)-

j=1 snye j=1

It follows that

sup [Py f(z) — f(z |<2nH||ng>< sup sup v {K : [Kgi(y) — ge(y)| > e}

rzeM™ j=1 <k<nyeM
n
+neH<||gj|| +1) = ne [J(llgsll + 1), £ — 0.
j=1 j=1

Since ¢ > 0 is arbitrary, we deduce that (P,E”) :t > 0) is strongly continuous at t = 0. O

The sequence (P : n > 1) completely determines the semigroup (v; : ¢ > 0). To show
this we introduce an algebra A, (M) of continuous functions on P(M)™, that consists of
all functions g : P(M)™ — R of the form

Q ateenttn) = [T (@ i) (),

where f € Co(MYN), (i1,...,in) € {1,...,n}.

Lemma 2.2. A probability measure II on P(M)™ is completely determined by integrals
of the form

Q L)

where g € A, (M).

Proof. Let M be compact. Then P(M)™ is a compact metric space and A, (M) is dense
in C(P(M)™) by the Stone-Weierstrass theorem. Hence, integrals of the form (9) with
g € A, (M) define integrals of the form (9) with g € C(P(M)™). In this case the result
is proved.
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In general case, consider the one-point compactification M of M. II can be viewed as

a probability measure on P(M)™. It is completely determined by integrals of the form
(9) with g € A,,(M). Consider g € A, (M) of the form

i) = [ F0) s @ i) ),
where f € C(MN), (i1,...,in) € {1,...,n}N. Let g; € A, (M) be defined as

G5 (1015 s 1) = /MN FWICEN () (i, © ... & iy )(dy),

where ((; : j > 1) is the exhaustive sequence introduced in the beginning of Section 2.
The result follows, since

[ ot = [ ( f(y)(uil®--~®#m)(dy))ﬂ(du)
P P(M)» \JMN

I Jp(M)n

O

Lemma 2.3. The sequence (P(”) :n > 1) completely determines the Feller convolution
semigroup (v 1t > 0).

Proof. The probability measure v; is completely determined by distributions of P(M)™-
valued random elements (K (z1),...,K(z,)), where z € M™, n > 1. Hence, v; is com-
pletely determined by integrals of the form

(10) L[, 100 ()@ Ko @) ) i),

where f € Co(MYN), (i1,...,iy) € {1,...,n}. It remains to note that (10) is equal to

N
Pg )f(xila'“vxiN)'
(Il

In [8] it was proved that to any consistent sequence of Feller transition functions
(P(™ :n > 1) on M there corresponds a unique Feller convolution semigroup (v : t > 0)
on E, such that (7) holds. Theorem 2.1 gives a strengthed version of this result. The
main difference is that we find one idempotent measurable presentation p of all measures
Vt.

Theorem 2.1. Let (P(") :n > 1) be a consistent sequence of Feller transition functions
on M. There exists a unique Feller convolution semigroup (v¢ : t > 0) that satisfies (7).
Moreover, there exists a mapping p : E — E which is a measurable presentation of every
measure vy, t > 0, and satisfies the relation pop = p.

2.3. Stochastic flows of kernels.

Definition 2.4. [8, Def. 2.3], [9, Def. 7] A stochastic flow of kernels in M is a family
K = (Kg;: —00 < s <t < o0) of random elements in (E,£) that are defined on a
common probability space (£2, .4, P) and satisfy the following properties:

(1) the law of K, is regular and coincides with the law of Ko ;_;

(2) for all r < s <t, z € M and any measurable presentation p;_s of the law of K4,

K, 1(2) = Ky spr—s(Ks 1) (x) P —as.;

(3) if t1 <...<ty, then Ky, 4,,..., K, are mutually independent;

n—1,tn
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(4) for any f € Co(M) and € > 0,
Jim sup P{|Ko.f(z) - f(z)| = e} = 0;

rxeM

(5) for any f € Co(M), z € M, t>0and £ > 0,
lim P{|Ko.f(y) — Kouf(2)| 2 2} =0, lim P{|Kouf(y)| = =} =0.

Let v; denote the law of Ky ;. Clearly, (1 : ¢ > 0) is a Feller convolution semigroup
in the space of kernels on M. The converse result is also true: if (v : t > 0) is a
Feller convolution semigroup in the space of kernels on M, then there exists a stochastic
flow of kernels K = (K : —00 < s < t < o0) in M, such that for all s < ¢ the
law of K, coincides with v,_s [3, Th 2.1]. We prove that such stochastic flow can
be always constructed as a measurable function from (s,¢,w) that satisfies relations
pi—s(Ks 1 (w)) = K, ¢(w) without exceptions in (s, t,w).

Theorem 2.2. Let (v; : t > 0) be a Feller convolution semigroup in the space of kernels
on M. There exist a common idempotent measurable presentation p of measures vy
(Theorem 2.1) and a stochastic flow of kernels K in M, such that

(1) For all s <t the law of K, coincides with vi_;

(2) The mapping (s,t,w) — K, (w) is jointly measurable;

(3) Kss(w)(x) =0y foralls e R, z € M, w e

(4) p(Ksi(w)) = Kg 1 (w) for all s <t and w € Q.

3. PROOF OF THEOREM 2.1

3.1. Probability measures Hgn)(m). Out of the sequence (P(™ : n > 1) we construct

for any n > 1, z € M™ and ¢t > 0 a probability measure Hﬁ") () on P(M)™ which will
be the distribution of K +— (K (x1),..., K(z,)) under v;.

Recall the dense algebra A, (M) in the space of continuous functions on P(M)". Let
g € A, (M) be of the form (8) with f € C(MN), (i1,...,ix) € {1,...,n}"V. For z € M"
and ¢ > 0 define

0 @)g = [ S@PY (@), dy)

Lemma 3.1. Hgn)(x is a correctly defined linear non-negative functional on A, (M),

)
such that H,E”) ()1 =1.
Proof. Let us check correctness of the definition of Hﬁ”) (). Assume that g € A, (M) has
two representations: for all (uy,...,u,) € P(M)™

g(p1, . ) = /MN () (i, @ - @ piy) (dy)

= / v(y) (1, ® - @ pjp) (dy),
M

where f € C(MN), (i1,...,ix) € {1,..., 0}V, v € C(M®), (j1,...,jr) € {1,...,n} "
Consider injections o : {1,...,N} —» {1,..., N+ R}, §: {1,...,R} —» {1,...,N + R},
defined by

o(i)=i, 1<i<N, §(j)=N+j, 1<j<R.
Then

gml,...,un):/ F oMo () iy ® - ® prin ® iy ® .- ® i) (dy)

MN+R

=/ vors(y) (i, & .. @ iy © 15, @ .. @ i) (dy).

MN+R
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By consistency,
N+R
/MN+R f © Wd(y)Pg )((‘T’in sy iy Lgys e e 7ij)7 dy)

= [ F@PY (i 2y ), dy),

MN
/ ’Uoﬂ-‘s(y)PgN-i_R)((ziu'"vxivijl""vij)ady) :/ U(y)PgR)((‘TjU'"vij)vdy)~
ME MR
So, it is enough to consider the case (i1,...,in) = (j1,...,Jr). Further, it is enough to
prove that the equality
(11) W) (i ® @ pay) (dy) = 0, (s 1) € P(M)",

MN
implies
F@PN (@i, o i) dy) = 0.
MN
Assume that (11) holds. For s € {1,...,n} denote

I={ke{l,...,N}: i) =s}

and let ms be the number of elements in I;. Denote by Sy n(I1,...,I,) the set of all
permutations o € Sy n such that o(I;) = I for all s € {1,...,n}. Let

~ 1

f(y):m Z foms(y).

T oeSN NT1sedn)
We note that
[ T o ) () = 0
MN

By consistency,

F)PPN (@iy, .y wiy), dy)
MN

= ;, > FomaPI (i, iy ), dy)

mal...my! N
! " oeSn, N I1,esIn) M

N
= [ J@PN (@i, i), dy).
MN
So, we may assume that fon, = f for all 0 € Sy n(I1,...,1I,). We will show that
the equality (11) implies f(z) = 0 for all z € MY . By Fubini’s theorem it is enough to
consider the case n = 1. In this case f € C(M") is symmetric and

_ fyu®N(dy) =0
MN
for all finite measures p on M. Let z € MN. Then

o F0) 016 ) () =0

for all p1,...,pn > 0. Expanding and using symmetry of f, we get

N! k k
Z mpll"‘pNNf(Zlv~"7217"°7ZN7"'7ZN):0~
ki+...+kn=N k1 kn
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Differentiating in pi,...,py at p1 = ... = py = 0 we find that f(z) = 0. Correctness of
the definition of H(")( ) is verified. Independence of HE")(JJ) g from the representation of
g in the form (8) implies linearity of H(")( ).

It remains to verify that the linear functional H,E")(x) : A (M) — R is non-negative.
Assume that for all (1, ..., un) € P(M™)

gy pin) = . ) (i, ® .. @ piy) (dy) >0

As before, denote Iy = {k € {1,...,N}: it = s}, s € {1,...,n}, and let m; be the
number of elements in I;. For an integer L denote

L
) = (T4, X1, Xy e ey Ty e ey Ty e v ey Ty
—_——— —— ——
We have

L L L
1 1 L
[T LT ST Z | P gy 5 0

Hence,

1 Ln
(12) LN Z /ML ( (i1—1)L4j1s- - ay(iNl)LJer) Pg )(m(L),dy) >0

Ji--iN=1

Assume that for every s € {1,...,n} all ji with k € I, are distinct. By consistency,

Ln
/ML f(y(il—l)L+j1 Yoo vy(iN—l)L+jN) P§ )(x(L)7 dy)

B /MN F@P (@i, wiy), dy) =T (2)g.
So, (12) implies

[T, L(L—1)...(L—m;+1)
LN

Ryl < (1 B [T, L(L—1) a (L—m; + 1)) 11l

1" (2)g + Ry, > 0,

where

L

Taking the limit L — oo, we obtain Hi") (x)g > 0.
]

Lemma 3.1 implies that for every n > 1, x € M™ and ¢t > 0 the linear functional
HE") (z) is represented by a probability measure on P(M)™. This measure will be also
denoted by Hgn)(z). In particular, the equality

/ ) ( ) (i @ -®M¢N)(dy)> 1" (x, dps)
P \J NN
= | F@P (o) dy)

holds for all f € C(MN), (i1,...,in) € {1,...,n}". Next lemmata contain some useful
properties of measures II," ().

Lemma 3.2. (1) Forallo € Sgpn, 1 <k<n,and allz € M™, t >0,

1" (z) o m; ! = I ().
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(2) Forallz e M, t >0,
H(Q)((x 2),A) =1,

where A = {(p, ) : 1 € P(M)}.
(3) Foralln>1, € M™, ¢t >0,

Iz, P(M)") = 1.
(4) For any g € C(P(M)™) the mapping (t, ) — Hg") (z)g is continuous.
Proof. (1) Let o € Sg.,. Consider g € Ap(M) of the form

gy -y i) = F(y) (i, ® ... @ piy) (dy),

MN
where f € C(MN), (i1,...,in) € {1,...,k}". Then

goﬂ-o’(lu’lw-'uu’n) :g(p’a(l)a"'vﬂo’ /A f ,U'o'(zl '®MU(iN)) (dy)
So,
H(") du) = P(N) . X d
R goﬂ'ﬂ'(lu’lv"'nu’n) t (I’, .u) f(y) t ((xa'(u)a"'v'ra(uv))v y)
P(N)» MN

k
- /p o S o ).

Equality TI{" )( )o7r_1 k) (ng) is verified.

(2) Let g € Al( = [~ F@)u®N (dy). Then
H?’g@z«x, 1) = / f®2<y>P£2N><<x, ). dy) = TV g2 (2).
MZN \7\[—/

By continuity, for all g1, go € C(P(M)) we have
[ oot (o) de) = [ (et o d).
P(M)? P(M)

Hence, for any closed sets Fy, Fo C 73(]\21')7
Hz(tz)((xax)vFl X FQ) = Hgl)(x,Fl n Fg)

It follows that TI\¥((z,z), A) = 1.
(3) Let 2 € M™ and gx(p1,-- - ptn) = [Tiy [yr Ck(¥)pi(dy). Then

/ Huz 104" (, dp) > / ge(n, - ) I (2, dpt)
P(N)™

M)W’L 1
/ HCk yz 517 dy) > P( )(vaZ)'

Taking the limit & — oo we deduce that fP(M)" T, ,uz-(M)Hg") (z,dp) =1 and

p (M) =...=pu,(M) =1 for Hgn)(x)—a.a. (111, - fin) € P(M)".
(4) Let g € A ( 1) be of the form

g(m,---,un):/A f) (i, ® ... ® piy) (dy),
NN
where f € C(MN), (i1,...,ix) € {1,...,n}N. Then

M@= [ f@P (@i i), )
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Fix [ > 1 and T > 0. By Feller property of P(N) (Lemma 2.1) for each ¢ > 0
there exists j > 1 such that

inf  PM(ILV)>1—-.
te[0,T],2€ LN o (517 2

For the function

i) = [ @) (00 ) )

we have an estimate

sup 1" (@)g — T ()
te[0,T),zeLy
N
— swp / F@) @ = CEN@IPN (@i, ) dy)| < 111l
tel0,T]zel} MN\Lj.V

On the other hand, the equality
n N
" (2)g; = P (FCEN) @iy i)

implies that the function (¢,z) — Hin)(x)gj is continuous. Since ¢ > 0 is arbi-

trary, we deduce that the function (¢,z) — H§”) (x)g is continuous on [0,7] x L}
and thus on [0, 00) x M™.
U

Denote A = {(p1, p2) € P(M)? : d(pu1, p2) > €}
Lemma 3.3. For any compact C C M, T >0 ande >0

lim sup H?)((% y), A7) = 0.
0% 40,7, (x,y) €C?
p(w,y)ST

Proof. Assume the result does not hold. Then there is @ > 0 and a sequence (xg, yi, tx) €
C? x [0,T], such that limy_,  p(7k, yx) = 0 and
T2 (k. yr), AZ) >
We may and do assume that limy oo 2 = limg oo yp = = € C, and limg oot =t €
[0, T]. Property (4) of Lemrr}a 3.2 implies that Hi)((xk,yk)) — ng)((x,x)) weakly as
probability measures on P(M)?, and as probability measures on P(M)?2. The Portman-
teau theorem implies
o < limsupTI{Y (@1 1), A2) < T ((2.2), A9 = 0
—00

since HEQ)((a?,x)) is concentrated on A (property (2) of Lemma 3.2). Obtained contra-

diction proves the result.
|

3.2. Approximating procedure. The measure v; can be viewed as the distribution
of a measure-valued process (Ko .(z) : © € M). Let Z be an at most countable dense
set in M. The idea of the construction is to define properly the joint distribution of
(Ko,(2) : z € Z) and to recover the measure v, by certain limit procedure. We note that
for any Polish space X there exists a measurable mapping ¢ : XN — X with the following
property: for any relatively compact sequence x = (z,, : n € N), £(z) is a limit point
of x. This is known for compact spaces X from [8, L 1.1]. The generalization to Polish
spaces was proved in [14, L. 7.1]. The proof is based on the fact that any Polish space
is homeomorphic to a Borel subset of some compact metric space [16, Rem. 2.2.8]. In
what follows ¢ denotes such a mapping in the case X = P(M).
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Recall the exhaustive sequence (L; : j > 1) defined in the beginning of Section 2.
Lemma 3.3 implies that there exists a sequence of positive numbers (g, : j > 1) that is
strictly decreasing to zero and is such that

(t,,y) € [0,4] x L2, p(z,y) < &5 = 0P ((2,y), Ag-;) < 277

Let m — z,, be a bijection between a subset I of N and the set Z. For any x € M
and any j > 1 we define

(13) mj =inf{m € I: p(x, 2m) < €;j/2}.

Note that ( :j > 1) is a sequence in I, and each mapping = — m7 is measurable.
Define Inappmgs i:P(M) = E, e:E—PM)! p:E—Eas follows

i(u) ((um ]>1)) e(K) = (K(zn):mel), p=ioe.
(2,

Lemma 3.4. Mappings (x, p) — i(u)(x), K — e(K), (K,z) — p(K)(x) are measurable.
Composition e o i is the zdentzty mapping on P(M)!. Mapping p satisfies the property

pop=p.
Proof. By definition, i(u)(x) = ¢ ((um; 1] > 1)) . To prove the measurability of (z, u) —

i(p)(z), it is enough to prove that mappings (z, 1) — pms € P(M) are measurable. This
follows from the measurability of z — mj and the equality

{@,1) : s € BY = | J{(@.p) : m =, iy € B, B € B(P(M)).
rel

The measurability of e is obvious. Further, if z = z,,, then mj = m as soon as €; /2 <

minyer nem P(Zm, 2n)- S0, (1) (Zm) = tim and e(i(p))m = (1) (2m) = pm. In particular,
pop = p. The equality p(K)(z) = i(e(K))(z) proves the measurability of the mapping

(K, ) = p(K)(x).
(]

For n > 1 define mappings ®,, : (P(M)))" — E, ¥, : M x (P(M)))* — P(M) by
formulas

D (uty 1) (@) = di(uh) () () = Uty "),
Lemma 3.5. For all n > 1 mappings ®,, and V,, are well-defined and measurable.

Proof. We note that the mapping (u, K) — up(K) is measurable. By induction, it follows
that

\I]n(xhufl, ey ,u'n) - \Iln—l(xalufza cee nun)l(,u'n) = \Iln—l(xnuza cee aﬂn)P(Z(Nn))

is measurable.
O

3.3. Probability measures II;. By Kolmogorov’s theorem, for every ¢ > 0 there exists
a unique probability measure I, on P(M)!, such that for any finite set J C I and
B e B(P(M)!)

M {p: ply € BY =T ((zn)mes, B)-
Proposition 3.1. For any (i,...,i,) € I"™ and B € B(P(M)")
O{p: (ays- o) € BY =T (21, .., 2,), B).

Remark 3.1. Note that some indices among 1, ...,%, may coincide.
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Proof. The proof follows from statements (1) and (2) of Lemma 3.2.

Let U/ {ij} = {k1,..., kp} C I with ky < ... < kp. Denote J; = {j € {1,...,n}:
ij =k}, 1 <1<p. Then Ji,...,J, is a partition of {1,...,n} into non-empty subsets.
Let 0 € Spx, be the injection o(l) = ki, 1 <1 < p.

Consider the mapping h : P(M)? — P(M)™ given by

h(p); =, j € Ji,1 <I1<p.

Take B = [[;_, Bj, where B; € B(P(M)), 1 < j < n. The equality h(p,, ..., pk,) =

(tiys -+ i, ) implies

Ie{ge: (Wiys oo i) € BY = {p s (s - -+ pix,) € W H(B)}
= HEP) ((ka ce Zlcp), h_l(B)> .

For every [ € {1,...,p} we choose j(I) € Ji, and set C; = Nje, B;. Consider injections
@ € Spn, al) = j(l), 1 <1 < p, and By, j,u € S2ns By jau(d) = Ji, i = 1,2. Here
j1,J2 € Ji, J1 # jo2. We note that

I (2,210, B3 (POM)P\ A) = 1O (21, 2,,), P(M)? \ A)
= H(Q)((anzkl)aP(M)Q \A) =0.

So,

p
Hgn)((zilv"wzin)vB> :Hgn) (Zim"'azin)’Bn ﬂ m j7171j2;l(A)

1=1 (j§y,j2)€J}
J1#j2

P
=1 | (2,0 21,) 07 (Hcl NN 5;‘1,22;1@))

=1 (jl;]'z).GJf
J1#3j2

=™ ((zil,...,zin),a_l (HCZ>> =1 ((zkl,...,zkp),HCl>
=1

1=
=117 (21,20, ), 7 (B)) = i{ps s (ttay, - 5 pa) € B}
0

The measure II; must be understood as the distribution of (Ko .(2) : z € Z). We
will recover the distribution 14 by approximating the distribution of Ky .(x) with the
distributions of (Ko,¢(2ms) : j = 1), where mj was defined in (13). To do this we need
several estimates on the speed of approximation.

Lemma 3.6. Let C C M be compact and t > 0. There exists jo > 1 such that for all
j>joand allxz e C

We{p s d(ptms s, ,) > 2773 < 277,
Proof. There is | > 1 such that {u € M : p(u,C) < 1} C L;. Take jo > t VI such that
gjo <1.If z € C and j > jo, then
Ej+1
2
So, (¢, zm;_c,zm]z_“) € [0, j] x L?. Since p(zm;,szﬂ) < gj, we deduce that

i 2 c s
M {p: d(pms oz, ) > 277} = T (2o 2z, ), AS-5) < 277

p(zmsz, @) < %] <1, p(zmz, ,z) < < 1.

p
41’
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Lemma 3.7. For allx € M and Il;-a.a p € P(M)?,

lim i = i(4)(2):

J—00

Proof. By the Lemma 3.6, for all j > jo
Ht{:u : d(Mm;,Mm§+l) 2 Q_j} < 277,

By the Borel-Cantelli lemma, for IT;-a.a p € P(M)?, 2;0:1 d(pms ; pomz ) < 00. So, for
Hi-a.a. p € P(M)! the limit lim;_ fimz exists and necessarily coincides with i(u)().
(]

3.4. Feller convolution semigroup (v; : t > 0). Define v, = II; o i~L. v is a regular
probability measure on (E, &) with the measurable presentation p. Indeed, the mapping

p(K) (z) = i(e(K))(z)
is £ ® B(M)/B(M)-measurable (Lemma 3.4). Further, for every x € M

VK p(K) () = K(2)} = vi{K : i(e(K)
0 (i)
— s i(p)(@) = i(w) (@)} = 1,

since e o is the identity mapping on P(M)! (Lemma 3.4).
Consider x € MY, t > 0, and f € Co(MY). Using Proposition 3.1, Lemma 3.7,
dominated convergence theorem and the Feller property of (P(™ : n > 1), we obtain

/E (/MN Fy) (@7 K (a)) (dy)) v (dK)
- /P(M)I < - F) (@Mqi(p) () (dy)> T, (dps)

(14) _ lim (
170 Jp(M)T MN

1) (21 ptse ) (dy)) L (dp)

- lim ([ 70 @20) (@) T ). )
J—00 'P(M)N MN J J

= lim PEN)f(Zmz’fl s BTN ) = PEN)f(xl, c.,ZN).
j—o0 J J

Now we can verify that (v; : t > 0) is the needed Feller convolution semigroup in the
space of kernels on M. Let ¢,s > 0. From the Lemma 2.3 it is enough to verify that
integrals of functions

Koy | fy) (K(zi,) @ ... @ K(ziy)) (dy),
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where z € M", f € Co(MN), (iy,...,in) € {1,...,n}, coincide for distributions v * v
and v¢4s. Using Fubini’s theorem, we have

/E ( W (LK (i) (dy)) (v % 1) (dK)
= /E/E< . ) (@ Kip(Ka)(x;,)) (dy)> v (dK 1 )vs(dKy)
- /E/E (/MN /MN F(2) (721w (K2)(yr) (d2) (971, K (2s,) (dy)) ve(dK1 )vs(dK>)

= [ [ P (3K ) i) = PO PO i)
EJMN

Pt = [ ([0 @K @0) () vt

The equality vy * vs = V444 is proved.
We verify conditions (2) and (3) of the Definition 2.3. Let f € Cy(M) and € > 0.
Then

sup v {K : |[K f(a) — f(z)| > e} <e7? sup / (K f(z) = f(2))" vi(dK)
reM zeM JE

= e sup (PP [2(w,2) = 2/ (@)PY f(2) + () = 0,
zeM

as t — 0 4+ . Further,
v {K : |Kf(y) — Kf(z)| 2 e} < 6_Q/E(Kf(y) — K f(x))” n(dK)
=< (P F2(00) — 2P y) + P, 0)) 5 0y o

Finally,

v (K 2 |Kf(y)] > e} <e? /E (Kf()* m(dK) = 2P f22(y,y) — 0,y — .

Equation (14) implies that the consistent sequence of Feller transition functions that
corresponds to (v; : t > 0) is exactly (P(™) : n > 1). This finishes the proof of Theorem
2.1.

In the next section we will need the following result.

Lemma 3.8. Forallty,...,t, >0
(M, ® ... @I0,) 0 Ot = vyt

Proof. The proof is by induction on n > 1. For n = 1 the statement reduces to the
definition of v;. Assume the result is proved for n — 1 and let A € £. We note that
the map (K, pu) — Ki(p) = Kp(i(p)) is € x B(P(M)?)/E-measurable. Using Fubini’s
theorem, we get

(I, ®...®1L,) (®,"(4))
=y, @...@M,) {(u',...,u") € (P(M)")" ci(uh)...i(u" " )p(i(u™)) € A}
= /EVt1+u.+tn71{K1 t Kip(K2) € A}v, (dK2) = (Vg 444, * Ve, ) (A)

= V1.1, (A).
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4. PROOF OF THEOREM 2.2

4.1. Probability space ({,.4,P). As before, Z is an at most countable dense set in
M and m +— z,, is a bijection between a subset I C N and the set Z. Recall the
probability measure IT; on (P(M)!, B(P(M))®!) constructed in Section 3.3. We will
use the mappings i : P(M)! — E, e : E — P(M)!, &, : (P(M)))» — E, ¥, :
M x (P(M)))" — P(M), p : E — E, defined in Section 3.2. We recall that p =ioe is
a measurable presentation of every measure v; (Section 3.4) and that pop =p (Lemma
3.4).
For each n > 0 consider the probability space
(Snv'sm Pn) = (P(M)I’B(P(M))®Ia H?‘”)®Z'

Note that S,, is the Borel o-field of the complete separable metric space S,. Denote
D, =2""Z,D =J,_, Dn.

Remark 4.1. If w™ € S,, then we intuitively understand i(w}’) as the random kernel
Kja-n (141)2-» from the future flow.

Consider the mappings
Tpn—1,n - Sp — Snfh Tn—1,n (wn) = (6 (i(wgl)i(wgl+l)))lez'

Mappings 7, —1,, are measurable and surjective. To show measurability we note that
the [—th component of 7,_1,, equals e (i(w})i(wy, ) € P(M)’. Its element that cor-
responds to m € [ is

i(wy)i(wgyy1)(2m) = U2 (Zm7ngval+1) € P(M),
and the mapping U is measurable (Lemma 3.5). Surjectivity of m,_1 ,, follows from the

following Lemma.

Lemma 4.1. Consider o = (3., )mer. Then for each x € M, i(uo)(x) = d,. In partic-
ular, the kernel x — §, is invariant under p.

Proof. For each x € M we have lim;_, Zme = . Hence,

i(o)(@) = € (s 172 1)) =60
Denote Ko(x) = d,. Then

p(Ko)(z) = i(po)(z) = 6 = Ko(z).
O

From Lemma 4.1 we deduce that i(ug)K = K for each kernel K € E. For given
w"t e S, _; define Wy = Mo, Wy = wf_l. Then

n—1 n—1 n—1

(Tn—1,n(W™) = e (i(po)i(w] ™)) = eoci(w]™ ') = w,
This proves surjectivity of m,_1 5.
We note that P,, om = P,,_1. Indeed, under the measure P,, o wgil,n components
of w"~! are independent, and the law of w}' ™' equals (Lemma 3.8)

n—1,n

(HQ—n (39 H27n) o (6 o @2)71 = Vy—(n-1) O et = II-(n-1y 0 iloe = Iy (n-vy.

Let the set  be the inverse limit
Q= {w = (W")p>0 € H Sp it Vn>1my_q,wW") = w"_l}
n=0

(in the terminology of K.R. Parthasarathy [13, Sec. 2, Ch. V]). Let the mapping m, :
Q — S, be the projection, 7, (w) = w™, and the o-field A on £ be the smallest o-field
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under which all projections 7,, n > 0, are measurable. There exists a unique probability
measure P on (€,.4), such that for all n > 0 and C € S,,,

P(m,'(C)) = Pu(C)

n

[13, Th. 3.2, Ch. V].
For (s,t) € D% s <'t, let A, be the o-field generated by mappings w — w”, where

n > 0 and u € Z are such that (s,t) € D2 and u2™" € [s,t). We note that A, is the
trivial o-field {@, Q}.

Lemma 4.2. For all 0 < n < k and any v € Z, w; is a measurable function of
k k
ka—nua cee 5w2k7'nu+2k7n_1'

Proof. The proof is by induction on k —n > 0. If kK = n, then the statement is obvious.
Assume that £ < n and that the statement is proved for £k — 1 — n. Let u € Z. By the

inductive hypothesis, there exists a measurable function F : (P(M)1)2™™" — P(M)!,
such that
UJ,Z =F <w§k:11—nua B awgl:—ll—nu+2k—1—n,1) .
Then
= F (b)) oo 6 (i) )
u 2k—nq, 2k—nqy41 IR 2k—nqy42k—n_29 2k—nqy42k—n_1

is a measurable function of wgk,nu, o 7w§k,nu+2k,n71.

O

Lemma 4.3. If (r,s,t) € D3, r < s <, then o—fields A, s and A are independent.
If (7”1,T2,T3,T4) S D47 1 S T2 S T3 S T4, then "47“277‘3 - Arl,""d"

Proof. Let (r,s,t) € D3, r < s <t.Consider ny,...,n; > 0,u1,...,ux € Z, M,...,m; >
0, v1,...,v € Z, such that (r,s) € D,Zw wi2”™M L u27 ™ € [rys), (s,t) € D?nj,
v27™ L y27™ € [s,t). Denote N = max(nq,...,ng,mi,...,m;). By the Lemma
4.2, each wy;? is a measurable function of wé\f\,,niui, .. ’wé\;\’*”iui-i-QN*ni—l’ and each w;’j’
. . N N . .

is a measurable function of Wy N —m; vj“'"sz‘mj oy 2N Since s € D,,,, we write

s =2""a, a € Z. Inequality u;27™ < s implies u; + 1 < a. Hence,
Ny 4 N < oN-nig 1 =2Ng_ 1.
Since s € Dy, we write s =277, b € Z. Inequality v;27™7 > s implies v; > b. Hence,
2N=miy; > oN=mip =N,
Independence of A, ¢ and A+ now follows from independence of (w,iv Vkez-

Let (r1,m2,73,74) € D* 11 <19 <13 < 74 Let (ro,73) € D2, u2™" € [rg,73). Take
N > n, such that (r1,7r,73,74) € D%. w! is a measurable function of wéVN,nu, ceey
wé\;\ffnu-s-szn—r We note that

2N—nu2—N — 2—nu 2 7,2 Z Tl,
and, since u + 1 < 2™r3,

@V ru 2V 27N =27 (u+ 1) — 27N <rg— 27N <y <y

It follows that w;, is A, ,,-measurable.
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4.2. Random kernels Kft for (s,t) € D?, s <t.
Definition 4.1. (1) For (s,t) € D2, s < t, and w € Q, we define
Ksj?én(w) = B gyon (Wihns -+, Winn_1) -
(2) For (s,t) € D? s < t, we define
KSD,t =p (KsD,in> )

where n > 0 is the minimal non-negative integer, such that (s,t) € D2.
(3) For all t € D and = € M, we define

th(:v) = 0.
Proposition 4.1. (1) For all (s,t) € D?, s < t, we have p(K2,) = KP,.
(2) Let s € Dy. Then KD, (w) = K27, (w) = p (Kfs”er," (w)) =i (W),
w € Q.
(3) If (s,t) € D%, s < t, then Kft’" is a measurable function ofo;ig_n, .. ,Kfi’g_nt,
and is At /E-measurable. If (s,t) € D?, s <t, then K2, is a measurable function
of

{KD’" n:n>0,7€ Dy, [r,r+27") C [s,t)}

r,r42-"
and is As,/E-measurable.

(4) If (s,t) € D%, s <, then the distribution of Kft’n in the space of kernels (E, &)
coincides with vy_s. If (s,t) € D?, s < t, then the distribution of th in the
space of kernels (E,E) coincides with vi_s.

(5) If (r,s,t) € D3, r < s <t, then Kft’" = Kf”;"ng".

Proof. (1) If s < t, then the result follows from the fact that pop = p. Let s = ¢.
Let po := e(KE,) = (82, )mer. Then i(po) = K{, (Lemma 4.1) and, since e o i is
the identity mapping on P (M),
p(K[) =ioeoi(ug) =i(no) = K.
(2) Let m = inf{k > 0 : (s,s +27") € D} < n. Write s = j27" with j € Z,
s+27" = (j+1)27". Assume that m < n. Then 727" = k27™ (j4+1)27" = [27™,

(I—k)2=™ =27".Tt follows that | — k = 2™~" € (0, 1), which is impossible. So,
m = n. Further,

KD g @) = (KD, 0 (@) = poi(wih) = i(wlh).

Here we again use the property p oi = 1.
(3) The random mapping Kst’szn (w) = i(wihn) is Ag s42-n/E-measurable. The
needed result follows from the equality

D,n D,n D.n
K0 =g (e (K20 ) s (KP3,))

(4) Follows from Lemma 3.8, definitions of K 5 " and K, and the fact that distri-
butions of K and p(K) with respect to any measure v; coincide.
(5) Follows from the definition of K",
O

Lemma 4.4. Let (s,t) € D%, s < t. For any P(M)-valued random element M, MKft’”
and MKS’?t are random elements in P(M).
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Proof. We note that the mapping (u, K) — up(K) is measurable. This implies the
measurability of MKP,, since p(KP,) = KP,. If t = s + 27", we have p(KPm ) =

s,8+2—"
D,n Dn . . . .
KS7S+2,,,L. So, MK375+2,” is a random element in P(M). By induction,

MK = ME" K,
is a random element in P(M).
]

Proposition 4.2. Let (s,t) € D?

2, 8 < t. For any P(M)-valued random element M
independent from A,

D
MEZ" = MKP, as.

Proof. Denote by II the distribution of M in P(M). We show that ./\/let’" = /\/IKSD,];”'Irl
a.s. For every x € M statements (1) and (2) of Proposition 4.1 imply

KD, (@)(@) = i) @) = ioe (il )ik, (@)
=p (<I>2 (wg;il,w:;;lﬂﬂ)) (r)=1p (Kfs’fg}n (w)) (x)
= Kfsigln(w)(x) a.s.
We note that

D,n+1 D,n+1 D,n+1
Ks7si2_” (CAJ)(J?) = Ks,si2_"_1(W)Ks+g_”_1,s+2_” (LU)(Z’)

—p (K2 @) p (K230 @) @)

—p (KD @) ) pop (K230 o @) (@):
Mappings
(@, K1, Ko,y K3) = L) (@)=p(Ka)pop(Ks) ()
and
(1, K1, K, K3) = p{a : p(Kq)(x) = p(Ka)p o p(K3)(z)}
are measurable. Fubini’s theorem implies

EM{zx: Kgs’iQ,n(x) = Kfs’i;}n (w)}

= / Eu{x : Kfs’iz,n(x) = Kfs’rfgin () HI(dw)
P(M)

= / / P (KDL, (@) = K25 () p(da)TH(dp) = 1.
P(M)J M

It follows that a.s. for M-a.a. z € M,

D,n _ D,n+1
8,8+2—™ (iL’) - s,s+2*"( )7
and a.s.
D,n _ D,n+1
MEP™, = MEP"EL,

Assume the result is proved for s+ (k—1)27" =t — 27", Statement (5) of Proposition
4.1 implies that

Dmn _ Dn D,n D,n+1 _ Dn+1 D,n+1
Ks,t - KS,t—Q*"Kt—2*",t’ Ks,t - Ks,t—2*”Kt—2*",t‘

By inductive hypothesis, a.s.
MKsD,t’n _ (MKD,n ) KDn B (MKD,n+1 ) KD

s,t—2—n t—2-nt s,t—2—n t—2-nt

— (MKD,n+1 )KD,n+l :MK££n+l

s,t—2-" t—2-7nt
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Here we used independency of MKSDt’ﬁ;,ln from A;_5-» 4, which follows from the repre-
sentation
Dn+1 Dn+1 Dn+1
MKs,t72_" - Mp (Ks,erQ—"_l) <P (Kt73><2_"—1,t72_") .
Mappings

(2, K1,..., Kg_gyon) 1p(K1)...p(K(t,5)2n)(ac):p(p(Kl)A..p(K(t,S)Qn ) ()

and
(s K1y ooy K—gyon) = p{w : p(K1) - (K y2n) () = p (p(KL) - p(K(—g)2n)) (2)}
are measurable.

Substituting K; = K‘fﬁg—l)zw,sﬂzf"v 1 <j < (t—s)2", and using Fubini’s theorem,
we get

EM{z: KD (@) =p (KD (@)}
- /P oy B K@) = (K57 @}

- / / P (K" @) =p (K2") (@) pdr)1(dp) = 1.
P(M) J M
It follows that a.s. for M-a.a. x € M,
KD (@) =p (K5") (@),
and a.s.

This finishes the proof.
O

Remark 4.2. Let (r,s,t) € D3, r < s < t. For all P(M)-valued random elements M
independent from A, 4,
MKft = MKESK& a.s.

Lemma 4.5. Let f € C(P(M)32). For any compact C C P(M) the function
(s, u,0, 1, 0) = Bf (KD, v,
can be continuously extended to {(s,t) € R? : s < t}? x C2.

Proof. By the Stone-Weierstrass theorem it is enough to consider functions f € C(P(M)?)
of the form f(u,v) = g(u)h(v), where g,h € A (M),

= (IZ%NZ ) = Z%NZ
909 = [ V), b = [ b)Y ),

and a,b € C(MN).

At first we consider the case when a and b have compact supports in M, in particular
a,b € Co(M™N). We will prove that there exists a continuous function F : {(s,t) € R? :
s <t}2 x P(M)? — R, such that for all (s,t,u,v,u,v) € D* x P(M)? s <t, u<wv,

F(Svtaua v, M7 l/) = Ef (MK£t7 VK’[B’U) = Eg (/’[’Kft) h (VKQU) :
Denote
H(s,t,u,v,u,v) = Eg (,qut) h (Z/KQ,U)

e [ B e o) [ (00,) b )

MN
- /MN /MN [E(K2)Z alw) (K2,)° bly)| n® ()™ (dy).
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We evaluate the function H for different displacements of (s, t,u,v).
Case 1: s <t<u<w.

s tewor) = [ [E(RE)™ atw) (2% v | n® ()™ (ay

/ / PMa(z)PIY) by) @ (de)®N (dy).
MN JMN

The right-hand side is continuous on the set {(s,t,u, v, u,v) E R* x P(M)?:s <t <u <

v}

Case 2: s<u<t<o.

H(s, t,u,v,u,v)

/MN /MN E(K2,)"" (K2)* ale) (K2) ™™ (KP,) %™ b(y)| n™ (da)v™™ (dy)
= / / P, Pt_u> (a@PY) (9] (@)™ ()™ (dy).
MN JMN

We check that the right-hand side is continuous on the set {(s,t,u, v, u,v) € R*xP(M)?
s <u<t<v}. Let (8n,tn, Un, Un, fin, Vn) = (8,1, 0,0, 4, 1), Sy < up <t < vy,. Denote
Giup(z,y) = PEQ_]Z) (a ® Pffﬁb) (z,y) € Co(M?N), where z,y € M. We have uniform
estimates

sup |th,un,vn (l'ay) - Gt,u,v(ﬁa y)|

(z,y)eM2N
< s [PEY, (a@ P, b) (,y) - PEY, (a@PYb) (2,y)]
(z,y)eM2N
+  sup PEZIEL ( ® P(N)b) (z,y) — PEZ,JX) (a ® P,ﬁ%b) (z, y)‘
(z,y)e M2N
< llallIPEY,, b= Pl + PR, (a PYb) = PEY, (a0 PYb) |
sup |PLL Gty ()] (@) = PUL (Gl ()] (@)
(z,y)e M2N
< Jlall [P, b= Pl + IPEY, (a@PMp) P2, (a0 PXb) |
(P, © D)Gruw — (PLY @ DGruul,
where I is the identity operator on Co(M?YN). Finally,
|H Sny tns Uny Uns fhns Vn) - H(s,t, U, U, W, V)|
P Gt ] i e )
MN JMN
N
-/ / P, G )] (O ()™ ()
MN JMN
< Jlall [P, b= Pl + PR, (a@P)p) — P2, (a0 PXb) |

H 1PN @ DGhuw — (PN & DGyl

Un—Sn

‘/MN/MN PUY) (Gran (9] (2@ (d)@™ (dy)

/ / P(N) (G (5 9)] (x)u®N(daj)u®N(dy)’ — 0, n— oo.
My J N
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Case 3: s<u<wv<t.

H(s,t,u,v,p,v)

= [ BB () (127 ata) (127 b | 1 (d) N ay)
MN MN

/ / Efvl P (PRa@b) (y)| (@)Y (dn)®™ (dy).

MN JMN

Similarly to the Case 2 we get continuity of the right-hand side on the set
{(s,t,u,v, 1,v) ER* x P(M)?: s <u <w <t
Case 4: u < v < s <tisidentical to the Case 1.
Hstuomy) = [ PMa@P b )y (dy)
MN JMN

Case 5: u < s <wv < tis identical to the Case 2.

Hstuopy) = [ [ PO [PEY (PN wb) (0] (0 (do)® (dy).
MN SN

Case 6: uw < s <t <wv is identical to the Case 3.

Histwog) = [ PO [PV (a0 Pb) a0)] (0 (dn)o ™ ().
MN SN

We note that the function F(s,t,u, v, p,v) =

Jarw Jun PEa(@)P ) b(y)u®N ()N (dy), s <t <u <o,

Jarw Jarw Pq(ﬁ)s Pﬁﬁ) a® Pg%b Cy) | (@)p®N (da)v®N (dy), s <u <t <o,

aan Ty PO PP (PXa@b) ()| (2)u®N (da)v®N (dy), s <u<wv<t,
) S S PN a(@)PSY)b(y) N (da)u BN (dy), w < v < s <t

e Jan P [P (PN a @ b) (2, )| ()N (da)v®N (dy), u< s < v <t,

Jas Jar P [P (0@ PEB) ()| ()N (dar)v® (dy), u< s <t <wv

is well-defined. Hence, F' is continuous on its domain and gives the needed continuous
extension of H.

Consider the general case a,b € C (M N). Recall the exhaustive sequences (L; : j > 1),
(¢j : j > 1) introduced in the beginning of Section 2. Let a; = a x C?N, bj =bx CJ®N,

509 = [ 0@V, b6 = [ b)Y @),
MN MN
There exists a continuous function Fj : {(s,t) € R* : s <t}? x P(M)? — R, such that
Fj(s,t,u,v,p,v) = Egj(qut)hj(quv)

for (s,t,u,v,p,v) € D* x P(M)?, s <t, u < wv.
Fix € > 0, T > 0 and a compact set C C P(M). There exists a compact C' C M, such
that

inf #(C) >1—e.
xeC

Continuity of the mapping (¢, z) — Hgl)(z) € P(P(M)) implies that there exists a
compact L C M, such that [13, Ch. II, Th. 6.7

inf 11V C (D) >1—el)>1—e.
te[0,3T],2c0 ¢ (7, {22 #(L)21-c}) 21—
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If L C L;, we estimate for all (s,¢,u,v,u,v) € (DN[-T,T)* xC* s<t,u<w:
[Eg(uK D )h(vKD,) — Fi(s,t,u,0,p,v)|

<lallE [ (E)™ b0 = )] ()™ (a)
HIBE [ (2)™ (el = €] (0 o)

<||a|||b||<2—E(/MKft<j< d””) ‘E(/ Kol )>N>
< lal o (2( [, ststoman) - (e [ w0 )>N>

< 2flallflp] (1= (1 —2)*"),

where the last inequality follows from relations

E /MKftcju)u(dx)z / EKP,¢;(x)u(dr) > / EKP, (¢, L)u(dz)

/ /P(M) Y, (w, dse)u(dz) > (1 - e)*.

It follows that the function F is uniformly continuous on {(s,t) € (DN [-T,T])?: s <
t}2 x C% and can be continuously extended to {(s,t) € [T, T)?: s <t}? x C%
O

Proposition 4.3. For any T > 0, compact C C P(M) and & > 0 there exists 6 > 0 such
that for all (u,v) € C%, ((s,t), (u,v)) € (DN [-T,T)* with s < t, u < v, |s —u| <6,
[t —v| <6, d(p,v) <9,

P{d(uKL, vKD ) > ¢} <e.

s,t)

Proof. Assume this is not true. Then for some € > 0 there exist sequences —T < s,, <
th < T, =T < up < vy <T, (in,vn) € C?, such that |s, — u,| — 0, [t, —v,| — 0,
d(in,vn) — 0, but
P{d(un 57L7t11,7 V”Kan,vn) 2 5} 2 €.
We may and do assume that (8, ty, Un, Un, fin, Vn) — (8,1, 8,t, u, 1) € [T, T|* x C2.
Consider closed set
AS = {(301,5) € P(M)? : d(501,35) > e}

and a function .

f(%h %2) = (]- - RdZ((%la %2)7 Ag))‘l’?
where dy((301, 3, (v1,12)) = d(301,11) + d(562,15) and R > 1 Then f € C(P(M)?).
Denote F(s,t,u,v, 51, 52) = Ef e K2;, 52 K2,). By the Lemma 4.5 the function F has
a continuous extension on {(s,t) € R?: s < ¢}2 x C2. We have

e < P{(unkK sn tn ,Vann 'un) € AL} <Ef(unK sn tn 71/TlKan,vn)
= F(Sn,tn, Un, Un, fin, Un) = F(8,,8,t, 1, 1), n— oo.
However,
F(s,t,s,t,u,p0) = Hm F(sp,tn, Sn,tn, 1) =0,
n—oo
since

; , . ; 1
do (LK) 4,5 1K) 1), AL) > (%hgg@g (a1, 0m) 2 € > &

and f(uKP St uKsm ) = 0. Obtained contradiction proves the Proposition.
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O

4.3. Stochastic flow of kernels (K;; : —0o < s < t < 00). Proposition 4.3 implies
that there exists a strictly increasing sequence of positive integers (n; : j > 1), such
that for each j > 1 and all (s,t,u,v,u,v) € (DN [—j,j])* x P(L;)? with s < ¢, u < v,
s —u| <27 |t —ov| <27, d(p,v) <2779,

P{d(uKP, ,vKP ) >2771 <277,

st u,v

Given ¢t € R define t; = max{s € D, : s < t}. We note that 0 <t —#; < 27", and
s<t= Sj < tj.

Fix a measurable mapping ¢ : P(M)N — P(M) with the following property: for any
sequence p = (pun : n € N) in P(M), (u) is a limit point of p (see [14, L. 7.1] and
explanations in the beginning of Section 3.2 for the existence of such mapping). Fix
2o € M and consider measurable mappings ® : EN — E, ¥ : M x EN — P(M),

U((p(Kn) (@) sn > 1)), i E((p(Kn)(x) :n > 1)) (M) =1
0z,, otherwise

O(K)(z) = U(x, K) = {

Now we have everything ready to construct the needed stochastic flow of kernels. We
will use random kernels (K2, : —oo < s <t < 00, (s,t) € D?) constructed in the Section
4.2

Definition 4.2. For real s <t we define random kernels

Koy =O((KP, :j>1)), Koy =p(Ksp)

éj,tj

In the subsequent sections we verify that the family (K, : —oo < s <t < 00) satisfies
all conditions stated in the Theorem 2.2.

4.3.1. Consistency. We check that Definitions 4.2 and 4.1 are consistent. Let (s,t) € D2,
s < t. Then s; = s, t; =t for all large enough j. The needed statement follows from
equalities

Ko@) = (K@) 15 21)) = p(KD)(@) = KDy (@).

(see statement (1) of Proposition 4.1). In what follows we identify K7, with K, for
(s,t) € D% s <t.

4.3.2. Case when s =t. If s =, then s; = t; for all j > 1. Since the kernel z — J, is
invariant under p (Lemma 4.1) and K, s(z) = §, (Definition 4.1), we deduce that

Ko o(@) =1 ((p(Ks,.5,)(@) 1§ > 1)) = 6.

It follows that K, ¢(x) = J, without exceptions.

4.3.3. Invariance under p. Property pop = p and Definition 4.2 immediately imply that
p(Kst) = Koz

4.3.4. Measurability. Mappings (s,t,w) = Kj, i, (w) are measurable. From measurability
of ® we immediately obtain the measurability of (s,t,w) — K, ¢(w).
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4.3.5. Convergence of approzimations and distribution of K +.
Proposition 4.4. (1) For all real s <t and all 3 € P(M),

lim »K,, 4, = »2Ks; a.s.
j*)OO

(2) The law of Ky coincides with with v,_.

Proof. We start by showing that for each x € M a.s. the limit lim;_, K, (x) exists
in P(M). Fix T > 0, such that -7 < s <t < T.If [-T — 1,T + 1] C [—4,j] and
x € Lj, then under conditions (s,t,u,v) € (DN [—4,)% s <t, u < v, s —u| <27,
[t —v] <27™ we have

P{d(K,(x), Kyo(z)) > 277} <277,
We note that for all large enough j, (sj,tj,8j11,tj+1) € (D N [—4,4])* Further 0 <
Sj+1 — 85 < 27,0 < t]‘+1 - tj < 27™ . Hence,

P{d(Ks, ., (z), K (x)) =277} <277,

Sj+1tj+1

It follows that with probability 1 for all large enough j, d(K, 1, (%), Ks,,, ¢,., (x)) < 277.
In particular, the limit lim;_, o K, ¢, () a.s. exists in ’P(M) The law of lim;_, oo K, ¢, ()
is H,@S(aﬁ) € P(P(M)). So, a.s. lim; .o K, ¢;(x) is concentrated on P(M).

The proved convergence implies that the distribution of K s+ coincides with v;_,. Since
p is a measurable presentation of v;_g, f(s,t(x) = K, (x) a.s. and the distribution of
K+ coincides with v;_,;. The first statement of the Proposition follows from Fubini’s
theorem.

O

4.3.6. Idependent increments. Let ) < 2 < . < t0™ Then for each j > 1 ran-
dom kernels Kt(l) t(z),...,Kt(m—l) ,om) are independent (Proposition 4.1). Distribution
L j it

of (Ky) 4, -+ s Kyim—1) 4my) in (E™1,E20m=1) is completely determined by distribu-
tions of (K, yoetn (@) 1 1 <k <m—1,1 <r <), where z € M', I > 1. Proposition
4.4 implies that random kernels K1) 425+ oy Kyom—1) ym) are independent as well.

4.3.7. Evolutionary property.
Proposition 4.5. For all realr < s <t and z € M,
KT,sKs,t(x) = Km(x) a.s.

Proof. Case when 7 = s or s =t is trivial. Assume that r < s <t. Let M; = K, ,, (),
M = K, s(z). Sequence (M; : j > 1) is independent from K ; and converges a.s. to M
(Proposition 4.4).

Choose T' > 0 such that [r,t] C [-T + 1,T]. Given a > 0 find compact C C P(M),
such that P{M € C} > 1 —a and P{M; € C} > 1 — « for all j. By Proposition 4.3
there is a strictly increasing sequence of positive integers (j; : I > 1), such that for all
(w, 2), (u,v)) € (DN [=T,T)* with w < 2z, u < v, |w—u| <27, |z —v| <27, and
all »x € C,

P{d(%K -, 2Ky p) > 271 <270
It follows that for » € C,

P{d(K 1,5 72Ky, ) 227 <270

S-7l+1’
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Proposition 4.4 implies

Pld(xKs, 4. ,2Ky) > 27171} < uLmian{J(%K xK ) > 2711
—00

i1 ’tjl, ) ’tjl7 Sjir }th

L—oo

L—1
< liminf P {d(%Ksjl iy %KSijth) > Z Qm}
m=l

L-1

< hLHlio%f; P {d(%Ksjm’tjm K, ) 2 2—7"} < Lli—{I;O’:;Z_::2_m —g—l+1
When 27! < «, we have
P{A(M;, Ky, 1, ME, ) > 20}
< P{CZ(MJLKSJ'Z i MG K t) > a}+ P{CZ(MjLKS,t,MKS,t) > a}
(15) <a+ Sup P{d(5Ks, 1, 2Ksy) > 277} + P{d(M;, Ky, MK, ;) > a}

<+ 27 L P{AM;, Ko, MK, ) > a} < 2a 4+ P{d(M;, K1, MK, ) > a}.

By Proposition 4.3 there exists 6 > 0, such that for all (u,v)) € (D N [-T,T])? with
u < v, and all (31, 365) € C? with d(5¢1, 52) < 6,

P{d(361 Ky 52K ) > ) < v,
From Proposition 4.4 it follows that for all (s, 262) € C? with d(s¢1, 262) < 6,
P{d(sa Ky, 52Ky 4) > a} < .
We estimate
P{d(M,, Ky, MK, ;) > a}
<2a+4P{dM;,, M) >} + sup P{diaK,s,mK.) > a}

(16) (s¢1,302)€C
d(se1,302)<8

< 3a + P{d(M;,, M) > 4}
Substituting (16) into (15), we get
P{d(M; Ks, + ,MEK,;) > 2a} <5a+ P{d(M;,, M) > d},
when 271 < a. Since lim;_, o P{d(M,, M) > §} = 0, we deduce that
My Ky, 0, = ME, . 1= o0,

Sjti

in probability. On the other hand, a.s.
M; K

S5t

(Remark 4.2). It follows that K, ;(z) = MK, = K, ;K (x) a.s. This finishes the proof
of Proposition 4.5 and of Theorem 2.2 as well.

— Kr.iwtjz () = Kyi(x), j — o0

O
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