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M. A. RASULOVA

WEAKLY PERIODIC GIBBS MEASURES FOR THE POTTS-SOS

MODEL ON A CAYLEY TREE OF ORDER TWO

In this paper we consider Potts-SOS model, with spin values 0, 1, 2, on the Cayley

tree of order two. We study the weakly periodic Gibbs measures for this model, with
respect to normal subgroup of two index of the group representation of a Cayley tree.

1. Introduction

One of the central problems in the theory of Gibbs measures (GMs) is to describe
infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. However, a
complete analysis of the set of limiting GMs for a specific Hamiltonian is often a difficult
problem (see [3, 14, 19, 20]).

In this paper we consider model with nearest neighbour interactions on a Cayley tree
(CT). Models on a CT were discussed in Refs. [1, 2, 3, 4, 6, 7, 8, 9, 15, 16, 17, 18, 19].

In [2] all translation-invariant GMs for the Potts model on the CT are described. In
[17] periodic GMs, in [7, 8] weakly periodic GMs for the Potts model are studied. In [1]
translation-invariant GMs and in [19] periodic GMs for the SOS model on the CT are
studied. Weakly periodic GMs for the Ising model in [6, 9, 18], for the Potts model on
the CT in [7, 8] are studied.

The model considered in this paper (Potts-SOS model) is a generalization of the Potts
and SOS (solid-on-solid) models. In [5] some translation-invariant GMs for the Potts-
SOS model on the CT of order k ≥ 2 are studied, in [10] all translation-invariant GMs
for the Potts-SOS model on the CT of order k = 2 and in [11, 12] periodic GMs are
studied, but weakly periodic GMs for this model on the CT were not studied yet. In this
paper we study weakly periodic GMs for this model on the CT of order k = 2. We prove
that under the considered condition, all weakly periodic Gibbs measures with respect to
all two-index normal subgroup are translation-invariant.

2. Notations

2.1. Cayley tree. The Cayley tree Γk (see, e.g., [13], [15]) of order k ≥ 1 is an infinite
tree, i.e., a graph without cycles, from each vertex of which exactly k + 1 edges issue.
Let Γk = (V,L, i), where V is the set of vertices of Γk, L is the set of edges of Γk and
i is the incidence function associating each edge l ∈ L with its endpoints x, y ∈ V . If
i(l) = {x, y}, then x and y are called nearest neighboring vertices, and we write l = ⟨x, y⟩.

The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y) = min{d | ∃x = x0, x1, ..., xd−1, xd = y ∈ V such that

⟨x0, x1⟩, ..., ⟨xd−1, xd⟩}.
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For the fixed x0 ∈ V we set

Wn = {x ∈ V | d(x, x0) = n}, Vn = {x ∈ V | d(x, x0) ≤ n},

Ln = {l = ⟨x, y⟩ ∈ L | x, y ∈ Vn}.
It is known (see [13]) that there exists a one-to-one correspondence between the set

V of vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free products of
k+1 cyclic groups {e, ai}, i = 1, ..., k+1 of the second order (i.e. a2i = e, a−1

i = ai) with
generators a1, a2, ..., ak+1.

For each x ∈ Gk, let S1(x) denote the set of all neighbors of x and S(x) denote the
set of all direct successors of x, i.e.,

S1(x) = {y ∈ Gk : ⟨x, y⟩}
and

S(x) = {y ∈ Wn+1 : ⟨x, y⟩}, x ∈ Wn,

where ⟨x, y⟩ means that the vertex x and y are nearest neighbors.
Let {x↓} = S1(x) \ S(x). Note that | S(x0) |= k + 1 and for all x ̸= x0 | S(x) |=

k, x ∈ V .

2.2. The model and a system of functional equations. Here we shall give main
definitions and facts about the model. Consider the model, where the spin takes values
in the set Φ = {0, 1, 2, ...,m}, m ≥ 1. For A ⊆ V a spin configuration σA on A is defined
as a function x ∈ A 7→ σA(x) ∈ Φ; the set of all configurations coincides with ΩA = ΦA.
Denote Ω = ΩV and σ = σV .

The Hamiltonian of the Potts-SOS model with nearest-neighbor interactions has the
form

(1) H(σ) = −J
∑

⟨x,y⟩∈L

| σ(x)− σ(y) | −Jp
∑

⟨x,y⟩∈L

δσ(x)σ(y),

where J, Jp ∈ R are nonzero coupling constants.
Let h : x 7→ hx = (h0,x, h1,x, ..., hm,x) ∈ Rm+1 be a real vector-valued function of

x ∈ V . We take into consideration the probability distributions µ(n) on ΦVn for given
n = 1, 2, ... defined by

(2) µ(n)(σn) = Z−1
n exp

(
− βH(σn) +

∑
x∈Wn

hσ(x),x

)
,

where σn ∈ ΦVn and the partition function Zn can be expressed as follows:

Zn(σ̃n) =
∑

σ̃n∈ΦVn

exp
(
− βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
.

We say that the probability distributions µ(n) are compatible if ∀n ≥ 1 and σn−1 ∈ ΦVn−1 :

(3)
∑

ωn∈ΦWn

µ(n)
(
σn−1 ∨ ωn

)
= µ(n−1)

(
σn−1

)
,

here
(
σn−1 ∨ ωn

)
∈ ΦVn is the concatenation of σn−1 and ωn.

Definition 2.1. If probability distribution µ(n) on ΦVn holds the equality (3), then, by
the Kolmogorov extension theorem, there exists a unique probability measure µ on the
measurable space (ΦV ,F), where F is the sigma-algebra generated by the cylinder sets
of ΦV , such that for all n and σn ∈ ΦVn ,

µ
(
{σ ∈ ΦV | σ |Vn

= σn}
)
= µ(n)(σn).

This measure µ is called a splitting Gibbs measure (SGM) corresponding to the
Hamiltonian H and a boundary condition function h : x 7→ hx for all x ̸= x0.
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The next theorem expresses the requirement on function h that the distributions
µ(n)(σn) hold the compatibility conditions.

Theorem 2.1. [5] Defined as in (2) the probability distributions µ(n)(σn), n = 1, 2, ...,
satisfy the compatibility condition if and only if

(4) h∗
x =

∑
y∈S(x)

F
(
h∗
y,m, θ, r

)
is satisfied for any x ∈ V \ {x0}, where

(5) θ = exp(Jβ), r = exp(Jpβ)

and also β = 1/T is the inverse temperature. Here h∗
x represents the vector (h0,x −

hm,x, h1,x − hm,x, ..., hm−1,x − hm,x) and the vector function F (.,m, θ, r) : Rm → Rm is
defined as follows

F (h,m, θ, r) =
(
F0(h,m, θ, r), F1(h,m, θ, r), ..., Fm−1(h,m, θ, r)

)
where

(6) Fi(h,m, θ, r) = ln

∑m−1
j=0 θ|i−j|rδijehj + θm−irδmi∑m−1

j=0 θm−jrδmjehj + r
,

h = (h0, h1, ..., hm−1), i = 0, 1, 2, ...,m− 1.

Namely, for any collection of functions satisfying the functional equation (4) there
exists a unique splitting Gibbs measure, the correspondence being one-to-one.

Let Gk/K = {K0,K1...,Kr−1} factor group, where K is a normal subgroup of index
r ≥ 1.

Definition 2.2. A collection of vectors h = {hx ∈ Rm : x ∈ Gk} is said to be K-
periodic, if hx = hi for x ∈ Ki for all x ∈ Gk. A Gk-periodic collections is said to be
translation-invariant.

Definition 2.3. A collection of vectors h = {hx ∈ Rm : x ∈ Gk} is said to be K-
weakly periodic, if hx = hij for x↓ ∈ Ki and x ∈ Kj for any x ∈ Gk.

Definition 2.4. A Gibbs measure µ is called K-(weakly) periodic, if it corresponds to
the K-(weakly) periodic collection of h. A Gk-periodic measure is said to be translation-
invariant.

Note that in [10, 5] translation-invariant splitting Gibbs measures, in [11, 12] periodic
Gibbs measures for the Potts-SOS model are studied. Our aim is to describe a set of
weakly periodic Gibbs measures for the Potts-SOS model on the Cayley tree of order
two.

2.3. Weakly periodic SGMs. Let

HA = {x ∈ Gk :
∑
i∈A

ωx(ai) is an even number},

where ∅ ≠ A ⊆ Nk = {1, 2, 3, ..., k + 1}, and ωx(ai) is the number of letters ai in a word
x ∈ Gk. Note that HA is a normal subgroup of the Gk (see [13]). We consider a quotient
group Gk/HA = {HA, Gk \HA}, where

Gk \HA = {x ∈ Gk :
∑
i∈A

ωx(ai) is an odd number}.

By (4), the HA-weakly periodic collection hx has the following form



WEAKLY PERIODIC GIBBS MEASURES FOR THE POTTS-SOS MODEL 83

(7) hx =


h00, if x↓ ∈ HA, x ∈ HA,
h01, if x↓ ∈ HA, x ∈ Gk \HA,
h10, if x↓ ∈ Gk \HA, x ∈ HA,
h11, if x↓ ∈ Gk \HA, x ∈ Gk \HA.

Clarify that a weakly periodic Gibbs measure depends to a normal subgroup, i.e.
relying on the selection of the normal subgroup, different weakly periodic Gibbs measures
are found. The set of weakly periodic Gibbs measures also includes the set of periodic
(in particular translation-invariant) Gibbs measures.

Let G
(2)
k be the subgroup in Gk consisting of all words of even length, i.e. G

(2)
k =

{x ∈ Gk :| x | is even}. Clearly, G
(2)
k is a normal subgroup of index 2 (see [13]). If

| A |= k + 1, where | A | is the number of elements of the set A, i.e. A = Nk, then the
concept of weakly periodicity coincides with ordinary periodicity. Therefore, we consider

A ⊂ Nk such that A ̸= Nk, i.e. HA ̸= G
(2)
k .

3. Main results

Theorem 3.1. Let k = 2, | A |= 1, r = θ2. Then all HA-weakly periodic Gibbs measures
for the Potts-SOS model are translation-invariant.

Theorem 3.2. Let k = 2, | A |= 2, r = θ2. Then all HA-weakly periodic Gibbs measures
for the Potts-SOS model are translation-invariant.

4. Proofs

Proof. (Proof of Theorem 3.1.) We consider the case | A |= 1 and a quotient group
Gk/HA = {HA, Gk \HA}, where

HA = {x ∈ Gk : wx(ai) is an even number},

Gk \HA = {x ∈ Gk : wx(ai) is an odd number}.

Let k = 2,m = 2. Then for HA-weakly periodic collection (7) from (4) we have the
following system of equations:

(8)


h00 = F (h00, θ, r) + F (h01, θ, r),
h01 = 2F (h11, θ, r),
h10 = 2F (h00, θ, r),
h11 = F (h10, θ, r) + F (h11, θ, r),

where hij = (h
(1)
ij , h

(2)
ij ) and

F (hij , θ, r) =

(
ln

r exph
(1)
ij + θ exph

(2)
ij + θ2

θ2 exph
(1)
ij + θ exph

(2)
ij + r

, ln
θ exph

(1)
ij + r exph

(2)
ij + θ

θ2 exph
(1)
ij + θ exph

(2)
ij + r

)
.
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From (8), we have the following system of equations

(9)



h
(1)
00 = ln

r exph
(1)
00 + θ exph

(2)
00 + θ2

θ2 exph
(1)
00 + θ exph

(2)
00 + r

+ ln
r exph

(1)
01 + θ exph

(2)
01 + θ2

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(2)
00 = ln

θ exph
(1)
00 + r exph

(2)
00 + θ

θ2 exph
(1)
00 + θ exph

(2)
00 + r

+ ln
θ exph

(1)
01 + r exph

(2)
01 + θ

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(1)
01 = 2 ln

r exph
(1)
11 + θ exph

(2)
11 + θ2

θ2 exph
(1)
11 + θ exph

(2)
11 + r

,

h
(2)
01 = 2 ln

θ exph
(1)
11 + r exph

(2)
11 + θ

θ2 exph
(1)
11 + θ exph

(2)
11 + r

,

h
(1)
10 = 2 ln

r exph
(1)
00 + θ exph

(2)
00 + θ2

θ2 exph
(1)
00 + θ exph

(2)
00 + r

,

h
(2)
10 = 2 ln

θ exph
(1)
00 + r exph

(2)
00 + θ

θ2 exph
(1)
00 + θ exph

(2)
00 + r

,

h
(1)
11 = ln

r exph
(1)
10 + θ exph

(2)
10 + θ2

θ2 exph
(1)
10 + θ exph

(2)
10 + r

+ ln
r exph

(1)
11 + θ exph

(2)
11 + θ2

θ2 exph
(1)
11 + θ exph

(2)
11 + r

,

h
(2)
11 = ln

θ exph
(1)
10 + r exph

(2)
10 + θ

θ2 exph
(1)
10 + θ exph

(2)
10 + r

+ ln
θ exph

(1)
11 + r exph

(2)
11 + θ

θ2 exph
(1)
11 + θ exph

(2)
11 + r

.

Let r = θ2. Since the general analysis of the system of equations (9) is very compli-
cated, we solve it under the condition r = θ2. Then the system of equations (9) have the
following form:

(10)



h
(1)
00 = ln

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

+ ln
θ2 exph

(1)
01 + θ exph

(2)
01 + θ2

θ2 exph
(1)
01 + θ exph

(2)
01 + θ2

,

h
(2)
00 = ln

θ exph
(1)
00 + θ2 exph

(2)
00 + θ

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

+ ln
θ exph

(1)
01 + θ2 exph

(2)
01 + θ

θ2 exph
(1)
01 + θ exph

(2)
01 + θ2

,

h
(1)
01 = 2 ln

θ2 exph
(1)
11 + θ exph

(2)
11 + θ2

θ2 exph
(1)
11 + θ exph

(2)
11 + θ2

,

h
(2)
01 = 2 ln

θ exph
(1)
11 + θ2 exph

(2)
11 + θ

θ2 exph
(1)
11 + θ exph

(2)
11 + θ2

,

h
(1)
10 = 2 ln

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

,

h
(2)
10 = 2 ln

θ exph
(1)
00 + θ2 exph

(2)
00 + θ

θ2 exph
(1)
00 + θ exph

(2)
00 + θ2

,

h
(1)
11 = ln

θ2 exph
(1)
10 + θ exph

(2)
10 + θ2

θ2 exph
(1)
10 + θ exph

(2)
10 + θ2

+ ln
θ2 exph

(1)
11 + θ exph

(2)
11 + θ2

θ2 exph
(1)
11 + θ exph

(2)
11 + θ2

,

h
(2)
11 = ln

θ exph
(1)
10 + θ2 exph

(2)
10 + θ

θ2 exph
(1)
10 + θ exph

(2)
10 + θ2

+ ln
θ exph

(1)
11 + θ2 exph

(2)
11 + θ

θ2 exph
(1)
11 + θ exph

(2)
11 + θ2

.

From (10) we obtain:
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(11)



h
(1)
00 = ln 1 + ln 1 = 0,

h
(2)
00 = ln

θ exph
(2)
00 + 2

exph
(2)
00 + 2θ

+ ln
θ exph

(2)
01 + 2

exph
(2)
01 + 2θ

,

h
(1)
01 = 2 ln 1 = 0,

h
(2)
01 = 2 ln

θ exph
(2)
11 + 2

exph
(2)
11 + 2θ

,

h
(1)
10 = 2 ln 1 = 0,

h
(2)
10 = 2 ln

θ exph
(2)
00 + 2

exph
(2)
00 + 2θ

,

h
(1)
11 = ln 1 + ln 1 = 0,

h
(2)
11 = ln

θ exph
(2)
10 + 2

exph
(2)
10 + 2θ

+ ln
θ exph

(2)
11 + 2

exph
(2)
11 + 2θ

.

Denoting t1 = exph
(2)
00 , t2 = exph

(2)
01 , t3 = exph

(2)
10 , t4 = exph

(2)
11 , where ti > 0, i = 1, 4,

we get:

(12)



t1 = θt1+2
t1+2θ · θt2+2

t2+2θ ,

t2 =

(
θt4+2
t4+2θ

)2

,

t3 =

(
θt1+2
t1+2θ

)2

,

t4 = θt3+2
t3+2θ · θt4+2

t4+2θ .

In the system of equations (12), we put the expression of t2 in the second equation
into the first equation, the expression of t3 in the third equation into the fourth equation,
and we have the following system of equations with respect to the variables t1 and t4:

(13)


t1 = θt1+2

t1+2θ ·
θ
(

θt4+2
t4+2θ

)2
+2(

θt4+2
t4+2θ

)2
+2θ

,

t4 =
θ
(

θt1+2
t1+2θ

)2
+2(

θt1+2
t1+2θ

)2
+2θ

· θt4+2
t4+2θ .

We simplify each equation of the system of equations (13):

(14)



t1(t1 + 2θ)
(
(θt4 + 2)2 + 2θ(t4 + 2θ)2

)
−

−(θt1 + 2)(θ(θt4 + 2)2 + 2(t4 + 2θ)2) = 0,

t4(t4 + 2θ)
(
(θt1 + 2)2 + 2θ(t1 + 2θ)2

)
−

−(θt4 + 2)(θ(θt1 + 2)2 + 2(t1 + 2θ)2) = 0.

In the system of equations (14), we subtract the second equation from the first equation
and divide the expression on the left side of the resulting equation into multipliers:

(15) (t1 − t4) ·
(
(θ4t1 − 2θ3t1 + 4θ2t1 + 6θt1 + 10θ3 + 8)t4+
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+2(5θ3t1 + 4t1 + 8θ4 − 4θ3 + 2θ2 + 12θ)
)
= 0.

From (15) we have the following cases:

(16) t4 = t1

or

(17) t4 =
−2(5θ3t1 + 4t1 + 8θ4 − 4θ3 + 2θ2 + 12θ)

θ4t1 − 2θ3t1 + 4θ2t1 + 6θt1 + 10θ3 + 8
.

First, we consider case (16). Substituting (16) into the first equation of (14), simpli-
fying, and then factoring, we get:

(18) θ

(
(θ + 2)t1 + 4θ + 2

)(
t31 + (−θ2 + 4θ)t21 + (4θ2 − 4θ)t1 − 4

)
= 0.

Considering θ > 0 and t1 > 0, from the equation (18) we get the following equation:

(19) t31 + (−θ2 + 4θ)t21 + (4θ2 − 4θ)t1 − 4 = 0.

The solutions of equation (19) characterize the TISGMs for the Potts-SOS model on
a second-order Cayley tree. This equation was studied in Lemma 3 of [10].

Now we consider case (17). Substituting (17) into the second equation of (14) and
simplifying, we have the following equation with respect to the variable t1:

(θ6− 4θ5+4θ4+16θ3− 8θ2+2θ+16)t41+(2θ7− 9θ6+8θ5+52θ4− 42θ3+28θ2+96θ)t31

+(−24θ6 + 90θ5 − 60θ4 + 156θ2)t21 + (−32θ7 + 96θ6 − 128θ5 − 28θ4 + 192θ3 − 112θ2

(20) −96θ)t1 − 64θ6 + 64θ5 − 16θ4 − 136θ3 + 32θ2 − 32θ − 64 = 0.

We determine the signs of the coefficients of the polynomial in equation (20):

N Coeff. Sign of coeff.
1 θ6 − 4θ5 + 4θ4 + 16θ3 − 8θ2 + 2θ + 16 +
2 2θ7 − 9θ6 + 8θ5 + 52θ4 − 42θ3 + 28θ2 + 96θ +
3 −24θ6 + 90θ5 − 60θ4 + 156θ2 +, if θ < θc,

−, if θ > θc
4 −32θ7 + 96θ6 − 128θ5 − 28θ4 + 192θ3 − 112θ2 − 96θ −
5 −64θ6 + 64θ5 − 16θ4 − 136θ3 + 32θ2 − 32θ − 64 −

where θc ≈ 3.165136214.
The number of sign exchanges of the coefficients of that polynomial is equal to one in

arbitrary theta. Therefore, according to Descartes’ theorem, equation (20) has at most
one positive solution. Suppose equation (20) has one positive solution. Let us denote
this positive solution of the equation (20) by A1. Let the corresponding solutions be as
follows: t2 = B1, t3 = C1, t4 = D1.

We assume that D1 > 0. Note that in the system of equations (12), variables t1 and
t4, t2 and t3 are mutually symmetric. Therefore, since (A1, B1, C1, D1) is a solution
of the system of equations (12), it follows that (D1, C1, B1, A1) is also a solution. But
according to the Descartes’ theorem D1 < 0. It contradicts our assumption.

Therefore, the system of equations (12) does not have mutually unequal positive so-
lutions. From this we get the proof of Theorem 3.1. □
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Proof. (Proof of Theorem 3.2.) We consider the case k = 2,m = 2, | A |= 2. For
HA-weakly periodic collection (7) from (4) we have the following system of equations:

(21)


h00 = 2F (h01, θ, r),
h01 = F (h10, θ, r) + F (h11, θ, r),
h10 = F (h00, θ, r) + F (h01, θ, r),
h11 = 2F (h10, θ, r),

where hij = (h
(1)
ij , h

(2)
ij ) and

F (hij , θ, r) =

(
ln

r exph
(1)
ij + θ exph

(2)
ij + θ2

θ2 exph
(1)
ij + θ exph

(2)
ij + r

, ln
θ exph

(1)
ij + r exph

(2)
ij + θ

θ2 exph
(1)
ij + θ exph

(2)
ij + r

)
.

From (21), we have the following system of equations:

(22)



h
(1)
00 = 2 ln

r exph
(1)
01 + θ exph

(2)
01 + θ2

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(2)
00 = 2 ln

θ exph
(1)
01 + r exph

(2)
01 + θ

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(1)
01 = ln

r exph
(1)
10 + θ exph

(2)
10 + θ2

θ2 exph
(1)
10 + θ exph

(2)
10 + r

+ ln
r exph

(1)
11 + θ exph

(2)
11 + θ2

θ2 exph
(1)
11 + θ exph

(2)
11 + r

,

h
(2)
01 = ln

θ exph
(1)
10 + r exph

(2)
10 + θ

θ2 exph
(1)
10 + θ exph

(2)
10 + r

+ ln
θ exph

(1)
11 + r exph

(2)
11 + θ

θ2 exph
(1)
11 + θ exph

(2)
11 + r

,

h
(1)
10 = ln

r exph
(1)
00 + θ exph

(2)
00 + θ2

θ2 exph
(1)
00 + θ exph

(2)
00 + r

+ ln
r exph

(1)
01 + θ exph

(2)
01 + θ2

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(2)
10 = ln

θ exph
(1)
00 + r exph

(2)
00 + θ

θ2 exph
(1)
00 + θ exph

(2)
00 + r

+ ln
θ exph

(1)
01 + r exph

(2)
01 + θ

θ2 exph
(1)
01 + θ exph

(2)
01 + r

,

h
(1)
11 = 2 ln

r exph
(1)
10 + θ exph

(2)
10 + θ2

θ2 exph
(1)
10 + θ exph

(2)
10 + r

,

h
(2)
11 = 2 ln

θ exph
(1)
10 + r exph

(2)
10 + θ

θ2 exph
(1)
10 + θ exph

(2)
10 + r

.

At arbitrary values of θ and r, h
(1)
00 = h

(1)
01 = h

(1)
10 = h

(1)
11 = 0 satisfies the system of

equations (22). Therefore, we have the following system of equations:

(23)



h
(2)
00 = 2 ln

r exph
(2)
01 + 2θ

θ2 + θ exph
(2)
01 + r

,

h
(2)
01 = ln

r exph
(2)
10 + 2θ

θ2 + θ exph
(2)
10 + r

+ ln
r exph

(2)
11 + 2θ

θ2 + θ exph
(2)
11 + r

,

h
(2)
10 = ln

r exph
(2)
00 + 2θ

θ2 + θ exph
(2)
00 + r

+ ln
r exph

(2)
01 + 2θ

θ2 + θ exph
(2)
01 + r

,

h
(2)
11 = 2 ln

r exph
(2)
10 + 2θ

θ2 + θ exph
(2)
10 + r

.

In the equation (23), we introduce the following notations:

t1 = exph
(2)
00 , t2 = exph

(2)
01 , t3 = exph

(2)
10 , t4 = exph

(2)
11 .
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Then from the system of equations (23) we get the following system of equations:

(24)



t1 =

(
rt2+2θ

θ2+θt2+r

)2

,

t2 = rt3+2θ
θ2+θt3+r · rt4+2θ

θ2+θt4+r ,

t3 = rt1+2θ
θ2+θt1+r · rt2+2θ

θ2+θt2+r ,

t4 =

(
rt3+2θ

θ2+θt3+r

)2

.

Let r = θ2. After several substitutions and simplifications in the (24), we obtain the
following equations with respect to the variable t3:

(25)

(
t3 +

2(2θ + 1)

θ + 2

)(
t33 + θ(4− θ)t23 + 4θ(θ − 1)t3 − 4

)
= 0

or

(θ12 + 2θ11 + 12θ10 + 34θ9 + 80θ8 + 128θ7 + 144θ6 + 136θ5 + 112θ4 + 64θ3 + 16θ2)t63

+(36θ11 + 112θ10 + 568θ9 + 1216θ8 + 1784θ7 + 1952θ6 + 1480θ5 + 928θ4 + 480θ3

+160θ2 + 32θ)t53 + (16θ12 + 48θ11 + 1196θ10 + 3240θ9 + 8240θ8 + 10872θ7

+7504θ6 + 5920θ5 + 4368θ4 + 1504θ3 + 576θ2 + 256θ)t43 + (960θ11 + 3072θ10

+17760θ9 + 25472θ8 + 18880θ7 + 22272θ6 + 16320θ5 + 5120θ4 + 4480θ3 + 2176θ2

+128)t33 + (256θ12 + 1152θ11 + 21056θ10 + 26880θ9 + 22640θ8 + 41568θ7 + 28864θ6

+10720θ5 + 14208θ4 + 6016θ3 + 576θ2 + 1024θ)t23 + (13824θ11 + 13312θ10 + 13312θ9

+34816θ8 + 21056θ7 + 12032θ6 + 19840θ5 + 7168θ4 + 1920θ3 + 2560θ2 + 128θ)t3

+4096θ12 + 2048θ11 + 3072θ10 + 11776θ9 + 5120θ8 + 4352θ7 + 9024θ6 + 2944θ5

(26) +1792θ4 + 2176θ3 + 256θ2 = 0.

Since θ > 0 and t3 > 0, from equation (25) we get the following equation:

(27) t33 + θ(4− θ)t23 + 4θ(θ − 1)t3 − 4 = 0.

The solutions of equation (27) characterize the TISGMs for the Potts-SOS model on a
second-order Cayley tree. This equation was studied in Lemma 3 of [10].

Now we are interested in the solutions of equation (26). It is easy to see that all
the coefficients of the polynomial in (26) are positive. The number of sign exchanges of
the coefficients of the polynomial in (26) is zero. Therefore, according to the Descartes’
theorem, this expression does not have a positive solution.

Combining above results, we have the proof of Theorem 3.2. □

Remark 4.1. Let k = 2, | A |= 3. Then all HA-weakly periodic Gibbs measures for the

Potts-SOS model are HA-periodic, i.e. G
(2)
2 -periodic. These Gibbs measures are studied

in [11].

In summary, the all weakly periodic Gibbs measures with respect to the normal sub-
group of two index under the condition r = θ2 on the Cayley tree of order two are studied
completely.

Remark 4.2. From Theorems 3.1 and 3.2, we have seen that under the condition r = θ2,
all weakly periodic Gibbs measures with respect to the normal subgroup of two index
coincide with translation-invariant Gibbs measures. The issue of extremality or non-
extremality of these measures was studied in [10].
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