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H. V. NAVROTSKYI

PROPERTIES OF GROWING CROSS SECTIONS OF ISOTROPIC

GAUSSIAN FIELD

The article is devoted to the asymptotic properties of Gaussian random field on the
plane. We find the conditions for convergence of the number of upcrossings in the

weak sense.

Our interest is in limiting behavior of topological characteristics of smooth Gaussian
random field. In this paper we discuss the geometric characteristics of smooth periodic
Gaussian processes which arise as a restriction of smooth Gaussian random field on R2

on circles of radius R with a center in origin. The interest to such objects is due to the
paper [4] where the following model of the random knot was proposed. Let ξ : R2 → R3

be a centered Gaussian random field with independent coordinates which have covariance

Eξi(u)ξi(v) = e−|u−v|2

Let γ be a smooth closed curve in R2 without self-intersections. Then the random curve

Γ = ξ(γ)

with probability one has no self-intersections , i.e. is a random knot. It was proved in [4],
that Γ can have arbitrary topological type with positive probability. The investigation
of topology of Γ naturally leads to the investigation of the number of bridges over the
certain plane. Consequently it is reduced to the behaviour of the number of upcrossings
of a level by the fixed coordinate of ξ. The goal is to find the asymptotic growth of the
complexity of the random knot.

Definition 1. Define h : [0, 1] → R, h ∈ C1([0, 1]), c ∈ R. Then t ∈ [0, 1] is called a point
of crossing of the level c by function h, if

h(t) = c, h′(t) ̸= 0.

Definition 2. t ∈ [0, 1] is called an upcrossing point of the level c by function h, if

h(t) = c, h′(t) > 0.

For each R > 0 denote as CR the circle with center at 0 and radius R in the parameter
plane. For CR, we use the parametrization f(t) = (R cos t, R sin t). For a fixed R > 0,
consider the restriction of ξ onto CR. From here on ξ is one dimensional. This restriction
can be described as a random process

ηR(t) = ξ(R cos t, R sin t)

It is natural to presume that with the growth of radius R, the number of upcrossings of
fixed level c by ηR will increase. The covariance of process ηR is:

EηR(t)ηR(s) = e−R2(2−2 cos(t−s))

If t ̸= s, |t− s| ≠ 2πk, k ∈ Z+, then when R → ∞

EηR(t)ηR(s) = e−R2(2−2 cos(t−s)) → 0.
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Thus, for large values of R, the values of the process ηR with different t, s become almost
independent. Let us modify the process to obtain a smooth covariance in the limit when
R → ∞:

ζR(t) = ηR(
t

R
), t ≥ 0

Then
EζR(t)ζR(s) = e−2R2(1−cos t−s

R ) → e−(t−s)2 , as R → ∞
Let us denote as ζ∞ a centered Gaussian random process with covariance function

Cov(ζ∞(t), ζ∞(s)) = e−(t−s)2

Note that for any R > 0 the processes ζR(t), ζ
′
R(t) have continuous modifications ( the

corresponding sufficient condition can be found in paragraph 5 of chapter III in [6]) .
Further we will consider the continuous modifications of ζR, ζ

′
R.

Denote by NζR([0, T ], c) the number of upcrossings of level c before time T by the
process ζR(t).To calculate the expectation of NζR([0, T ], c) Rice’s formula [2] will be
used:

ENζR([0, T ], c) =

∫ T

0

∫ ∞

0

yqt(c, y)dydt

where qt(c, y) is a joint density of ζR(t), ζ
′
R(t). Then, due to the process ζR(t) being

stationary and Gaussian, ζR(t) and ζ ′R(t) are independent. So, the joint density of the
random values ζR(t) and ζ ′R(t) can be calculated as a product of their respective densities.
Since the process ζR is stationary, the joint density qt(c, y) is not dependent on time:

qt(c, y) =
1√
22π

e−y2/4−c2/2

Thus

ENζR([0, T ], c) = T

∫ ∞

0

yq(c, y)dy =
1√
2π

T · e−c2/2

For ζ∞ the corresponding probability density of the pair ζ∞(t), ζ ′∞(t) is:

pt(c, y) =
1√
22π

e−y2/4−c2/2

Therefore we conclude that

(a) ENζ∞([0, T ], c) =
1√
2π

T · e−c2/2

Let us find the asymptotics of growth of NζR([0, T ], c) with respect to R, T .

Lemma 1. Let c > 0. Then
1

T
NζR([0, T ], c) →

1

2πR
NζR([0, 2πR], c), as T → ∞

almost surely.

Proof. Without loss of generality, we can assume:

ζR(2kπR) ̸= c, k ∈ N
since

P ({∃k ∈ N : ζR(ak) = c}) = 0

for any sequence {ak, k ∈ N} of points in R .
Due to the periodicity

NζR([0, 2πR], c) = NζR([2πR, 4πR], c) = ... = NζR([2nπR, 2(n+ 1)πR], c)

Therefore,
1

2πnR
NζR([0, [2πnR], c) =

1

2πR
NζR([0, 2πR], c)
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Moreover,

NζR([0, 2πR], c)− 1 ≤ sup
0<t<2πR

NζR([0, t], c) = NζR([0, 2πR], c)

Consequently,

1

T
NζR([0, T ], c) =

1

T
NζR([0, ⌊

T

2πR
⌋2πR], c) +

1

T
NζR([0, T − ⌊ T

2πR
⌋2πR], c) →

→ 1

2πR
NζR([0, 2πR], c) as T → ∞.

□

Since we are investigating the convergence of the number of crossings NζR([0, T ], c), we
first need to determine the conditions for the convergence of the number of level crossings
for a deterministic function.

Lemma 2. Consider a sequence of continuously differentiable functions fk such that
fk → f, f ′

k → f ′, k → ∞ uniformly on the interval [0, T ]. For any t ∈ [0, T ], if f(t) = c,
then f ′(t) ̸= 0. If the number of upcrossings of level c by the function f , which we will
denote as U([0, T ]), is finite, then the number of upcrossings of level c > 0 on the interval
[0, T ] by the function fk (denoted as Uk([0, T ])) has a limit as k → ∞, equal to U([0, T ]).

lim
k→∞

Uk([0, T ]) = U([0, T ])

Proof. Denote as (t1, . . . tn) all points of crossings of level c by function f . For any
point of crossing tk of level c by the function f , there exists a number δk > 0 such that
∃N ∀s > N ∀t ∈ B(tk, δk ) : |f ′

s(t)| > 0. Hence, the function fs is strictly increasing or
decreasing and in each such neighborhood there can be only one point of upcrossing of
the level c.

If it is increasing, in each neighborhood B(tk, δk ) there exists local infimum ak < c
and supremum bk > c for function f . By choosing M such that ∀m > M ∀t ∈ [0, T ]

|fm(t)− f(t)| < min
k

|ak − c|/2, |bk − c|/2

we can conclude that there exists a point of upcrossing in B(tk, δk ) by functions fm.
On the other hand, consider the compact set

J = [0, T ]\
⋃
k

B(tk, δk).

Due to the continuity of the function f , there exists min
J

|f(t) − c| > 0 on this compact

set. Then starting from some n > 0, min
J

|fn(t)− c| > 0. □

Due to the fact that the processes ζR(t) are Gaussian, from the pointwise convergence
of covariance functions it follows that the finite-dimensional distributions of the process
converge to the distribution of the process ζ∞, as R → ∞. Yet it is not sufficient for the
convergence in distribution. The sufficient conditions are (paragraph 2.4 in [1]):

(1) sup
R≥1

E(ζR(0)2) < +∞

(2) ∃α, β, C > 0 : E|ζR(t)− ζR(s)|α ≤ CT |t− s|1+β

for α, β > 0 ,∀ T, ∀ 0 < t, s < T ;R > 1 and some CT depending on T .

Lemma 3. For every fixed T > 0 the following convergence in distribution holds: ζR →
ζ∞ and ζ ′R → ζ ′∞ in C([0, T ]) as R → ∞ .
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Proof. Let us check the condition (1):

sup
R≥1

E(ζR(0)2) ≤ 1

and
sup
R≥1

E(ζ ′R(0)2) ≤ 2.

Next, the following inequality for ξR(t) holds uniformly w.r.t. R > 0

E|ζR(t)− ζR(s)|2 ≤ 2|t− s|2

To prove this we use the inequalities

(1) cos(
t− s

R
) ≥ 1− 2(

t− s

2R
)2

and

(2) exp(−2R2(1− cos
t− s

R
)) ≥ exp(−(t− s)2) ≥ 1− (t− s)2

Hence

E|ζR(t)− ζR(s)|2 = 2− 2 exp(−2R2(1− cos
t− s

R
)) ≤

≤ 2− 2 exp(−|t− s|2)
≤ 2|t− s|2.

We find the covariance function of the process ζ ′R

Eζ ′R(t)ζ ′R(s) = 2e−2R2(1−cos t−s
R ) (cos

t− s

R
− 2R2(sin

t− s

R
)2)

Then we use the formulas (1), (2) to obtain

E|ζ ′R(t)− ζ ′R(s)|2 ≤ 4(1− (1− (t− s)2)(1− (t− s)2

2R2
− 2(t− s)2))

= 4(
(t− s)2

2R2
− (t− s)4

2R2
− 2(t− s)4 + 3(t− s)2)

≤ 4(4(t− s)2 − 2(t− s)4)

for small enough |t− s| when R > 1. □

If there is a convergence in distribution of processes ζR to a process ζ∞, it is natural
to presume that there is a convergence in distribution of the number of upcrossings
NζR([0, T ], c). To prove that, we need to check the conditions of lemma 2 for ζ∞(t).

The a.s. continuity of trajectories of the processes ζ∞(t), ζ ′∞(t) follows from lemma 3.
Let us calculate the covariance

cov(ζ∞(t), ζ∞(s)) = e−(t−s)2

cov(ζ∞(t), ζ ′∞(s)) = 2(t− s)e−(t−s)2

cov(ζ ′∞(t), ζ ′∞(s)) = 2e−(t−s)2 − 4(t− s)2e−(t−s)2

Lemma 4.
P{∃ t > 0 : ζ∞(t) = c, ζ ′∞(t) = 0} = 0

Proof. Since the probability density of ζ∞(t) is bounded and the derivative ζ ′∞(t) is a.s.
continuous, then P{∃ t ∈ [0, 1] : ζ∞(t) = c, ζ ′∞(t) = 0} = 0 (4.5 in [3]).

Since the process ξ(t) is stationary and

[0,∞) =

∞⋃
n=0

[n, n+ 1]
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we have the statement of the lemma.
□

Theorem 1. There exists the limit in distribution

lim
R→∞

NζR([0, T ], c) = Nζ∞([0, T ], c).

Proof. Due to lemma 3 and the Skorokhod’s theorem [5], there exists a family of random
values κR such that

κR = ζR

in distribution and there exists a limit with probability 1

lim
R→∞

κR = κ∞.

Then, by lemma 2 there exists the a.s. limit of the number of crossings of level c
NκR

([0, T ], c) and since

NκR
([0, T ], c) = NζR([0, T ], c)

in distribution, there exists a limit in distribution of NζR([0, T ], c) as R → ∞, which is
equal to Nζ∞([0, T ], c).

□

Further, we study the asymptotic properties of Nζ∞([0, T ), c) as T → ∞..

Lemma 5. The process ζ∞(t) is ergodic.

Proof. Using results of chapter 7.11 in [3] we verify the conditions for ergodicity of the
process ζ∞:

(1)The trajectories of the process ζ∞ are a.s. continuous.
(2) The spectral function of the process ζ∞(t) is equal to

G(λ) =
1

2
√
π

∫ λ

−∞
e−s2/4ds

and is continuous with respect to λ.
□

Then the following statement follows from lemma 5 (the proof can be found in chapter
11.5 of [3]) and the formula (a) :

Proposition 1. There exists the limit with probability 1

lim
T→∞

Nζ∞([0, T ), c)

T
=

e−c2/2

√
2π

Therefore, we conclude that for the process ζ∞ and a fixed level c > 0 the growth
of the number of upcrossings Nζ∞([0, T ), c) as T → ∞ is asymptotically linear with
probability 1.
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