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GEOMETRIC INVARIANTS OF RANDOM LINK

In this article we construct the random link with two components as the image of two

non-intersecting circles in plane under smooth Gaussian random field. We study the

properties of distributions of linking number and average crossing number of obtained
link. We propose the results about existence of moments of linking number, average

crossing number, Mobius energy of a link.

1. Introduction

Knots and links naturally arise in studying of fluid mechanics and vortex dynamics.
The reader can find a detailed survey in [3]. Under the action of small perturbations the
image of a link can be viewed as a random link. In this article we propose such model of
random link and study it‘s properties.

In the work [1] of A.A. Dorogovtstev the construction of a stationary random knot was
proposed. The main advantage of a proposed construction is that the obtained random
knot is smooth. This gives an opportunity to study geometrical properties of obtained
knot using analysis tools.

In this article we consider the random link consisting of two components and study
the existence of moments of linking number, average crossing number and Mobius energy
of obtained link.

Let ξ⃗ = (ξ1, ξ2, ξ3) : R2 → R3 be a centered Gaussian random field with independent
identically distributed coordinates with the covariance

(1.1) Eξ1(v⃗)ξ1(u⃗) = e−
1
2 ||u⃗−v⃗||2 = G(u⃗− v⃗).

Since the covariance is infinitely differentiable, due to Gaussianity, ξ⃗ has an infinitely
differentiable on R2 modification.

Suppose that θ1, θ2 = (xi + cos t, yi + sin t) : [0, 2π] → R2, i = 1, 2 are two non

intersecting unit circles on the plane. Then consider γi = ξ⃗(θi), i = 1, 2. We will prove
that γ = γ1 ∪ γ2 is a smooth random link. We will start with the following lemma.

Define on R3 functions approximating δ-function at 0⃗.

hε(x⃗) =
1

4
3πε

3
1B(⃗0,ε)(x⃗), ε > 0

Lemma 1.1.

lim
ε→0+

ˆ 2π

0

ˆ 2π

0

Ehε

(
γ1(t1)− γ2(t2)

)
dt1dt2

is finite and equals to
ˆ 2π

0

ˆ 2π

0

dt1dt2

(2π(2− 2G(θ⃗1(t1)− θ⃗2(t2))))
3
2

.
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Proof. ∀t1, t2 ∈ [0, 2π] : γ1(t1)− γ2(t2) has density pt1,t2

pt1,t2(u⃗) =
1

(
√
2πσ(t1, t2))3

e−
1
2σ(t1,t2)

2||u⃗||2 ,

where
σ(t1, t2)

2 = 2− 2G
(
θ⃗1(t1)− θ⃗2(t2)

)
.

Then

Ehε

(
γ1(t1)− γ2(t2)

)
=

ˆ
R3

hε(u⃗)pt1,t2(u⃗)du⃗.

Note that, ∀t1, t2 ∈ [0, 2π]

sup
u⃗∈R3

pt1,t2(u⃗) = pt1,t2 (⃗0),

thus ∀t1, t2 ∈ [0, 2π] ˆ
R3

hε(u⃗)pt1,t2(u⃗)du⃗ ≤ pt1,t2 (⃗0).

Due to construction of hε

lim
ε→0+

ˆ
R3

hε(u⃗)pt1,t2(u⃗)du⃗ = pt1,t2 (⃗0).

Then by Lebesgue dominated convergence theorem

lim
ε→0+

ˆ 2π

0

ˆ 2π

0

Ehε

(
γ1(t1)− γ2(t2)

)
dt1dt2 =

ˆ 2π

0

ˆ 2π

0

pt1,t2 (⃗0)dt1dt2,

which is the integral from the statement of the lemma. This integral converge because
θ1 and θ2 are non intersecting. □

Theorem 1.1. γ = γ1 ∪ γ2 is a smooth random link with two components.

Proof. Due to the Theorem 1.1 from [1] γ1 and γ2 are random knots. Then it is enough
to prove that they are non intersecting with probability 1.
Consider

(1.2) A = {ω | ∃ t1, t2 ∈ [0, 2π] : γ1(t1) = γ2(t2)}.

ξ⃗ has an infinitely differentiable on R2 modification. Then with probability 1 γ1 and γ2
are smooth random curves. Hence

Ω \A = {ω | ∃ n ≥ 1 : ∀ r1, r2 ∈ Q ∩ [0, 2π] : ||γ1(r1)− γ2(r2)|| >
1

n
}.

Consequently, A is a random event. Suppose that P(A) > 0. Take ω ∈ A. Then
∃ t01, t

0
2 ∈ [0, 2π]:

γ1(t
0
1)(ω) = γ2(t

0
2)(ω).

Consider integral ˆ 2π

0

ˆ 2π

0

hε

(
γ1(t1)(ω)− γ2(t2)(ω)

)
dt1dt2.

Due to differentiability of γ, as t1 → t01, t2 → t02

γ1(t1)− γ2(t2) = γ′
1(t

0
1)(t1 − t01) + γ′

2(t
0
2)(t2 − t02) + o(t1 − t01) + o(t2 − t02).

Take C0(ω) = max{|γ′
1(t

0
1)|, |γ′

2(t
0
2)|}. With probability 1: C0(ω) > 0. Then there exists

ε0 > 0,∀ε < ε0 :

∀ti ∈ [0, 2π], |ti − t0i | <
ε

3C0(ω)
, i = 1, 2 : ||γ1(t1)− γ2(t2)|| < ε.

Then ˆ 2π

0

ˆ 2π

0

hε

(
γ1(t1)(ω)− γ2(t2)(ω)

)
dt1dt2 ≥ 1

4
3πε

3

ε2

9C0(ω)2
=

C(ω)

ε
.
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With Fatou lemma this gives us

lim inf
ε→0+

ˆ 2π

0

ˆ 2π

0

Ehε

(
γ1(t1)− γ2(t2)

)
dt1dt2 ≥ lim

ε→0+

EC(ω)

ε
.

If P(A) > 0, then EC(ω) > 0(or equal to +∞) and the following limit doesn‘t exist,
what contradicts Lemma 1.1. Hence P (A) = 0. □

2. Geometric invariants of a deterministic link

For a link γ of class C1 consisting of two components γ1, γ2 linking number link(γ1, γ2)
is defined by Gauss linking integral ([2])

(2.1)
1

4π

ˆ 2π

0

ˆ 2π

0

det(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dt ds.

Another representation of a linking number is the following. Suppose that location and
orientation of a link γ = γ1 ∪ γ2 in space are given by parametric equations γ1(t), γ2(s).
Consider the projection of a link on a plane with at most finitely many transversal double
points such that orientation of a projection is agreed with orientation of a link. For each
transversal double point consisting of two local arcs, one can give heights between these
two arcs with respect to the projecting vector. We call the higher arc overcrossing and
the lower arc undercrossing. The projection of a link with over/under information is
called a diagram. Each over-crossing or under-crossing arises either from γ1 alone, from
γ2 alone or from an intersection involving both γ1 and γ2. Depending on the orientation
of the over-crossing and under-crossing of a crossing c, it can be of two types: positive
and negative crossings with signs +1 and -1, respectively. Then the half of the sum of
signs of crossings consisting of over and under-crossings from different components is
exactly the linking number. The proof of equivalence of these two definitions and other
definitions of linking number can be found in [2].

In the work [5] of Freedman, Michael H. and Zheng-Xu He average crossing number
of a link was proposed. Suppose that link γ consists of two components γ1, γ2, and S2
is a unit sphere in R3. For p⃗ ∈ S2 let n(γ, p⃗) be the number of crossings between γ1 and
γ2 in a diagram of a link, when link γ is orthogonally projected on some plane, which is
orthogonal to p⃗. Then average crossing number c(γ1, γ2) is equal to

1

4π

¨

p⃗∈S2

n(γ, p⃗) dS.

This integral is well defined due to the fact that all directions, for which the number of
crossing in a diagram is infinite, are exactly the critical values of Gauss map([2]) and by
Sard’s theorem([7]) the set of critical values have zero measure.

In [5] it was proved that average crossing number of a smooth link has representation
similar to Gauss linking integral.

Proposition 2.1. ([5])

(2.2) c(γ1, γ2) =
1

4π

ˆ 2π

0

ˆ 2π

0

|det(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))|
||γ1(t)− γ2(s)||3

dt ds

Using this formula we can get useful property of average crossing number.

Proposition 2.2. Suppose that link γ is of class C2 and consists of two components γ1,
γ2, and c(γ1, γ2) = 0. Then γ1 and γ2 are non-intersecting trivial knots on some plane
in R3.
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Proof. By Proposition 2.1,

(2.3) ∀ t, s ∈ [0, 2π] : det(γ̇1(t), γ̇2(s), γ1(t)− γ2(s)) = 0.

Differentiating this equality by parameter t we get

(2.4) ∀ t, s ∈ [0, 2π] : det(γ̈1(t), γ̇2(s), γ1(t)− γ2(s)) = 0.

Similarly

(2.5) ∀ t, s ∈ [0, 2π] : det(γ̇1(t), γ̈2(s), γ1(t)− γ2(s)) = 0.

Suppose that for any fixed t, s Pt,s is a linear subspace generated by vectors γ̇2(s), γ1(t)−
γ2(s). From equations (2.3) - (2.5) follows that vectors γ̈1(t), γ̈2(s), γ̇1(t), γ̇2(s), γ1(t) −
γ2(s) lies in Pt,s. Then the determinant of any 3 vectors from these 5 equals to 0. We
will use it later.

Consider parametric surface X = {f⃗(t, s)| t, s ∈ [0, 2π]} = {γ1(t)−γ2(s)| t, s ∈ [0, 2π]}.
At point f⃗(t, s) we can define a normal vector n⃗ to a surface as

n⃗(t, s) =
df⃗

dt
× df⃗

ds
= γ̇1(t)×−γ̇2(s).

Suppose that the second fundamental form of surface X at point f⃗(t, s) equals to

Ldt2 + 2M dt ds+N ds2.

We can find coefficients L and N using the next equalities.

L(t, s) =
d2f⃗

dt2
· n⃗ = γ̈1(t) · (γ̇1(t)×−γ̇2(s)) = −det(γ̈1(t), γ̇1(t), γ̇2(s))

N(t, s) =
d2f⃗

ds2
· n⃗ = −γ̈2(s) · (γ̇1(t)×−γ̇2(s)) = det(γ̈2(s), γ̇1(t), γ̇2(s))

From equations (2.3), (2.4), (2.5) follows that these two determinants are 0. Finally

M(t, s) =
d2f⃗

dt ds
· n⃗ = 0⃗ · n⃗ = 0.

Since the second fundamental form of X is zero at any point X is a plane. Then γ lies in
a plane.
γ1 and γ2 are plane knots and by Schoenflies theorem([8]) γ1 and γ2 are isotopic to a
circle, so γ1 and γ2 are trivial knots. Hence γ is a trivial link that lies in a plane. Proof
is finished. □

Remark 2.1. The same idea works in a case when γ1 = γ2. Hence, if c(γ1, γ1) = 0 and
γ1 is of class C2, then γ1 is trivial knot in some plane.

In the work [4] the Mobius energy of the smooth knot was defined. For two fixed
points γ1(t), γ1(s) we will denote by D(γ1(t), γ1(s)) the distance between them on the
curve; i.e., the minimum of the lengths of subarcs of γ1 with one endpoint at γ1(t) and
the other at γ1(s). Then Mobius energy of a knot γ1 equals to

(2.6) E(γ1, γ1) =
ˆ 2π

0

ˆ 2π

0

( 1

||γ1(t)− γ1(s)||2
− 1

D(γ1(t), γ1(s))

)
||γ̇1(t)|| · ||γ̇1(s)|| dt ds.

Then, the total energy of a link γ = γ1 ∪ γ2 equals to

(2.7) E(γ) = E(γ1, γ1) + E(γ2, γ2) +
1

2
E(γ1, γ2),

where E(γ1, γ2) is defined as

E(γ1, γ2) =
ˆ 2π

0

ˆ 2π

0

||γ̇1(t)|| · ||γ̇2(s)||
||γ1(t)− γ2(s)||2

dt ds.
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In [4] it was proved that E(γ) is invariant under affine transformations and under Mobius
transformations.

3. Main results

In this section we will consider random link γ consisting of two components γ1 and γ2
that was defined in section 1. Due to existence of infinitely differentiable modification of

ξ⃗ all proposed invariants are well defined.
We will start with properties of distributions of link(γ1, γ2) and c(γ1, γ2).

Theorem 3.1. link(γ1, γ2) has symmetric distribution. In other words

∀ k ∈ Z : P{link(γ1, γ2) = k} = P{link(γ1, γ2) = −k}.

Proof. Let −γ1 and −γ2 be the results of reflection of γ1 and γ2 with respect to 0⃗,

respectively. ξ⃗ is a rotational invariant and isotropic random field. Then pairs (γ1, γ2)
and (−γ1,−γ2) have the same distribution. At the same time by formula (2.2)

link(γ1, γ2) = −link(−γ1,−γ2).

Then link(γ1, γ2)
d
= −link(γ1, γ2) and conclusion follows. □

Theorem 3.2. P{c(γ1, γ2) = 0} = 0.

Proof. Following the arguments in the proof of Proposition 2.2, we obtain

P{c(γ1, γ2) = 0} = P{ ∃ plane L : γ1 and γ2 ⊂ L} ≤
≤ P{ ∃ plane L : γ1 ⊂ L}+ P{ ∃ plane L : γ2 ⊂ L}.

Let‘s prove that each of those probabilities is 0.

P{ ∃ plane L : γ1 ⊂ L} ≤ P{det
(
ξ⃗(v⃗1)− ξ⃗(v⃗4), ξ⃗(v⃗2)− ξ⃗(v⃗4), ξ⃗(v⃗3)− ξ⃗(v⃗4)

)
= 0},

where v⃗1, v⃗2, v⃗3, v⃗4 ∈ θ1 are fixed and distinct.

Covariation function G from (1.1) is positive definite. Then random vector
(
ξ⃗(v⃗1) −

ξ⃗(v⃗4), ξ⃗(v⃗2)− ξ⃗(v⃗4), ξ⃗(v⃗3)− ξ⃗(v⃗4)
)
has density p(x11, x12, x13, ..., x33).

Consider
f(x11, ..., x33) =

∑
σ

(−1)|σ|x1σ(1)x2σ(2)x3σ(3),

where σ runs through all permutations of {1, 2, 3}. f is infinitely differentiable so it‘s
locally Lipshitz. By cofactor formula

f(x11, ..., x33) =

3∑
i=1

(−1)i+jxijMij , j = 1, 2, 3,

where Mij is ij minor of matrix (xij). Then

||∇f(x⃗)|| =

√√√√ 3∑
i,j=1

M2
ij(x⃗).

Hence ||∇f(x⃗)|| > 0 almost surely.

Denote D = det(ξ⃗(v⃗1), ξ⃗(v⃗2), ξ⃗(v⃗3)) = f
(
ξ⃗(v⃗1), ξ⃗(v⃗2), ξ⃗(v⃗3)

)
. Suppose that a ∈ R, then

for all s ≥ a

P{D ∈ (a, s)} =

ˆ
As

p(x⃗)dx⃗,

where As = f−1((a, s)). Then for all s ≥ a by coarea formula [6]

P{D ∈ (a, s)} =

ˆ s

a

(ˆ
f−1(t)

p(x⃗)

||∇f(x⃗)||
dH8(x⃗)

)
dt,
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where H8 is 8 dimensional Hausdorff measure. Differentiating by s we get that D has
density p̃ and

p̃(s) =

ˆ
f−1(s)

p(x⃗)

||∇f(x⃗)||
dH8(x⃗).

Then required probability is 0 and proof is finished. □

For a two component link in R3, it must have even numbers of crossings between
different components. Hence the following corollary is true.

Corollary 3.1. With probability 1 there exists plane L such that orthogonal projection
of γ = γ1 ∪ γ2 on it has at least 2 crossings between γ1 and γ2.

Using Remark 2.1 and the same idea as in proof of Theorem 3.2 we can get the
following corollary.

Corollary 3.2. With probability 1 there exists plane L such that orthogonal projection
of γ1 on it has at least 1 self-crossing.

Next results are devoted to the question of the existence of moments of defined invari-
ants.

Theorem 3.3. For any p ∈ [0, 3
2 )

E(c(γ1, γ2))p is finite

Proof. By Proposition 2.1

c(γ1, γ2)
p =

1

(4π)p

(ˆ 2π

0

ˆ 2π

0

|(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))|
||γ1(t)− γ2(s)||3

dt ds
)p

.

By Holder inequality

c(γ1, γ2)
p ≤ C1

ˆ 2π

0

ˆ 2π

0

|(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))|p

||γ1(t)− γ2(s)||3p
dt ds.

Note that ∀a⃗1, a⃗2, a⃗3 ∈ R3 : |(a⃗1, a⃗2, a⃗3)| ≤ ||a⃗1|| · ||a⃗2|| · ||a⃗3||. Then

c(γ1, γ2)
p ≤ C1

ˆ 2π

0

ˆ 2π

0

||γ̇1(t)||p · ||γ̇2(s)||p

||γ1(t)− γ2(s)||2p
dt ds.

If p < 3
2 then ∃ ε > 0 : p < 3

2 (1− ε). By Holder inequality with exponents 1− ε, ε
2 ,

ε
2

E
||γ̇1(t)||p · ||γ̇2(s)||p

||γ1(t)− γ2(s)||2p
≤ E1E2E3,

where

Ei(t) =
(
E||γ̇i(t)||

2p
ε

) ε
2 , i = 1, 2,

E3(t, s) =
(
E

1

||γ1(t)− γ2(s)||
2p

1−ε

)1−ε

.

Consequently,

E(c(γ1, γ2))p ≤ C1

ˆ 2π

0

ˆ 2π

0

E1(t)E2(s)E3(t, s) dt ds.

Firstly, note that ∀t ∈ [0, 2π], i = 1, 2

γ̇i(t) ∼ N(0, I).

Indeed

γ̇i(t) = l.i.m.
γi(t+ h)− γi(t)

h
, h → 0.
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Then γ̇i(t) is Gaussian random variable with 0 mean and variance

σ̃2 = lim
h→0

2− 2G(θ⃗i(t+ h)− θ⃗i(h))

h2
.

As ||θ⃗i(t+ h)− ⃗θi(t)|| = 2− 2 cosh, standard calculations give that σ̃ = 1.
Then ∀ t, s ∈ [0, 2π] : E1(t) = E2(s) = C2 < +∞. Now consider

η⃗(t, s) = γ1(t)− γ2(s).

Standard calculations give that

η⃗(t, s) ∼ N(0, σ(t, s)2I),

σ(t, s)2 = 2− 2G(θ⃗1(t)− θ⃗2(s)).

For the next calculations we will omit t, s. ||η⃗|| has density that equals to

p||η⃗||(x) =

ˆ
Sx

1

(
√
2πσ)3

exp
(
−||u⃗||2

2σ2

)
ν(du⃗),

where Sx = {u⃗ ∈ R3 : ||u⃗|| = x} and ν is surface measure on Sx. This integral equals to

p||η⃗||(x) =

√
2

π

1

σ3
x2e−

x2

2σ2 .

Then

E||η⃗||
−2p
1−ε =

ˆ ∞

0

x
−2p
1−ε

√
2

π

1

σ3
x2e−

x2

2σ2 dx =

√
2

π

1

σ3

ˆ ∞

0

x2− 2p
1−ε e−

x2

2σ2 dx.

This integral converge because 2− 2p
1−ε > −1 and equals to C3σ

3− 2p
1−ε . Then finally

E(c(γ1, γ2))p ≤ C1C2C3

ˆ 2π

0

ˆ 2π

0

σ− 2p
1−ε dt ds.

As circles θ1 and θ2 are non intersecting σ(t, s) ̸= 0 and subintegral function is continuous
thus the following integral converge. This finishes the proof. □

Corollary 3.3. For any p ∈ [0, 3
2 )

E|link(γ1, γ2)|p is finite

Proof. From formulas (2.1) and (2.2) it follows that

|link(γ1, γ2)| ≤ c(γ1, γ2).

□

Theorem 3.4. Let E be a total energy of a random link γ. Then for any p ∈ [0, 1
4 )

EEpis finite

Proof. By formula (2.7) and Holder inequality

EEp ≤ C1

(
EE(γ1, γ1)p + EE(γ2, γ2)p +

1

2p
EE(γ1, γ2)p

)
.

By the proof of Theorem 3.3

E
(ˆ 2π

0

ˆ 2π

0

||γ̇1(t)|| · ||γ̇2(s)||
||γ1(t)− γ2(s)||2

dt ds
)p

< ∞ for 0 ≤ p <
3

2
.

Then EE(γ1, γ2)p < ∞. Suppose that i ∈ {1, 2}. By formula (2.6)

EE(γi, γi)p ≤ E
(ˆ 2π

0

ˆ 2π

0

||γ̇i(t)|| · ||γ̇i(s)||
||γi(t)− γi(s)||2

dt ds
)p

.
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By Holder inequality

E
(ˆ 2π

0

ˆ 2π

0

||γ̇i(t)|| · ||γ̇i(s)||
||γi(t)− γi(s)||2

dt ds
)p

≤ C2

ˆ 2π

0

ˆ 2π

0

E
||γ̇i(t)||p · ||γ̇i(s)||p

||γi(t)− γi(s)||2p
dt ds.

Suppose that ε > 0 is such that p < 1
4 (1− ε). Using the same arguments as in the proof

of Theorem 3.3 we get that

E
||γ̇i(t)||p · ||γ̇i(s)||p

||γi(t)− γi(s)||2p
≤ C3σ(t, s)

− 2p
1−ε ,

where

σ(t, s) = 2− 2e−
1
2 ||θi(t)−θi(s)||2 = 2− 2e−2 sin2( t−s

2 ).

Thus

EE(γi, γi)p ≤ C̃

ˆ 2π

0

ˆ 2π

0

1

(1− exp(−2 sin2( t−s
2 )))

2p
1−ε

dt ds.

For δ > 0 we can split the integral in a following wayˆ 2π

0

ˆ 2π

0

=

¨
|t−s|≥δ

+

¨
|t−s|<δ

.

First integral obviously converge(subintegral function is continuous). Notice, that(
1− exp

(
−2 sin2(

t− s

2
)
))− 2p

1−ε∼ 2
2p

1−ε · (t− s)−
4p

1−ε , t− s → 0.

At the same time 4p
1−ε < 1 due to choose of ε. Then for some small δ the second integral

converge due to comparison test. Theorem is proved. □

Corollary 3.4. For any p ∈ [0, 1
4 )

Ec(γ1, γ1)p is finite

Proof. From formula (2.2) it follows that

c(γ1, γ1) ≤
1

4π

ˆ 2π

0

ˆ 2π

0

||γ̇1(t)|| · ||γ̇1(s)||
||γ1(t)− γ1(s)||2

dt ds.

By the proof of Theorem 3.4 integral at right side of the equation have moments of orders
[0, 1

4 ). □
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