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DIFFERENCE APPROXIMATION FOR EQUATIONS WITH

INTERACTION

This paper investigates stochastic differential equations with interaction, introduced

by Dorogovtsev the model of the evolution of large systems of interacting particles in
random environments. The study emphasizes the difference approximation scheme

for these equations, which involve approximating solutions in an infinite-dimensional,

nonlinear space of measures. The key contributions include the formulation of ap-
proximation schemes for compactly supported initial measures, the derivation of

Wasserstein distance-based estimates, and spatial discretization techniques.

1. Introduction

This paper is devoted to stochastic differential equations with interaction. Such equa-
tions were introduced by Dorogovtsev in order to describe the evolution of the large
systems of interacting particles in random media [2]. The main equation has the follow-
ing form:

(1) dx(u, t) = a(x(u, t), µt) dt+

∫
Rd

b(x(u, t), µt, p)W (dp,dt),

where

x(u, 0) = u, u ∈ Rd, a : Rd ×M2(Rd) → Rd, b : Rd ×M2(Rd) → Rd×d

and

µt = µ0 ◦ x(·, t)−1.

Here the probability measure µ0 plays a role of the initial mass distribution. For every
u ∈ Rd the random process x(u, t), t ≥ 0, describes the trajectory of a particle which
starts from the point u. W is a Wiener sheet on Rd× [0,+∞) i.e. the centered Gaussian
measure with independent values on disjoint sets and Lebesgue measure as a structure
measure. W is responsible for the influence of the random media. The presence of µ in
the coefficients of equation reflects the fact that the trajectory of each particle depends
on the mass distribution of the whole system. In order to guarantee the existence of the
solution, the coefficients of the equation are assumed to be Lipschitz continuous with
respect to the measure-valued argument in the Wasserstein distance of some order.

In recent years, there has been growing interest in stochastic differential equations with
interaction, because they provide a natural way to describe the behavior of large systems
of particles influenced by randomness. Such models are not limited to single trajectories
but describe whole stochastic flows and the associated measure-valued processes. This
viewpoint is important both for theoretical reasons and for practical applications such
as simulation of particle systems. A number of works have developed this direction.
For example, Gess, Kassing, and Konarovskyi [3] studied stochastic gradient descent
(SGD) using the language of interacting particle systems. They showed that SGD can
be approximated by conservative stochastic partial differential equations (SPDEs) in the
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mean-field limit, and that fluctuations around the limit are essential for accuracy. In
the same paper, the authors introduced Stochastic Modified Flows (SMFs), which are
stochastic differential equations with additional regularizing terms. These flows allow
precise control of statistics and describe SGD in regimes with small learning rates.

This line of research builds on earlier contributions. Dorogovtsev [2] developed a
framework for stochastic flows with interaction and measure-valued processes. Kunita [4]
studied stochastic flows in detail and proved continuity results for random fields. Related
ideas can also be found in the works of Dawson [1] and Sznitman [7] on measure-valued
limits and propagation of chaos, and in Villani [8] on Wasserstein geometry. These
works provide the background for the present paper. The focus here is on equations with
interaction of Dorogovtsev type. Such equations describe both the flow x(·, t), t ≥ 0 and
the induced process of measures µt. Because the dynamics of each particle depend on
the whole distribution, the state space is infinite-dimensional and nonlinear. This makes
the construction of approximation schemes more complicated than in the classical case.

2. Euler-Maruyama scheme for compactly supported initial measure µ0

The goal of this paper is to build a rigorous difference approximation scheme for
these equations. We do this in several steps. First, we consider compactly supported
initial measures µ0 and construct an Euler–Maruyama type scheme [5]. Next, we study
stability of solutions with respect to different initial measures, using Wasserstein distance
estimates. Finally, we perform spatial discretization and prove quantitative convergence
rates.

The main tools are the Burkholder–Davis–Gundy inequality [6], the Kolmogorov–
Totoki continuity theorem [4], and stability estimates for interacting stochastic flows. In
particular, the Kolmogorov–Totoki theorem guarantees the existence of Hölder-continu-
ous modifications of the solution, which allows us to control the supremum norm of the
error over compact sets.

The main contribution of this work is to give explicit convergence rates for the pro-
posed approximation scheme and to provide a mathematical justification for numerical
methods in interacting particle systems. In this section, we will develop the Euler-
Maruyama scheme for equations with interaction, specifically for compactly supported
initial measures µ0. We will demonstrate the convergence of the scheme, and provide
error estimates to support its practical implementation.

We consider the equation (1) with the additional condition

suppµ0 ⊂ [−R,R]d = K

for some positive R. Since the measure µt is an image of µ0 under the mapping x(·, t),
then it is natural to think that the restriction of x on K plays important role in con-
struction of the solution and must be approximated first. Let us recall the definitions
of Wasserstein distances. For two probability measures µ1, µ2 on Rd (all measures are
supposed to be defined on the Borel σ-field of corresponding space) define C(µ1, µ2) as a
set of all probability measures on Rd ×Rd which have µ1 and µ2 as its marginal projec-
tions. Now denote by M2 the set of probability measures on Rd which have finite n-th
moment. In particular M0 is the set of all probability measures.

The Wasserstein distances γ0(µ1, µ2) and γ2(µ1, µ2) are defined as follows:

γ0(µ1, µ2) = inf
ζ∈C(µ1,µ2)

∫∫
Rd

|u− v|
1 + |u− v|

ζ(du,dv),(2)

γ2(µ1, µ2) = inf
ζ∈C(µ1,µ2)

(∫∫
Rd

|u− v|2 ζ(du,dv)
) 1

2
.(3)
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It is well known that the space (M2, γ2) is a complete separable metric space [8]. As
shown in Theorem 2.3.1 of [2], if the coefficients of the equation with interaction are
Lipschitz continuous with respect to their arguments (in the γ2-metric on the space of
measures), then the solution exists and is unique (see also Theorem 2.1.2 in [2]).

The functions

a : Rd ×M2 → Rd, b : Rd ×M2 × Rd → Rd

are said to satisfy the Lipschitz condition if there exist constants L > 0 such that for all
x, y ∈ Rd, µ1, µ2 ∈ M2, the following inequalities hold:

|a(x, µ1)− a(y, µ2)| ≤ L
(
|x− y|+ γ2(µ

1, µ2)
)
,(4) ∫

Rd

|b(x, µ1, p)− b(y, µ2, p)|2 dp ≤ L2
(
|x− y|2 + γ2

2(µ
1, µ2)

)
.(5)

In what follows, we assume this Lipschitz condition holds unless explicitly specified oth-
erwise. For n > 1, define firstly the values of the approximating sequence in the points
of the uniform partition tk = k

n , where k = 0, 1, . . . , n. For t ∈ [tk, tk+1) we define the
approximation:

xn(t, u) = xn(tk, u) + a
(
xn(tk, u), µ

n
tk

)
(t− tk)

+

∫ t

tk

∫
Rd

b
(
xn(tk, u), µ

n
tk
, p
)
W (dp,ds), xn(0, u) = u,(6)

where µn
tk

denotes the empirical measure of the approximation at time tk, i.e.

µn
tk

= µ0 ◦
(
xn(·, tk)

)−1
.

We are going to prove the convergence of this scheme to the solution and estimate
the speed of convergence. To do this we will use Kolmogorov condition of continuity.
This condition can guarantee Hölder continuity and estimate the tails of distribution of
Hölder coefficient. So, let us start from the moments estimation.

Lemma 2.1. For fixed q ∈ N, there exists a constant Cq > 0 such that

∀n ≥ 1 ∀u ∈ K E max
t∈[0,1]

∥xn(t, u)∥2q ≤ Cq.

Proof. Let us denote tk = k
n , where k = 0, 1, . . . , n, and n is the partition size.

Note that

xn(t, u) = u+

∫ t

0

n−1∑
k=0

a
(
xn(tk, u), µ

n
tk

)
1[tk,tk+1)(s) ds

+

∫ t

0

n−1∑
k=0

∫
Rd

b
(
xn(tk, u), µ

n
tk
, p
)
1[tk,tk+1)(s)W (dp,ds).(7)

Hence,

E sup
t∈[0,1]

∥xn(t, u)∥2q ≤ C1
q

(
∥u∥2q + E sup

t∈[0,1]

∥∥∥∥∥
∫ t

0

n−1∑
k=0

a
(
xn(tk, u), µ

n
tk

)
1[tk,tk+1)(s) ds

∥∥∥∥∥
2q

+ E sup
t∈[0,1]

∥∥∥∥∥
∫ t

0

∫
Rd

n−1∑
k=0

b
(
xn(tk, u), µ

n
tk
, p
)
1[tk,tk+1)(s)W (dp,ds)

∥∥∥∥∥
2q)

.(8)
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Using the Burkholder–Davis–Gundy inequality, we obtain:

E sup
t∈[0,1]

∥∥∥∥∥
∫ t

0

∫
Rd

n−1∑
k=0

b
(
xn(tk, u), µ

n
tk
, p
)
1[tk,tk+1)(s)W (dp,ds)

∥∥∥∥∥
2q

≤ C̃q E

(∫ 1

0

∫
Rd

∥∥∥∥∥
n−1∑
k=0

b
(
xn(tk, u), µ

n
tk
, p
)
1[tk,tk+1)(s)

∥∥∥∥∥
2

dp ds

)q

.(9)

Applying Jensen’s inequality:

E sup
t∈[0,1]

∥∥∥∥∥
∫ t

0

n−1∑
k=0

a
(
xn(tk, u), µ

n
tk

)
1[tk,tk+1)(s) ds

∥∥∥∥∥
2q

≤ C̃2
q E

(∫ 1

0

∥∥∥∥∥
n−1∑
k=0

a
(
xn(tk, u), µ

n
tk

)
1[tk,tk+1)(s)

∥∥∥∥∥ ds
)2q

.(10)

Using the Lipschitz condition and the boundedness of the functions a and b, we obtain
the following upper bound:

C1
q C̃

2
q E sup

t∈[0,1]

∥∥∥∥∥
∫ t

0

n−1∑
k=0

a
(
xn(tk, u), µ

n
tk

)
1[tk,tk+1)(s) ds

∥∥∥∥∥
2q

+ C1
q C̃

1
q E

(∫ 1

0

∫
Rd

∥∥∥∥∥
n−1∑
k=0

b
(
xn(tk, u), µ

n
tk
, p
)
1[tk,tk+1)(s)

∥∥∥∥∥
2

dp ds

)q

≤ Cq,(11)

where Cq > 0 depends only on q, d, the compact set K, and the Lipschitz constants of
a and b, but is independent of n and u.

Finally, we obtain

(12) E sup
t∈[0,1]

∥xn(t, u)∥2q ≤ C1
q ∥u∥2q + Cq.

Since u ∈ K, the norm ∥u∥ is uniformly bounded, so the right-hand side is bounded by

a constant C̃q independent of n and u. This completes the proof. □

The next lemma estimates the differences between the values of xn(t) at different
points of K.

Lemma 2.2. For every p ∈ N there exists a positive constant Cp such that

E sup
n≥1

sup
t∈[0,1]

∥xn(t, u2)− xn(t, u1)∥2p ≤ Cp∥u2 − u1∥2p.

Proof. Using the same integral representation as in the proof of the previous lemma and
the Lipschitz continuity 2 of the functions, we have:

xn(t, u2)− xn(t, u1) = u2 − u1

+

∫ t

0

n−1∑
k=0

[
a(xn(tk, u2), µ

n
tk
)− a(xn(tk, u1), µ

n
tk
)
]
1[tk,tk+1)(s) ds

+

∫ t

0

∫
Rd

n−1∑
k=0

[
b(xn(tk, u2), µ

n
tk
, p)− b(xn(tk, u1), µ

n
tk
, p)
]

× 1[tk,tk+1)(s)W (dp, ds).
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Applying the Burkholder–Davis–Gundy inequality, we obtain:

E sup
t∈[0,1]

∥xn(t, u2)− xn(t, u1)∥2p ≤ Cp∥u2 − u1∥2p

+ CpL
2p

∫ 1

0

E sup
z∈[0,s]

∥xn(z, u2)− xn(z, u1)∥2p ds.

Here, L denotes the Lipschitz constant from Definition 2, shared by both a and b. Ap-
plying the Gronwall–Bellman inequality, we obtain:

E sup
t∈[0,1]

∥xn(t, u2)− xn(t, u1)∥2p ≤ Cp∥u2 − u1∥2p,

which concludes the proof. □

By Lemma 2.2 and Kolmogorov’s continuity theorem, the process xn admits a Hölder-
continuous modification with respect to both variables.

We recall that Theorem 2.1 is a version of the Kolmogorov–Totoki continuity criterion,
originally stated by Kunita [4] (see Lemmas 1.8.1 and 1.8.2, p. 41), which provides
sufficient conditions for the existence of a Hölder-continuous modification of a stochastic
field.

Theorem 2.1. Let the random Rd-valued field y on K satisfies condition from Kol-
mogorov’s criteria, i.e., there exist the positive constants γ, α, C such that α > d and

∀u, v ∈ K E∥y(u)− y(v)∥γ ≤ C∥u− v∥α.

Then for some absolute constants (depending on K) R(
E sup

u∈K
∥y(u)∥γ

)1/γ ≤ R (E∥y(0)∥γ)1/γ +R · C1/γ .

As a consequence of this statement, and by combining the moment bounds from
Lemma 2.2 with the continuity criterion provided by Theorem 2.1, we obtain an ex-
plicit estimate for the rate of convergence of the proposed approximation scheme for the
equation with interaction (1).

3. Spatial discretization

In this section, we aim to establish the convergence of the numerical scheme under
consideration. Specifically, we will derive error estimates for the proposed approximation,
analyze the bounds for the difference between the exact and numerical solutions, and
validate the method’s applicability through theoretical results.

Let K ⊂ Rd represent the spatial domain. To approximate initial measure in this
domain, we select Nd grid points {ui1,...,id}, where i1, i2, . . . , id are indices defining the
grid points in each dimension of the domain for spatial discretization.

In the case where d = 1, i.e., for a one-dimensional domain, partitioning is straight-
forward. We divide the interval into N equal subintervals, resulting in grid points ui

spaced evenly by a step size ∆u = R−(−R)
N , assuming the domain is K = [−R,R].

For the case of a domain with dimensionality d > 1, the partitioning of the domain
K ⊂ Rd involves evenly dividing it along each coordinate axis. The domain K is divided
into Nd grid cells, where N represents the number of divisions in each dimension. Each
grid cell corresponds to a rectangle formed by the Cartesian product of intervals along
different coordinate axes:

K =

d∏
i=1

[ai, bi) ,

where, for each coordinate i, the interval is divided into N equal subintervals:
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[ai, bi] =

N⋃
k=1

[ai + (k − 1)∆xi, ai + k∆xi) , ∆xi =
bi − ai
N

,

where ∆xi is the step size along the i-th coordinate. Therefore, each grid cell can be
represented as

d∏
i=1

[ai + (ki − 1)∆xi, ai + ki∆xi) , ki = 1, . . . , N.

Thus, there are Nd cells in total, each of which is a d-dimensional rectangle. To approx-
imate the initial measure µ0 over the domain, we define an empirical measure µN

0 that is
concentrated at these grid points. This empirical measure is constructed as a weighted
sum of Dirac delta functions, each centered at one of the grid points ui1,...,id :

µN
0 =

N1∑
i1=1

N2∑
i2=1

· · ·
Nd∑
id=1

αi1,i2,...,idδui1,i2,...,id
,

The weight αi1,i2,...,id for each rectangle is calculated based on the measure µ0 concen-
trated within the grid cell. Each weight corresponds to the measure of a subregion of K,
defined by the product of intervals in each coordinate direction:

αi1,i2,...,id = µ0

(
d∏

k=1

[
ik
n
,
ik + 1

n

))
,

where
∏d

k=1

[
ik
n , ik+1

n

)
represents the hyperrectangle in Rd corresponding to the grid

point ui1,i2,...,id .
To calculate the Wasserstein distance, we define a piecewise function f : Rd → Rd as

follows:

f(u⃗) =
k⃗

n
, u⃗ =

{
ui : ui ∈

[
ki
n
,
ki + 1

n

)}
where k⃗ = (k1, k2, . . . , kd).
Using this piecewise function f , we can estimate the Wasserstein distance γ2(µ0, µ

N
0 )

between the initial and discrete measures as:

γ2
2(µ0, µ

N
0 ) ≤

∫
Rd

||f(u⃗)− u⃗||2µ0(du⃗),

In this context, µ0 represents a probability measure defined on Rd. It describes the
distribution of the random variable u, which is used to compute the expected squared
distance in the 2-Wasserstein metric 2. Specifically, µ governs the weight assigned to
each point in Rd during integration, which can be further simplified to:

γ2
2(µ0, µ

N
0 ) ≤

∫
Rd

||f(u⃗)− u⃗||2µ0(du⃗) ≤
C

n2

∫
Rd

µ0(du) =
C

n2
.

4. Main convergence results

In this section we establish the main convergence results for the proposed difference
approximation scheme. Building on the moment estimates of Section 2 and the spatial
discretization framework of Section 3, we derive stability bounds for solutions corre-
sponding to different initial measures and prove quantitative convergence rates in the
Wasserstein metric.
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Lemma 4.1. Let x1(t, u) and x2(t, u) be two stochastic processes satisfying the stochastic
differential equations (1). Here µ1

0 and µ2
0 denote the probability measures of the initial

conditions x1(0, u) and x2(0, u), respectively. Then, for every p ≥ 2, there exists a
constant Cp > 0 such that

E sup
t∈[0,1]

∥x1(t, u)− x2(t, u)∥2p ≤ Cp · γ2p
2 (µ1

0, µ
2
0),

where γ2 denotes the 2-Wasserstein distance as defined in Definition 2.

Proof. Subtracting the equations, we write

x2(t, u)− x1(t, u) =

∫ t

0

(
a(x2(s, u), µ

2
s)− a(x1(s, u), µ

1
s)
)
ds

+

∫ t

0

∫
Rd

(
b(x2(s, u), µ

2
s, p)− b(x1(s, u), µ

1
s, p)

)
W (dp,ds).

Define

It =

∫ t

0

(
a(x2(s, u), µ

2
s)− a(x1(s, u), µ

1
s)
)
ds,

IIt =

∫ t

0

∫
Rd

(
b(x2(s, u), µ

2
s, p)− b(x1(s, u), µ

1
s, p)

)
W (dp,ds).

Then

E sup
t∈[0,1]

∥x2(t, u)− x1(t, u)∥2p ≤ Cp

(
E sup

t∈[0,1]

∥It∥2p + E sup
t∈[0,1]

∥IIt∥2p
)
.

Using the Lipschitz condition 2 on a, we get:

∥a(x2(s, u), µ
2
s)− a(x1(s, u), µ

1
s)∥ ≤ La(∥x2(s, u)− x1(s, u)∥+ γ2(µ

1
s, µ

2
s)).

Thus the inequality,

∥It∥ ≤
∫ t

0

La(∥x2(s, u)− x1(s, u)∥+ γ2(µ
1
s, µ

2
s))ds.

Consequently,

E sup
t∈[0,1]

∥It∥2p ≤ Cp

∫ 1

0

E
[
∥x2(s, u)− x1(s, u)∥2p + γ2p

2 (µ1
s, µ

2
s)
]
ds.

For It, applying the Burkholder–Davis–Gundy inequality and the Lipschitz continuity of
b, we obtain

E sup
t∈[0,1]

∥IIt∥2p ≤ Cp

∫ 1

0

E
[
∥x2(s, u)− x1(s, u)∥2p + γ2p

2 (µ1
s, µ

2
s)
]
ds.

Let g(t) = E supr∈[0,t] ∥x2(r, u)− x1(r, u)∥2p, and φ(t) = E[γ2p
2 (µ1

t , µ
2
t )]. Then

g(t) ≤ Cp

∫ t

0

g(s)ds+ Cp

∫ t

0

φ(s)ds.

To estimate φ(t), fix κ ∈ C(µ1
0, µ

2
0). Then

γ2
2(µ

1
t , µ

2
t ) ≤

∫
∥x1(t, u)− x2(t, v)∥2 κ(du,dv).

Raising both sides to the power p, we obtain

γ2p
2 (µ1

t , µ
2
t ) ≤

(∫
∥x1(t, u)− x2(t, v)∥2 κ(du,dv)

)p

.
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Applying the elementary inequality

∥x1(t, u)− x2(t, v)∥2 ≤ 2∥x1(t, u)− x1(t, v)∥2 + 2∥x1(t, v)− x2(t, v)∥2,
and then raising both sides to the power p and using a triangle-type inequality, we obtain:

γ2p
2 (µ1

t , µ
2
t ) ≤ Cp

∫ [
∥x1(t, u)− x1(t, v)∥2p + ∥x1(t, v)− x2(t, v)∥2p

]
κ(du,dv).

Taking expectation:

φ(t) ≤ Cp

∫
E∥x1(t, u)− x1(t, v)∥2p κ(du,dv) + Cpg(t).

Applying Lemma 2.2, we get

E∥x1(t, u)− x1(t, v)∥2p ≤ Cp∥u− v∥2p,
so

φ(t) ≤ Cpγ
2p
2 (µ1

0, µ
2
0) + Cpf(t).

Substituting into inequality for g(t):

g(t) ≤ Cp

∫ t

0

g(s) ds+ Cp γ
2p
2 (µ1

0, µ
2
0) · t.

By Grönwall–Bellman inequality:

g(t) ≤ Cp γ
2p
2 (µ1

0, µ
2
0), t ∈ [0, 1].

Substituting back into φ(t), we also get:

φ(t) ≤ Cp γ
2p
2 (µ1

0, µ
2
0).

This completes the proof. □

Theorem 4.1. Let µ1
0, µ

2
0 be two probability measures on Rd with finite second moments.

Let x1, x2 denote the solutions of equation(1) with initial measures µ1
0 and µ2

0, respec-

tively. Then, for any p ≥ 1 and γ < p−d
p (in particular, p > d), we have

E sup
u∈K

sup
t∈[0,1]

∥x1(u, t)− x2(u, t)∥ ≤ C
(
γ2
2(µ

1
0, µ

2
0)
) γ
γ+d ,

where C is a constant independent of µ1
0, µ

2
0.

Proof. By Lemma 4.1, and assuming the Lipschitz continuity of the coefficients a and
b with respect to the measure argument in the γ2-metric (as stated in Definition 2 and
Definition 2), we obtain the following moment estimate:

E sup
t∈[0,1]

∥x1(u, t)− x2(u, t)∥p ≤ Cp γ
2p
2 (µ1

0, µ
2
0),

where p ≥ 1 and Cp is a constant depending only on the coefficients of the equation.
In addition, by analogy with Lemma 2.2, which captures the sensitivity of the solution
with respect to changes in the spatial variable, we have:

E sup
t∈[0,1]

∥xi(u1, t)− xi(u2, t)∥p ≤ Cp ∥u1 − u2∥p,

for each u1, u2 ∈ K and i ∈ {1, 2}. To proceed, we apply a functional version of the
Kolmogorov–Totoki continuity theorem (see Kunita [4], Lemmas 1.8.1 and 1.8.2). Define
the random function:

y(u, ·) = x1(u, ·)− x2(u, ·), u ∈ K,

as a stochastic process with values in C([0, 1],Rd). The difference process y(u, ·) satisfies
the following Hölder-type condition almost surely:

∥y(u1, ·)− y(u2, ·)∥∞ ≤ η∥u1 − u2∥γ ,
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for all u1, u2 ∈ K, where ∥f∥∞ = supt∈[0,1] ∥f(t)∥, and η is a non-negative random

variable satisfying E[ηp] < ∞. Here η is independent of the choice of u1, u2, whose
distribution depends only on the processes x1, x2 and the coefficients of the equation.
Here γ < p−d

p and d is the spatial dimension. In particular, this condition is non-trivial

only if p > d. Here the random variable η and the constants involved depend only on
p, d, the compact set K, and the Lipschitz bounds of the coefficients a and b, but are
independent of the particular choice of the processes x1, x2. To estimate the supremum
norm of the random field y(u, ·) over K, we construct a δ-net {uj}Nδ

j=1 of the compact set

K, with Nδ ≤ Cδ−d. For each u ∈ K, there exists uj in the net such that ∥u− uj∥ ≤ δ,
which gives:

∥y(u, ·)∥∞ ≤ ∥y(uj , ·)∥∞ + η ∥u− uj∥γ ≤ max
1≤j≤Nδ

∥y(uj , ·)∥∞ + η δγ .

Taking expectations and applying Minkowski’s inequality for the supremum together
with Jensen’s inequality, we obtain

E sup
u∈K

∥y(u, ·)∥∞ ≤ E[η δγ ] +
Nδ∑
j=1

E ∥y(uj , ·)∥∞ ≤ C1 δ
γ + C2 δ

−d γ2
2(µ

1
0, µ

2
0).

We now optimize the bound with respect to δ > 0. Choosing

δ =
(
γ2
2(µ

1
0, µ

2
0)
) 1
γ+d ,

we obtain the final estimate:

E sup
u∈K

∥x1(u, ·)− x2(u, ·)∥∞ ≤ C3 γ
2
2(µ

1
0, µ

2
0)

γ
γ+d ,

where the constant C3 depends only on the domain K, the moment parameter p, and
the Lipschitz constants of the coefficients a and b. This completes the proof. □

We now derive an estimate for the difference between the solution xN (u, t) of the
stochastic differential equation with interaction corresponding to the initial measure µN

0 ,
and the solution x(u, t) associated with the original initial measure µ0. To this end, we
invoke Lemmas 1.8.1 and 1.8.2 from the proof of the Kolmogorov–Totoki theorem [4],
which provide a quantitative version of Kolmogorov’s continuity criterion for random
fields. Under suitable moment and regularity assumptions, these lemmas yield an upper
bound for the supremum norm of the difference between two stochastic processes. We
now formulate the resulting estimate in a form adapted to our analytical framework.

Corollary 4.1. Let xN (u, t), u ∈ K, t ∈ [0; 1] denote the solution of equation(1) with the
initial measure µN

0 , and let x(u, t) denote the solution with the initial measure µ0.Then
there exist constants C > 0 and 0 < σ < 1 such that

E sup
u∈K

sup
t∈[0,1]

∥xN (u, t)− x(u, t)∥ ≤ C γ2σ
2 (µN

0 , µ0).

Proof. This corollary is a direct application of Theorem 4.1 to the pair of solutions
xN (u, ·) and x(u, ·) of equation (1), corresponding to the initial measures µN

0 and µ0,
respectively. According to Theorem 4.1, under the Lipschitz assumptions on a and b, we
obtain

E sup
u∈K

sup
t∈[0,1]

∥xN (u, t)− x(u, t)∥ ≤ C γ2σ
2 (µN

0 , µ0),

where σ = γ
γ+d , with p > d and γ ∈

(
0, p−d

p

)
. The exponent σ appears as a consequence

of the Kolmogorov–Totoki continuity theorem (see [4], Lemmas 1.8.1–1.8.2), which yields
Hölder-type regularity of the solution in both spatial and temporal variables and guar-
antees the existence of a jointly continuous modification. Finally, since the Wasserstein
distance γ2(µ

N
0 , µ0) quantifies the discrepancy between the approximated and original
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distributions, the estimate above provides a quantitative rate for the convergence of
xN (u, t) to x(u, t), uniformly over compact sets, with respect to both space and time.
This completes the proof. □

Remark 4.1. Combining Theorem 4.1 with the estimate γ2
2(µ

N
0 , µ0) ≤ C̃d

N2 , we immedi-
ately obtain

E sup
u∈K

sup
t∈[0,1]

∥xN (u, t)− x(u, t)∥ ≤ Cd

N2σ
.

Here σ = γ
γ+d , with γ < p−d

p . In particular, if p is large, then σ can be chosen arbitrarily

close to 1
d .

Let K ⊂ Rd be compact and let {uN
j }Nj=1 be a regular grid in K. For each u ∈ K

denote by

(13) ⌊u⌋N = arg min
1≤j≤N

∥u− uN
j ∥

the closest grid point to u (representative of the cell, chosen to be its right corner). Define
the grid projection of µ0 by

µ̃N
0 = µ0 ◦ ⌊·⌋−1

N .

The continuous stochastic field x(u, t) is approximated at u ∈ K by

xN

(
uN
j , t, µ̃N

s , 1
N

)
≡ xN (uN

j , t).

that is, by the value at the nearest grid node. Since the discretization scheme is defined
only on the finite set {uN

j }, each u ∈ K is evaluated through its projection ⌊u⌋N .

Corollary 4.2. Let x(·, t) be the solution of (1) with initial measure µ0, and let xN (·, t)
be the solution with initial measure µ̃N

0 = µ0 ◦ ⌊·⌋−1
N . Let xn(·, t) denote the Euler–

Maruyama scheme with step h = 1
n . Fix p > d and any γ ∈

(
0, p−d

p

)
, and set σ =

γ
γ+d ∈ (0, 1).. Then there exists C < ∞ independent of n,N such that

E sup
u∈K

sup
t∈[0,1]

∥∥x(u, t)− xn(⌊u⌋N , t)
∥∥ ≤ C

(
γ2(µ0, µ̃

N
0 )σ +N−γ + n−1/2

)
.

If, in addition, µ̃N
0 is the regular d-dimensional grid projection, so that γ2

2(µ0, µ̃
N
0 ) ≤

CN−2, then

E sup
u∈K

sup
t∈[0,1]

∥∥x(u, t)− xn(⌊u⌋N , t)
∥∥ ≤ C

(
N−2σ +N−γ + n−1/2

)
.

Proof. We split the error into three terms:

E sup
u∈K

sup
t∈[0,1]

∥∥x(u, t)− xn(⌊u⌋N , t)
∥∥ ≤ E sup

u,t
∥x(u, t)− xN (u, t)∥(A)

+ E sup
u∈K

sup
t

∥xN (u, t)− xN (⌊u⌋N , t)∥(B)

+ E sup
u∈K

sup
t

∥xN (⌊u⌋N , t)− xn(⌊u⌋N , t)∥.(C)

We will bound E supu∈K supt∈[0,1] of each term separately.

(A) By Theorem 4.1 with the pair of initial measures (µ0, µ̃
N
0 ),

E sup
u∈K

sup
t∈[0,1]

∥x(u, t)− xN (u, t)∥ ≤ C
(
γ2
2(µ0, µ̃

N
0 )
)σ

= C γ2(µ0, µ̃
N
0 ) 2σ.

(B) Spatial shift u 7→ ⌊u⌋N . Lemma 2.2 is applicable to xN as well, since xN solves the
same SDE with the modified initial measure µ̃N

0 . Therefore, for some p > d and all
u, v ∈ K in t ∈ [0, 1], one has

(14) E ∥xN (u, t)− xN (v, t)∥p ≤ C ∥u− v∥p.
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Setting q = p−d > 0, inequality (14) takes the form required by the Kolmogorov–Totoki
continuity theorem (Kunita, [4, Theorems 1.8.1–1.8.2]):

E ∥Y (u)− Y (v)∥p ≤ C ∥u− v∥d+q, u, v ∈ K.

Hence the theorem guarantees that the random field u 7→ xN (u, ·) admits a modification
which is Hölder continuous in u of every order

γ <
q

p
=

p− d

p
.

Consequently, there exists a modification and a nonnegative random variable ξ such that
almost surely

(15) sup
t∈[0,1]

∥xN (u, t)− xN (v, t)∥ ≤ ξ ∥u− v∥γ , u, v ∈ K,

for every γ. Moreover, the Kolmogorov–Totoki theorem ensures that ξ has finite p-th
moment:

(16) E [ξ p] < ∞.

In particular, this rigorously justifies the statement that E[ξq] < ∞ for some q > 1, since
we may explicitly take q = p > 1. Finally, by (15) and the definition

∆N = sup
u∈K

∥u− ⌊u⌋N∥ ≤ C N−1,

we obtain
E sup

u∈K
sup

t∈[0,1]

∥xN (u, t)− xN (⌊u⌋N , t)∥ ≤ C∆γ
N ≤ C N−γ ,

which completes the estimate of the spatial shift error.

(C) Euler–Maruyama time discretization at a fixed grid node. Fix the grid node

u∗ = ⌊u⌋N
and consider the error

e(t) = xN (u∗, t)− xn(u
∗, t), t ∈ [0, 1].

Let κ(t) = tk be the left endpoint of the partition interval containing t, and define the
measure discrepancy along the step

Γ(t) = γ2(µ
N
t , µn

κ(t)), µN
t = µ̃N

0 ◦ (xN (·, t))−1, µn
tk

= µ0 ◦ (xn(·, tk))−1.

Subtracting the xN and xn on [0, t], using the Lipschitz property of a, b in state and
in γ2, and applying BDG to the stochastic integrals, we obtain the inequality (with a
constant C depending only on K, p, d and the Lipschitz bounds, and independent of n,N
and u∗):

(17) E sup
r≤t

∥e(r)∥2 ≤ C

∫ t

0

E sup
τ≤s

∥e(τ)∥2 ds + C

∫ t

0

EΓ(s)2 ds + C h.

Here the last term Ch comes from the square of the increment of xN over a time step:
for each fixed u∗,

(18) E sup
s∈[tk,tk+1]

∥xN (u∗, s)− xN (u∗, tk)∥2 ≤ Ch.

To estimate the Γ–term, insert the intermediate measure

µ̃n
κ(s) = µ̃N

0 ◦
(
xn(·, κ(s))

)−1
.

and use the triangle inequality:

Γ(s) ≤ γ2
(
µN
s , µ̃n

κ(s)

)︸ ︷︷ ︸
T1(s)

+ γ2
(
µ̃n
κ(s), µ

n
κ(s)

)︸ ︷︷ ︸
T2(s)

.
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For T1(s) we apply the bound:µ̃N
0 :

T1(s) ≤ sup
w∈K

∥xN (w, s)− xn(w, κ(s))∥

≤ sup
w∈K

∥xN (w, s)− xN (w, κ(s))∥︸ ︷︷ ︸
increments of xN

+ sup
w∈K

∥e(w, κ(s))∥︸ ︷︷ ︸
previous-step EM error

.

Squaring and integrating over s ∈ [0, 1], the first part yields Ch by (18) (uniformly in
w after applying Kolmogorov–Totoki in the spatial variable using Lemma 2 moments);

the second gives
∫ 1

0
E supu≤s ∥e(u)∥2ds. For T2(s) we use stability (Theorem 4.1) at time

κ(s) with the pair of initial measures µ̃N
0 and µ0, which gives

sup
s∈[0,1]

ET2(s)
2 ≤ C γ2

(
µ̃N
0 , µ0

) 2σ
.

Combining the two parts,

(19)

∫ 1

0

EΓ(s)2 ds ≤ C h + C γ2
(
µ̃N
0 , µ0

) 2σ
+ C

∫ 1

0

E sup
u≤s

∥e(u)∥2 ds.

Define the error:

F (t) = E sup
w∈K

sup
r≤t

∥xN (w, r)− xn(w, r)∥2.

By Lemma 2 and Kolmogorov–Totoki the field admits a jointly continuous modification,
so F (t) < ∞. Using (17) and (19) yields

F (t) ≤ C

∫ t

0

F (s) ds + C
(
h+ γ2(µ̃

N
0 , µ0)

2σ
)
.

Gronwall’s lemma gives

F (1) ≤ C
(
h+ γ2(µ̃

N
0 , µ0)

2σ
)
.

Taking square roots,

E sup
w∈K

sup
t∈[0,1]

∥xN (w, t)− xn(w, t)∥ ≤ C
(
h1/2 + γ2(µ̃

N
0 , µ0)

σ
)
.

□
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