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JUAN DU AND CHUNSHENG MA

TIME-VARYING VECTOR RANDOM FIELDS ON THE

ARCCOS-QUASI-QUADRATIC METRIC SPACE

An arccos-quasi-quadratic metric is defined on a subset of Rd+1 such as a sphere, a
ball, an ellipsoidal surface, an ellipsoid, a simplex, a conic surface, or a hyperbolic

surface, and the corresponding metric space incorporates several important cases in a

unified framework that makes possible for us to study metric-dependent random fields
on different metric spaces in a unified manner. Over the arccos-quasi-quadratic metric

space, this paper constructs a class of time-varying vector random fields via either

spherical harmonics or ultraspherical polynomials, and builds up various parametric
and semiparametric covariance matrix structures. The extension problem is discussed

as well.

1. Introduction

This paper attempts to develop spatio-temporal vector random fields whose spatial in-
dex domains are termed as an arccos-quasi-quadratic metric space recently introduced in
[35, 36]. Such a metric space is a subset D of Rd+1 together with a metric (distance func-
tion) that is the composition of arccosine and quasi-quadratic functions. More precisely,
over D we define the arccos-quasi-quadratic metric by

(1) ϑ(x1,x2) = arccos ((w(x1))
′Σpw(x2)) , x1,x2 ∈ D,

where w(x) is a (d + 1)-variate function defined on D, Σp is a (d + 1) × (d + 1) strictly
positive definite matrix, |(w(x1))

′Σpw(x2)| ≤ 1, x1,x2 ∈ D, and (w(x1))
′Σpw(x2) = 1 if

and only if x1 = x2. Important examples of this type of metric spaces are

(i) the unit sphere Sd = {x ∈ Rd+1 : ∥x∥ = 1}, ϑ(x1,x2) = arccos(x′
1x2), x1,x2 ∈

Sd, in (1) w(x) = x and Σp = Id+1, where ∥x∥ represents the Euclidean norm of
x ∈ Rd+1 and Id+1 is a (d+ 1)× (d+ 1) identity matrix;

(ii) an ellipsoidal surface D = {x ∈ Rd+1 : x′Σpx = 1}, ϑ(x1,x2) = arccos(x′
1Σpx2),

and w(x) = x;
(iii) the unit ball Bd = {x ∈ Rd : ∥x∥ ≤ 1}, with distance function [6, 10]

ϑ(x1,x2) = arccos
(
x′
1x2 +

√
1− ∥x1∥2

√
1− ∥x2∥2

)
,

in (1), w(x) =

 x√
1− ∥x∥2

 and Σp = Id+1;

(iv) an ellipsoid D = {x ∈ Rd : x′Σp 0x ≤ 1}, Σp 0 is a d × d strictly positive definite
matrix,

w(x) =

 x

√
1− x′Σp 0x

 , Σp =
(

Σp 0 0
0 1

)
,
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and

ϑ(x1,x2) = arccos
(
x′
1Σp 0x2 +

√
1− x′

1Σp 0x1

√
1− x′

2Σp 0x2

)
;

(v) the probability simplex

△d =

{
x = (x1, . . . , xd+1)

′ ∈ Rd+1 : x1 ≥ 0, . . . , xd+1 ≥ 0,

d+1∑
k=1

xk = 1

}
,

with distance function [6, 10, 24]

ϑ(x1,x2) = arccos

(
d+1∑
k=1

√
xk1xk2

)
, xk = (x1k, . . . , xd+1,k)

′ ∈ △d, k = 1, 2,

in (1), w(x) = (
√
x1,

√
x2, . . . ,

√
xd+1)

′ and Σp = Id+1;
(vi) a simplex or a corner of the d-cube

D =

{
x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0,

d∑
k=1

xk ≤ 1

}
,

ϑ(x1,x2) = arccos

(
d∑

k=1

√
xk1xk2 +

√(
1−

d∑
k=1

xk1

)(
1−

d∑
k=1

xk2

))
,

xk = (x1k, . . . , xd,k)
′ ∈ D, k = 1, 2,

in (1), w(x) =

(
√
x1,

√
x2, . . . ,

√
1−

d∑
k=1

xk

)′

and Σp = Id+1;

(vii) the double conic surface

D =

{(
x

xd+1

)
∈ Rd+1 : ∥x∥ = |xd+1|, |xd+1| ≤ 1

}
,

with distance function [53]

ϑ(x1,x2) = arccos

(
x′
1x2 +

√(
1− x2

d+1,1

)(
1− x2

d+1,2

))
,(

xk

xd+1,k

)
∈ D, k = 1, 2,

in (1), w(x) =

 x√
1− x2

d+1

 and Σp = Id+1;

(viii) the hyperbolic surface

D =

{(
x

xd+1

)
∈ Rd+1 : x2

d+1 − ∥x∥2 = r2, r ≤ xd+1 ≤
√

1 + r2
}
,

with distance function [53]

ϑ(x1,x2) = arccos

(
x′
1x2 +

√(
1 + r2 − x2

d+1,1

)(
1 + r2 − x2

d+1,2

))
,(

xk

xd+1,k

)
∈ D, k = 1, 2,

where r is a nonnegative constant, w(x) =

 x√
1 + r2 − x2

d+1

, and Σp = Id+1.
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Over the spherical metric space (Sd, ϑ), spatial or spatio-temporal random fields are
extremely well studied [7, 8, 15, 19, 22, 23, 27, 28, 33, 38, 40, 54, 55]. In contrast, just
recently vector random fields with the metric-dependent correlation structures on Bd and
△d are drawn to attention in [9, 26, 34], besides random fields with radial covariance func-
tions on Bd are considered in [25, 42, 43] when Bd is endowed with the Euclidean distance.
As an original and innovative contribution, this paper places these (non-Euclidean) met-
ric spaces into a unified context and attempts to study metric-dependent random fields
on different metric spaces in a unified manner. With a relatively wide coverage, the inves-
tigation on the arccos-quasi-quadratic metric space of random fields is expected to offer
more theoretical options to practical demands in climatology, cosmology, earth science,
and medical imaging, just to name but a few. Complex data in modern data analysis may
be described as elements of a metric space that satisfies certain structural conditions and
features a probability measure [12]. One of our applied motivations stems from astronom-
ical sciences, particularly the future European Space Agency mission Euclid and Cosmic
Microwave Background Stage 4 (CMB-S4) project; see https://cmb-s4.org.CMB-S4.

In Section 3 we construct m-variate second-order random fields on a spatio-temporal
domain D × T via two infinite series expressions, one is based on spherical harmonics
and the other is in terms of the ultraspherical polynomials, and present an infinite series
representation for the covariance matrix function of an m-variate elliptically contoured
random field on D × T by means of the ultraspherical polynomials. Many statistical
models in cosmological perturbation theory are time-varying isotropic Gaussian random
fields on S2. For instance, the temperature in CMB situation is expanded in spherical
harmonics, for an observer sitting in x at time t,

(2) T (x, t,n) = T̄ (t)

∞∑
l=0

l∑
k=−l

alk(x, t)Ylk(n),

where n is the direction of observation, and {Ynj(x),x ∈ S2, j = 0,±1, . . . ,±n} is an
orthonormal basis of spherical harmonics on S2; see (3.8) of [13]. But, at least locally,
the true Universe is not perfectly homogeneous and isotropic[13, 44]. The advantage of
(8) or (13) developed in Section 3 allows for anisotropy, due to many possible selections
of w(x) and Σp over D in (1).

Section 4 establishes various parametric or semiparametric correlation structures on
D × T, with three approaches offered in Theorem 3 in terms of completely monotone
functions and conditionally negative definite matrices, noticing that the arccos-quasi-
quadratic metric (1) is not only a variogram on D but also a measure definite kernel
[35].

The extension problem is considered in Section 5, where a covariance matrix function
on D×Z that is metric-dependent on D and stationary on Z is extended to one on D×R.
It essentially provides an effective approach for generating covariance matrix models on
D×R from those on D×Z. We refer the reader to [46] for the extension problem in a more
general context, although it was primarily concerned with positive-definite functions on
Euclidean spaces and on groups of lattice points. Examples of stationary covariance
functions on R being extended to isotropic covariance functions in Rd (d ≥ 2) may be
found in [29].

Some preliminary results are made available in Section 2 for use. Section 6 presents
the proofs of lemmas and theorems that are stated in Sections 2-5 respectively. In
what follows let d ≥ 2. Denote by N the set of positive integers, and by N0 the set
of nonnegative integers. The trace of a square matrix B is denoted by trace(B). For

a positive definite matrix B, there is a symmetric matrix B
1
2 of the same order of B,

which is called its positive definite square root [20], such that B = B
1
2B

1
2 .
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2. Preliminary results

This section provides some preliminary results for our constructions of second-order
time-varying random fields on the arccos-quasi-quadratic metric space (D, ϑ). The im-
portant building blocks in the next section are spherical harmonics and ultraspherical
or Gegenbauers polynomials [2], which are closely related to each other via the addition
formula displayed in Lemma 1 below. Lemma 2 is a rephrased version of Lemma 2 in [33],
where it illustrates a basis of the set of isotropic and mean square continuous random
fields on the spherical metric space (Sd, ϑ). Lemma 3 recalls a couple of key connections
between a positive definite matrix and a conditionally negative definite matrix, which
will be employed in Section 4 to formulate some parametric or semiparmetric covariance
matrix models on D× T.

Recall that the ultraspherical polynomials [50] possess the exact expressions

P
(λ)
0 (x) ≡ 1,

P
(λ)
n (x) = 1

Γ(λ)

[n2 ]∑
k=0

(−1)k Γ(n−k+λ)
Γ(k+1)Γ(n−2k+1) (2x)

n−2k, x ∈ R, n ∈ N,

where λ is a positive constant, Γ(x) is Euler’s gamma function, and [x] stands for the

greatest integer less than or equal to x. In a particular case λ = 1
2 , P

( 1
2 )

n (x) = Pn(x)

(n ∈ N0) are the Legendre polynomials, and, when λ = 1, P
(1)
n (cosϑ) = sin((n+1)ϑ)

sinϑ . Over

the interval [−1, 1], P
(λ)
n (x) is bounded in absolute value, and∣∣∣P (λ)

n (x)
∣∣∣ ≤ P (λ)

n (1) =
Γ(n+ 2λ)

Γ(n+ 1)Γ(2λ)
, x ∈ [−1, 1], n ∈ N0.

Spherical harmonics are special functions on Sd (d ≥ 2), and form an orthonormal
basis, so that each function defined on Sd can be written as a sum of these spherical
harmonics. Using the Gram-Schmidt orthogonalization, it is possible to choose cn,d
spherical harmonics of degree n in d+ 1 variables that are orthonormal with respect to
the invariant measure on Sd [2], where

(3) cn,d =
(2n+ d− 1)(n+ d− 2)!

n!(d− 1)!
, n ∈ N.

Denote the members of this orthonormal basis by Sn,j(x), x ∈ Sd, j = 1, . . . , cn,d, and,
in the particular case d = 2, {Ynj(x),x ∈ S2, j = 0,±1, . . . ,±n} is also adopted for CMB
data in (2). The orthonormal property is∫

Sd
Sn,j(x)Sk,l(x)dσ(x) = δnkδjl, n, k ∈ N, j ∈ {1, . . . , cn,d}, l ∈ {1, . . . , ck,d},

where σ(·) represents the invariant measure on Sd and δnk is the Kronecker delta function.
Under such an orthonormal basis, spherical harmonics connect with the ultraspherical
polynomials through the addition formula; see, for instance, Theorem 9.6.3 of [2]. A
rephrased version of the addition formula is displayed as (4) below, in the language of
the arccos-quasi-quadratic metric space (D, ϑ).
Lemma 1.

(4) β2
n

cn,d∑
j=1

Sn,j

(
Σp

1
2w(x1)

)
Sn,j

(
Σp

1
2w(x2)

)
= P

( d−1
2 )

n (cosϑ(x1,x2)), x1,x2 ∈ D,

where

(5) βn =

ϖdP
( d−1

2 )
n (1)

cn,d

 1
2

=

(
(d− 1)ϖd

2n+ d− 1

) 1
2

, n ∈ N,
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and ϖd = 2π
d+1
2

Γ( d+1
2 )

is the surface area of Sd.
Similarly, Lemma 2 of [33] is rephrased as follows, although it is not clear whether{
P
( d−1

2 )
n (cosϑ(x1,x2)),x1,x2 ∈ D, n ∈ N0

}
would be a basis of the set of mean square

continuous random fields that are metric-dependent on the arccos-quasi-quadratic metric
space (D, ϑ).
Lemma 2. If U is a (d+1)-dimensional random vector uniformly distributed on Sd
(d ≥ 2), then, for a fixed n ∈ N,

(6) Zn(x) =

√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

)
, x ∈ D,

is a random field with mean 0 and covariance function

(7) cov(Zn(x1), Zn(x2)) = P
( d−1

2 )
n (cosϑ(x1,x2)), x1,x2 ∈ D,

where βn is defined in (5). Moreover, for i ̸= j, {Zi(x),x ∈ D} and {Zj(x),x ∈ D} are
uncorrelated; that is

cov(Zi(x1), Zj(x2)) = 0, x1,x2 ∈ D.

For m ≥ 2, a real m×m symmetric matrix Θ = (θij)m×m is said to be conditionally
negative definite (or almost negative definite) [41], if the inequality

m∑
i=1

m∑
j=1

aiajθij ≤ 0

holds for any ak ∈ R (k = 1, . . . ,m) subject to the condition
m∑

k=1

ak = 0. Examples of

conditionally negative definite matrices are

(i) a matrix with identical entries,
(ii) a matrix with entries θij = θi + θj ,
(iii) a matrix with entries θij = max(θi, θj),
(iv) a matrix with entries θij = |θi − θj |, where θ1, . . . , θm are real numbers,
(v) a matrix with entries θij = ∥θi − θj∥2, where θi ∈ Rm, i = 1, . . . ,m.

For an m × m matrix Θ = (θij)m×m, denote by exp(−Θ) an m × m matrix whose
ij-th entry is exp(−θij) i, j = 1, . . . ,m. The crucial connection between a conditionally
negative definite matrix and a positive definite matrix is released in the following lemma,
for whose proof we refer the reader to Corollary 2.1 of [41] or Theorems 4.1.3 and 4.1.7
of [3].
Lemma 3. A real m × m symmetric matrix Θ = (θij)m×m is conditionally negative
definite if and only if one of the following conditions holds:

(i) There exist ak ∈ R and θk ∈ Rm (k = 1, . . . ,m) such that

θij = ai + aj + ∥θi − θj∥2, i, j = 1, . . . ,m.

(ii) There exist ak ∈ R (k = 1, . . . ,m) and an m ×m positive definite matrix B =
(bij)m×m such that

θij = ai + aj − bij , i, j = 1, . . . ,m.

(iii) exp(−λΘ) = (exp(−λθij))m×m is an m × m positive definite matrix for every
nonnegative constant λ.
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3. Time-varying vector random fields on arccos-quasi-quadratic metric
space

Let D×T be a spatio-temporal index domain, where (D, ϑ) is an arccos-quasi-quadratic
metric space with the metric (1), and T is a temporal domain such as R or Z. This section
introduces second-order vector random fields on D×T whose covariance matrix functions
depend on the metric ϑ(x1,x2) and the time variable as well, via two constructions in
Theorems 1 and 2 respectively.

Denote by Im an m×m identity matrix. For a sequence of m×m matrices {Bn, n ∈
N0}, the series

∞∑
n=0

Bn is said to be (entry-by-entry) convergent, if each of its entries is

convergent. As an example, the convergence of
∞∑

n=0
BnP

( d−1
2 )

n (1) is equivalent to that of

∞∑
n=0

nd−2Bn, because of P
( d−1

2 )
n (1) = Γ(n+d−1)

Γ(n+1)Γ(d−1) ∼
nd−2

Γ(d−1) , n → ∞.

An m-variate Gaussian random field on D × T is constructed in Theorem 1 via an
infinite series expression in terms of spherical harmonics, with an infinite series represen-
tation for its covariance matrix function by means of the ultraspherical polynomials.
Theorem 1. Assume that {Vnj(t), t ∈ T} is an m-variate Gaussian stochastic process
with mean function EVnj(t) ≡ 0 and covariance matrix function

cov(Vnj(t1),Vnj(t2)) = Bn(t1, t2), for each n ∈ N, j ∈ {1, . . . , cn,d} ,

{V0(t), t ∈ T} is an m-variate Gaussian stochastic process with mean 0 and covariance
matrix function B0(t1, t2), and that {V0(t), t ∈ T} and {Vnj(t), t ∈ T}, n ∈ N, j ∈

{1, . . . , cn,d}, are independent. If
∞∑

n=1
Bn(t, t)P

( d−1
2 )

n (1) converges for every t ∈ T, then

(8) Z(x; t) = V0(t) +

∞∑
n=1

βn

cn,d∑
j=1

Vnj(t)Sn,j

(
Σp

1
2w(x)

)
, x ∈ D, t ∈ T,

is an m-variate Gaussian random field on D × T, with mean 0 and covariance matrix
function

(9)
cov (Z(x1; t1),Z(x2; t2)) =

∞∑
n=0

Bn(t1, t2)P
( d−1

2 )
n (cosϑ(x1,x2)),

x1,x2 ∈ D, t1, t2 ∈ T,

where cn,d and {βn, n ∈ N} are defined by (3) and (5), respectively.
In particular, for a fixed t0 ∈ T, {Z(x; t0),x ∈ D} is a purely spatial random field

on D with covariance matrix function
∞∑

n=0
Bn(t0, t0)P

( d−1
2 )

n (cosϑ(x1,x2)), x1,x2 ∈ D.

Observing that Bn(t0, t0) (n ∈ N0) are positive definite matrices and rewriting them
simply as Bn, it leads to the following corollary; see Theorem 3.1 of [36].
Corollary 1.1. For a sequence {Bn, n ∈ N0} of m × m positive definite matrices, if
∞∑

n=1
BnP

( d−1
2 )

n (1) converges, then there exists an m-variate Gaussian random field on D

with metric-dependent covariance matrix function
∞∑

n=0
BnP

( d−1
2 )

n (cosϑ(x1,x2)), x1,x2 ∈

D.
The next corollary is obtained, when {V0(t), t ∈ T} and {Vnj(t), t ∈ T} in (8) are

assumed to be stationary on T.
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Corollary 1.2 Under the assumptions of Theorem 1, let {V0(t), t ∈ T} and {Vnj(t), t ∈
T} be stationary with

cov(V0(t1),V0(t2)) = B0(t1 − t2),
cov(Vnj(t1),Vnj(t2)) = Bn(t1 − t2), t1, t2 ∈ T, n ∈ N, j ∈ {1, . . . , cn,d} .

If
∞∑

n=1
Bn(0)P

( d−1
2 )

n (1) converges, then (8) is an m-variate Gaussian random field on

D× T, and its covariance matrix function

(10)
cov(Z(x1; t1),Z(x2; t2)) =

∞∑
n=0

Bn(t1 − t2)P
( d−1

2 )
n (cosϑ(x1,x2)),

x1,x2 ∈ D, t1, t2 ∈ T,

is metric-dependent on D and stationary on T. Its temporal margin, {Z(x0; t), t ∈ T}, is
an m-variate stationary Gaussian stochastic process on T, with mean 0 and covariance

matrix function
∞∑

n=0
Bn(t1 − t2)P

( d−1
2 )

n (1), t1, t2 ∈ T, where x0 ∈ D is a fixed point.

Example 1. In (8) let’s choose {V0(t), t ∈ Z} and {Vnj(t), t ∈ T} as m-variate station-
ary linear processes [45],

V0(t) =
∞∑
k=0

Ψkε0(t− k),

Vnj(t) =
∞∑
k=0

Ψkεnj(t− k), t ∈ Z, n ∈ N, j ∈ {1, . . . , cn,d} ,

with mean 0 and covariance matrix function

Bn(l) =


∞∑
k=0

ΨkBnΨ
′
k+l, l ∈ N0,

(Bn(−l))′, −l ∈ N,

where {Ψk, k ∈ N0} is a sequence of m×m matrices and
∞∑
k=0

(trace(Ψ′
kΨk))

1
2 < ∞, and

{ε0(t), t ∈ Z} and {εnj(t), t ∈ Z} are m-variate Gaussian white noise with mean 0 and
covariance matrix function

cov(ε0(t1), ε0(t2)) =

{
B0, t1 = t2,
0, t1 ̸= t2, t1, t2 ∈ Z,

cov(εnj(t1), εnj(t2)) =

{
Bn, t1 = t2,
0, t1 ̸= t2, t1, t2 ∈ Z.

Under the convergent assumption of
∞∑

n=1
BnP

( d−1
2 )

n (1), (10) becomes

(11) cov(Z(x1; t1),Z(x2; t2)) =


∞∑
k=0

ΨkC0(ϑ(x1,x2))Ψ
′
k+l, t2 − t1 = l,

x1,x2 ∈ D, l ∈ N0,
∞∑
k=0

Ψk−lC0(ϑ(x1,x2))Ψ
′
k, t2 − t1 = −l,

where C0(ϑ(x1,x2)) =
∞∑

n=0
BnP

( d−1
2 )

n (cosϑ(x1,x2)), x1,x2 ∈ D, is an m×m covariance

matrix function on D by Corollary 1.1.
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In particular, if Ψk = 0 (k ≥ q + 1), then {V0(t), t ∈ Z} and {Vnj(t), t ∈ Z} are
m-variate moving average time series of order q ≥ 1, with covariance matrix function

Bn(l) =



q−l∑
h=0

ΨhBnΨ
′
h+l, l = 0, 1, . . . , q,

q+l∑
h=0

Ψh−lBnΨ
′
h, l = −1, . . . ,−q,

0, |l| > q, l ∈ Z.

In this case, (11) reduces to

cov(Z(x1; t),Z(x2; t+l)) =



q−l∑
h=0

ΨhC0(ϑ(x1,x2))Ψ
′
h+l, l = 0, 1, . . . , q,

q+l∑
h=0

Ψh−lC0(ϑ(x1,x2))Ψ
′
h, l = −1, . . . ,−q,

0, |l| > q, l ∈ Z, x1,x2 ∈ D.

In another particular case where {V0(t), t ∈ Z} and {Vnj(t), t ∈ Z} are m-variate
first-order autoregressive time series, with covariance matrix function

Bn(l) =


Bn +ΦBn(0)Φ

′, l = 0,
Bn(0)(Φ

′)l, l ∈ N,
Φ−lBn(0), −l ∈ N,

where Φ is an m × m matrix with trace(Φ′Φ) < 1 and Bn(0) satisfies the equation
Bn(0) = Bn +ΦBn(0)Φ

′, whose solution can be derived by use of the vectorizing oper-
ation [45], (11) reduces to

cov(Z(x1; t),Z(x2; t+l)) =


C0(ϑ(x1,x2)) +ΦC1(ϑ(x1,x2))Φ

′, l = 0,
C1(ϑ(x1,x2))(Φ

′)l, l ∈ N,
Φ−lC1(ϑ(x1,x2)), −l ∈ N,

t ∈ Z, x1,x2 ∈ D,

where C1(ϑ(x1,x2)) =
∞∑

n=0
Bn(0)P

( d−1
2 )

n (cosϑ(x1,x2)),x1,x2 ∈ D.

While Gaussian random fields are widely adopted for modelling spatial or spatio-
temporal data, it is well documented that many cosmological, geological, informational,
environmental, physical, and biological systems are highly complex, non-Gaussian, and
exhibit non-linear patterns of spatial or spatio-temporal connectivity [11, 18, 44]. Con-
taining the Gaussian case as a particular case, elliptically contoured (or spherically in-
variant) random fields [21, 30, 56] enjoy the following important properties:

(i) It is well known that all mean square estimation and predicition prob-
lems for Gaussian random fields have linear solutions and that Gaussian
random fields are closed under linear operations. These two properties
do not uniquely characterize the Gaussian one, but they do character-
ize the class of second-order elliptically contoured random fields, as is
observed in [21, 51].

(ii) An elliptically contoured random field may or may not have first-
order moments, such as a Student’s t or stable one.

(iii) Among all second-order random fields, the class of second-order
elliptically contoured random fields is one of the largest, if not the largest,
classes that allow for any given correlation structure.

An elliptically contoured random field is essentially a scale mixture of Gaussian ran-
dom fields, and it is also termed as a type G random field if it is infinitely divisible
[39, 47]. Examples of elliptically contoured random fields include Student’s t, Cauchy,
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power-law, exponential power, hyperbolic, hyperbolic cosine ratio, hyperbolic sine ratio,
hyperbolic secant, Laplace, logistic, variance Gamma, normal inverse Gaussian, α-stable,
K-differenced, K-combined, Linnik, and Mittag-Leffler ones.

Denote the right-hand side function of (9) by C(x1, t1;x2, t2). Being an m × m co-
variance matrix function, it certainly satisfies the following two properties:

(i) (C(x1, t1;x2, t2))
′ = C(x2, t2;x1, t1), xk ∈ D, tk ∈ T, k = 1, 2;

(ii) the inequality
n∑

i=1

m∑
j=1

a′iC(xi, ti;xj , tj)aj ≥ 0

holds for every n ∈ N, arbitrary ak ∈ Rm, xk ∈ D, and tk ∈ T, k = 1, . . . , n.

Such a function can be adopted as the covariance matrix function of an m-variate ellip-
tically contoured random field on D× T and is stated in Corollary 1.3, by Theorem 8 of
[30].
Corollary 1.3. There is an m-variate elliptically contoured random field on D×T with
covariance matrix function

(12)
cov(Z(x1; t1),Z(x2; t2)) =

∞∑
n=0

Bn(t1, t2)P
( d−1

2 )
n (cosϑ(x1,x2)),

x1,x2 ∈ D, t1, t2 ∈ T.

One of the benefits of the infinite series expansion (8) is for simulation. To get an
implementable algorithm, the series expansion has of course to be truncated, so that
the simulation algorithm is delivered from the truncation of the infinite series expansion
at some finite order. It would be of interest to derive the rate of convergence of such
approximations, in terms of some bounds of Bn(t1, t2) for large n, say.

Another infinite series expansion is presented in the next theorem, which is established
by [33] in a particular case where D = Sd. More interestingly, the series representation
(15) provides an answer for the open question raised in [33] over the spherical metric
space (Sd, ϑ).
Theorem 2. Suppose that {Vn(t), t ∈ T} is an m-variate second-order stochastic process
with EVn(t) ≡ 0 and cov(Vn(t1),Vn(t2)) = Bn(t1, t2) for each fixed n ∈ N0, U is a
(d + 1)-variate random vector uniformly distributed on Sd, and that U, {Vn(t), t ∈ T},
n ∈ N0, are independent. Let {βn, n ∈ N} be defined by (5).

If
∞∑

n=1
Bn(t, t)P

( d−1
2 )

n (1) converges for every t ∈ T, then

(i)

(13) Z(x; t) = V0(t) +
√
ϖd

∞∑
n=1

Vn(t)

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

)
, x ∈ D, t ∈ T,

is an m-variate random field on D × T, with mean 0 and covariance matrix
function

(14)
cov(Z(x1; t1),Z(x2; t2)) =

∞∑
n=0

Bn(t1, t2)P
( d−1

2 )
n (cosϑ(x1,x2)),

x1,x2 ∈ D, t1, t2 ∈ T.

(ii)

(15) Z(x; t) = V0(t) +
√
ϖd

∞∑
n=1

Vn(t1)
[n2 ]∑
k=0

(
β
( d−1

2 )
k,n

) 1
2

βn−2k
P
( d−1

2 )
n−2k

(
U′Σp 1

2w(x)
)
,

x ∈ D, t ∈ T,
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is an m-variate random field on D × T, with mean 0 and covariance matrix
function

(16)
cov(Z(x1; t1),Z(x2; t2)) =

∞∑
n=0

Bn(t1, t2)(cosϑ(x1,x2))
n,

x1,x2 ∈ D, t1, t2 ∈ T,

where

β
( d−1

2 )
k,n =

n!
(
n− 2k + d−1

2

)
Γ
(
d−1
2

)
2nk!Γ

(
n− k + d+1

2

) , k = 0, 1, . . . ,
[n
2

]
.

A key ingredient or building block in (13) or (15) is U, a random vector uniformly
distributed on Sd. A uniform distribution on Sd can be easily simulated via standard

normal distributions [37], since

 Y1√
d+1∑
k=1

Y 2
k

, . . . , Yd+1√
d+1∑
k=1

Y 2
k

 is uniformly distributed on Sd,

if Y1, . . . , Yd+1 are independent and identically distributed standard normal random vari-
ables, according to Theorem 2.3 of [14].

Both the series representations (8) and (13) are useful for modeling and simulation.
The simulation algorithm via the truncation of (8) might be less efficient than (13) since,

in order to reach the same level of accuracy, one needs a

(
ℓ∑

n=0
cn,d + 1

)
-term truncation

of the series representation (8), in contrast to an (ℓ + 1)-term (13) that significantly
reduces the computational burden. On the other hand, the advantage of (8) is that its
finite-dimensional distributions are clearly Gaussian.

It is not sure whether (14) is a general form for m×m covariance matrix functions on
D × T that are metric-dependent over D, even in a particular case D = Sd [33]. It may
be quite difficult to identify whether a certain function is of the form (9), simply because
the expression at its right-hand side may be too complicated to derive. This calls for
efficient methods to construct parametric or semiparametric spatio-temporal correlation
structures on D× T. Some constructing approaches are offered in Section 4.

4. Parametric or semiparametric covariance matrix models

This section illustrates some parametric or semiparametric spatio-temporal correlation
structures on D × T. Three constructing approaches are offered in Theorem 3 using
two ingredients or building blocks: a completely monotone function and a conditionally
negative definite matrix, besides the arccos-quasi-quadratic metric ϑ(x1,x2) that is a
variogram on D according to Theorem 3 of [34]. While an infinite series expression like
(9) may not be available, the existence of such a random field is ensured by Theorem 8
of [30].

By definition, a nonnegative and continuous function ℓ(x) is completely monotone on
[0,∞), if it possesses derivatives of all orders and

(−1)n
dn

dxn
ℓ(x) ≥ 0, x > 0, n ∈ N.

Theorem 3. Assume that ℓ(x) is a completely monotone function on [0,∞), g(x) is
a strictly positive function on [0,∞) with a completely monotone derivative, and that
Θ = (θij)m×m is an m×m conditionally negative definite matrix with nonnegative entries.
Then
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(i) there is an m-variate elliptically contoured random field on D×R with direct/cross
covariance functions

(17)
Cij(x1,x2; t1, t2) = (g(ϑ(x1,x2)) + θij)

− 1
2 ℓ
(

(t1−t2)
2

g(ϑ(x1,x2))+θij

)
,

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m;

(ii) there is an m-variate elliptically contoured random field on D×R with direct/cross
covariance functions

(18)
Cij(x1,x2; t1, t2) = (g(ϑ(x1,x2)) + θij)

− 1
2 ℓ
(
(g(ϑ(x1,x2)) + θij)

− 1
2 |t1 − t2|

)
,

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m;

(iii) there is an m-variate elliptically contoured random field on D×T with direct/cross
covariance functions

(19)
Cij(x1,x2; t1, t2) = ℓ(ϑ(x1,x2) + γ(t1, t2) + θij),

x1,x2 ∈ D, t1, t2 ∈ T, i, j = 1, . . . ,m,

provided that γ(t1, t2) is a variogram on T.
There is a rich source of completely monotone functions on [0,∞). For instance, the

Laplace transform of every nonnegative random variable is completely monotone.
Example 2. Some parametric examples of completely monotone functions ℓ(x) on [0,∞)
are

(i) (1+α1x
ν)κ1

(1+α2xν)κ2 , where 0 ≤ α1 ≤ α2, 0 < κ1 ≤ κ2, and ν ∈ (0, 1];

(ii) (xν + α2)
κ − (xν + α1)

κ
, where 0 < α1 < α2, ν ∈ (0, 1], and κ ∈ (0, 1];

(iii) ln (xν + α2)− ln (xν + α1), where 0 < α1 < α2 and ν ∈ (0, 1];
(iv) exp (−αxν), where α > 0 and 0 < ν ≤ 1;
(v) exp(−αxν)(1 + exp(−αxν))−2, where α > 0 and 0 < ν ≤ 1;

(vi)
(

α
√
x

sinh(α
√
x)

)ν
, where α > 0 and ν > 0;

(vii)
(

tanh(α
√
x)

α
√
x

)ν
, where α > 0 and ν > 0;

(viii)
(

cosh(α1
√
x)

cosh(α2
√
x)

)ν
, where 0 ≤ α1 < α2 and ν > 0;

(ix)
(

sinh(α1
√
x)

sinh(α2
√
x)

)ν
, where 0 < α1 < α2 and ν > 0;

(x) x
ν
2 Kν(α

√
x), where α > 0, ν > 0, and Kν(x) is the modified Bessel function of

the second kind of order ν;

(xi) 1−
(

α2−α1)x
ν

1+α2xν

)κ
, where 0 ≤ α1 < α2 or 0 < α1 ≤ α2, ν ∈ (0, 1], and κ ∈ (0, 1];

(xii) the Mittag-Leffler function [48]

Eα,β(−x) =

∞∑
n=0

(−x)n

Γ(αn+ β)
,

where 0 < α ≤ 1 and β ≥ α.

Next we display three examples of parametric or semiparametric covariance matrix
models on D× T.
Example 3. Let β >

√
2
2 be a constant and let νk(t) ∈ (0, 1) (k = 1, . . . ,m) be positive-

valued functions on T. Then

Cij(x1,x2; t1, t2) =
Γ
(
1−

νi(t)+νj(t)

2

)
νi(t)+νj(t)

{
βνi(t)+νj(t) −

(
sin ϑ(x1,x2)

2

)νi(t)+νj(t)
}
,

x1,x2 ∈ D, t1, t2 ∈ T, i, j = 1, . . . ,m,

form an m×m covariance matrix function on D× T. To see this, we apply the identity

xν =
ν

Γ(1− ν)

∫ ∞

0

1− e−xu

u1+ν
du, x ≥ 0, 0 < ν < 1,
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to rewrite Cij(x1,x2; t1, t2) as

Cij(x1,x2; t1, t2)

=
Γ
(
1−

νi(t1)+νj(t2)

2

)
αi+αj

{
βνi(t1)+νj(t2) −

(
1−cosϑ(x1,x2)

2

) νi(t1)+νj(t2)

2

}
= 1

2

∫∞
0

1−exp(−β2u)−
[
1−exp

(
− 1−cosϑ(x1,x2)

2 u
)]

u1+
νi(t1)+νj(t2)

2

du

= 1
2

∫∞
0

exp(−u
2 ) exp

(
cosϑ(x1,x2)

2 u
)
−exp(−β2u)

u1+
νi(t1)+νj(t2)

2

du

= 1
2

∫∞
0

(
exp

(
−u

2

) ∞∑
k=1

uk cosk ϑ(x1,x2)
2kk!

+ exp
(
−u

2

)
− exp

(
−β2u

))
du

u1+
νi(t1)+νj(t2)

2

x1,x2 ∈ D, t1, t2 ∈ T, i, j = 1, . . . ,m.

They are direct/cross covariance functions of an m-variate elliptically contoured random
field on D by Theorems 3 and 4 of [31], since an m × m matrix function with entries

u−1−
νi(t1)+νj(t2)

2 is obviously a temporal covariance function on T, and

exp
(
−u

2

) ∞∑
k=1

uk cosk ϑ(x1,x2)

2kk!
+ exp

(
−u

2

)
− exp

(
−β2u

)
is a covariance function on D by Theorem 2, for each fixed u > 0.
Example 4. Suppose that Θ = (θij)m×m is an m × m conditionally negative definite
matrix and all its entries are positive, νk(t) (k = 1, . . . ,m) are positive functions on T,
and 0 ≤ α1 < α2. By Theorems 3 and 4 of [31], there exists an m-variate elliptically
contoured random field on D× T with direct/cross covariance functions

Cij(x1,x2; t1, t2) = Γ(νi(t1) + νj(t2))
{
(ϑ(x1,x2) + θij + α1)

−νi(t1)−νj(t2)

− (ϑ(x1,x2) + θij + α2)
−νi(t1)−νj(t2)

}
,

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

since

Cij(x1,x2; t1, t2) =
∫∞
0

exp(−ϑ(x1,x2)u)u
νi(t1)+νj(t2)−1 exp(−θiju) (e

−α1u − e−α2u) du,
x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

where exp(−ϑ(x1,x2)u) is a covariance function on D since ϑ(x1,x2) is a variogram, an
m×m matrix function with entries uνi(t1)+νj(t2)−1 is a covariance matrix function on T,
and an m×m matrix with entries exp(−θiju) is positive definite by Lemma 3, for each
fixed u > 0.
Example 5. If α is a positive constant, and Θ = (θij)m×m is an m ×m conditionally
negative definite matrix and all its entries are positive, then there exists an m-variate
elliptically contoured random field on D× T with direct/cross covariance functions

Cij(x1,x2; t1, t2) = exp(−α|t1 − t2|) Erfc
(√

ϑ(x1,x2) + θij − α|t1−t2|
2
√

ϑ(x1,x2)+θij

)
+exp(α|t1 − t2|) Erfc

(√
ϑ(x1,x2) + θij +

α|t1−t2|
2
√

ϑ(x1,x2)+θij

)
,

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

by Theorems 3 and 4 of [31]. To see this, we apply the identity (see page 15 of [4])

π
2

∫∞
0

cos(uω) exp
(
−(1 + ω2)β

)
dω

1+ω2

= exp(−u) Erfc
(√

β − u
2
√
β

)
+ exp(u) Erfc

(√
β + u

2
√
β

)
, u ∈ R, β ≥ 0,

to rewrite Cij(x1,x2; t1, t2) as
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Cij(x1,x2; t1, t2) =
π

2

∫ ∞

0

cos(α(t1 − t2)ω) exp
(
−ϑ(x1,x2)(1 + ω2)

)
× exp

(
−θij(1 + ω2)

) dω

1 + ω2
, x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

where cos(α(t1 − t2)ω) is a covariance function on R, exp
(
−ϑ(x1,x2)(1 + ω2)

)
is a co-

variance function on D, and an m×m matrix with entries exp
(
−θij(1 + ω2)

)
is positive

definite by Lemma 3, for each fixed ω ≥ 0.

5. The extension problem

While there are rich sources of multivariate time series models on Z for use [45],
it is often of interest to extend their index domain from Z to R. Given an m × m
covariance matrix function on D × Z that is metric-dependent on D and stationary on
Z, C(ϑ(x1,x2); t) say, the extension problem addressed in this section is: is it possible
to extend its index domain from D × Z to D × R so that C(ϑ(x1,x2); t) is an m × m
covariance matrix function on D × R that is metric-dependent on D and stationary on
R? An answer is given in Theorem 4, under the assumption that C(ϑ(x1,x2); t) is of the
form (10) where T = Z.
Theorem 4. Suppose that Bn(t) is an m×m stationary covariance matrix function on

Z, for each n ∈ N0. If
∞∑

n=1
Bn(0)P

( d−1
2 )

n (1) converges and

(20) C(ϑ(x1,x2); t) =

∞∑
n=0

Bn(t)P
( d−1

2 )
n (cosϑ(x1,x2)), x1,x2 ∈ D, t ∈ Z,

is an m×m covariance matrix function on D×Z that is stationary on Z, then there exists
an m×m covariance matrix function C̃(ϑ(x1,x2); t) on D×R that is metric-dependent
on D and stationary on R, which is identical to C(ϑ(x1,x2); t) over D× Z, i.e.,

(21) C̃(ϑ(x1,x2); t) = C(ϑ(x1,x2); t), x1,x2 ∈ D, t ∈ Z.

There might be several approaches to verify the existence of C̃(ϑ(x1,x2); t) on D×R
with the desired properties. The idea here is to precisely construct a sequence {B̃n(t), n ∈
N0} of m×m stationary covariance matrix functions on R satisfying

(22) B̃n(t) = Bn(t), t ∈ Z, n ∈ N0,

and then to formulate C̃(ϑ(x1,x2); t) as follows:

C̃(ϑ(x1,x2); t) =

∞∑
n=0

B̃n(t)P
d−1
2

n (cosϑ(x1,x2)), x1,x2 ∈ D, t1, t2 ∈ R,

which is well-defined since
∞∑

n=1
B̃n(0)P

d−1
2

n (1) =
∞∑

n=1
Bn(0)P

d−1
2

n (1) < ∞. Clearly, (21)

holds for such a construction of C̃(ϑ(x1,x2); t). For each n ∈ N0, one of possible formu-

lations of {B̃n(t), t ∈ R, is

(23) B̃n(t) = (l + 1− t)νBn(l) + (t− l)νBn(l + 1), l ≤ t ≤ l + 1, l ∈ Z, t ∈ R,

which plainly enjoys the property (22), where ν is a positive constant. This actually
provides an efficient method for constructing covariance matrix models on D× R based
on those on D× Z.
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Example 6. In (23) let Bn(l) be the covariance matrix function of an m-variate moving
average time series of order q ≥ 1 (see Example 1),

Bn(l) =



q−l∑
h=0

ΨhBnΨ
′
h+l, l = 0, 1, . . . , q,

q+l∑
h=0

Ψh−lBnΨ
′
h, l = −1, . . . ,−q,

0, |l| > q, l ∈ Z,

it yields

B̃n(t) =



(q + 1 + t)νΨqBnΨ
′
0, −q − 1 ≤ t ≤ −q,

(l + 1− t)ν
q+l∑
h=0

Ψh−lBnΨ
′
h

+(t− l)ν
q+l+1∑
h=0

Ψh−lBnΨ
′
h,

l ≤ t ≤ l + 1, l = −q + 1, . . . ,−1,

(l + 1− t)ν
q−l∑
h=0

ΨhBnΨ
′
h+l

+(t− l)ν
q−l−1∑
h=0

ΨhBnΨ
′
h+l+1,

l ≤ t ≤ l + 1, l = 0, 1, . . . , q − 1,

(q + 1− t)νΨ0BnΨ
′
q, q ≤ t ≤ q + 1,

0, |t| > q + 1,

which may be regarded as the covariance matrix function of an m-variate continuous-
time moving average process of order q, for each n ∈ N0. The resulting covariance matrix
function on D× R is

C̃(ϑ(x1,x2); t) =



(q + 1 + t)νΨqC0(ϑ(x1,x2))Ψ
′
0, −q − 1 ≤ t ≤ −q,

(l + 1− t)ν
q+l∑
h=0

Ψh−lC0(ϑ(x1,x2))Ψ
′
h

+(t− l)ν
q+l+1∑
h=0

Ψh−lC0(ϑ(x1,x2))Ψ
′
h,

l ≤ t ≤ l + 1, l = −q + 1, . . . ,−1,

(l + 1− t)ν
q−l∑
h=0

ΨhC0(ϑ(x1,x2))Ψ
′
h+l

+(t− l)ν
q−l−1∑
h=0

ΨhC0(ϑ(x1,x2))Ψ
′
h+l+1,

l ≤ t ≤ l + 1, l = 0, 1, . . . , q − 1,

(q + 1− t)νΨ0C0(ϑ(x1,x2))Ψ
′
q, q ≤ t ≤ q + 1,

0, |t| > q + 1, x1,x2 ∈ D,

where C0(ϑ(x1,x2)) =
∞∑

n=0
BnP

( d−1
2 )

n (cosϑ(x1,x2)),x1,x2 ∈ D, is an m×m covariance

matrix function on D by Corollary 1.
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6. Proof

6.1. Proof of Lemma 1. Over Sd the addition formula connecting spherical harmonics
with the ultraspherical polynomials reads

(24) β2
n

cn,d∑
j=1

Sn,j (x1)Sn,j (x2) = P
( d−1

2 )
n (x′

1x2), x1,x2 ∈ Sd;

see, for instance, Theorem 9.6.3 of [2]. If xk ∈ D (k = 1, 2), then, by the definition of the
arccos-quasi-quadratic metric,

∥Σp 1
2w(xk)∥2 = (w(xk))

′
Σpw(xk) = 1,

i.e., Σp 1
2w(xk) ∈ Sd. Substituting xk in (24) by Σp 1

2w(xk) (k = 1, 2) results in (4).

6.2. Proof of Lemma 2. According to Lemma 2 of [33], the random field{√
ϖd

βn
P
( d−1

2 )
n (U′x) ,x ∈ Sd

}
has mean 0 and covariance function P

( d−1
2 )

n (x′
1x2) , and, for i ̸= j,{√

ϖd

βi
P
( d−1

2 )
i (U′x) ,x ∈ Sd

}
and

{√
ϖd

βj
P
( d−1

2 )
j (U′x) ,x ∈ Sd

}
are uncorrelated. Observing that Σp 1

2w(xk) ∈ Sd whenever xk ∈ D (k = 1, 2), we obtain

cov(Zn(x1), Zn(x2))

= cov

(√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x1)

)
,

√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x2)

))
= P

( d−1
2 )

n

((
Σp

1
2w(x1)

)′
Σp

1
2w(x2)

)
= P

( d−1
2 )

n (cos(ϑ(x1,x2)), x1,x2 ∈ D.

Clearly, EZn(x) = 0,x ∈ D, and, for i ̸= j, cov(Zi(x1), Zj(x2)) = 0,x1,x2 ∈ D.

6.3. Proof of Theorem 1. The (entry-by-entry) convergence of
∞∑

n=1
Bn(t, t)P

( d−1
2 )

n (1)

implies that
∞∑

n=1
Bn(t1, t2)P

( d−1
2 )

n (1) is absolutely convergent (entry-by-entry) for all

tk ∈ T, k = 1, 2. To see this, let Vnj(t) = (Vnj,1(t), . . . , Vnj,m(t))′, t ∈ T, n ∈ N, j ∈
{1, . . . , cn,d}. It follows from the Cauchy-Schwarz inequality and the inequality of arith-
metic and geometric means that

|bik,n(t1, t2)| = | cov(Vnj,i(t1), Vnj,k(t2))|
≤

√
var(Vnj,i(t1)) var(Vnj,k(t2)))

≤ var(Vnj,i(t1))+var(Vnj,k(t2)))
2

=
bii,n(t1,t1)+bkk,n(t2,t2)

2 , t1, t2 ∈ T, i, k = 1, . . . ,m,

which implies

∞∑
n=0

|bik,n(t1, t2)|P
( d−1

2 )
n (1) ≤ 1

2

∞∑
n=0

|bii,n(t1, t2)|P
( d−1

2 )
n (1)

+
1

2

∞∑
n=0

|bkk,n(t1, t2)|P
( d−1

2 )
n (1) < ∞,

since P
( d−1

2 )
n (1) > 0.
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Under the convergent assumption of
∞∑

n=1
Bn(t, t)P

( d−1
2 )

n (1) for every t ∈ T, the infinite

series at the right-hand side of (8) is convergent in mean square over x ∈ D and t × T,
since the independent assumption among Vnj(t)s implies

E

(
n1+n2∑
n=n1

βn

cn,d∑
j=1

Vnj(t)Sn,j

(
Σp 1

2w(x)
))(n1+n2∑

k=n1

βk

ck,d∑
i=1

Vki(t)Sk,i

(
Σp 1

2w(x)
))′

=
n1+n2∑
n=n1

n1+n2∑
k=n1

βnβk

cn,d∑
j=1

ck,d∑
i=1

E {Vnj(t)(Vki(t))
′}Sn,j

(
Σp 1

2w(x)
)
Sk,i

(
Σp 1

2w(x)
)

=
n1+n2∑
n=n1

Bn(t, t)β
2
n

cn,d∑
j=1

Sn,j

(
Σp 1

2w(x)
)
Sn,j

(
Σp 1

2w(x)
)

=
n1+n2∑
n=n1

Bn(t, t)P
( d−1

2 )
n (1)

→ 0, n1, n2 → ∞,

where the third equality is due to Lemma 1. Obviously, the mean vector function EZ(x; t)
is identical to 0. It follows from Lemma 1 that

cov(Z(x1; t1),Z(x2; t2)) = E

V0(t1) +

∞∑
n=1

βn

cn,d∑
j=1

Vnj(t1)Sn,j

(
Σp

1
2w(x1)

)
×

(
V0(t2) +

∞∑
k=1

βk

ck,d∑
i=1

Vki(t2)Sk,i

(
Σp

1
2w(x2)

))′

= E {V0(t1)(V0(t2))
′}+

∞∑
n=1

∞∑
k=1

βnβk

cn,d∑
j=1

ck,d∑
i=1

E {Vnj(t1)(Vki(t2))
′}Sn,j

(
Σp

1
2w(x1)

)
Sk,i

(
Σp

1
2w(x2)

)

= B0(t1, t2) +

∞∑
n=1

Bn(t1, t2)β
2
n

cn,d∑
j=1

Sn,j

(
Σp

1
2w(x1)

)
Sn,j

(
Σp

1
2w(x2)

)
= B0(t1, t2) +

∞∑
n=1

Bn(t1, t2)P
( d−1

2 )
n (cosϑ(x1,x2)), x1,x2 ∈ D, t1, t2 ∈ T.

To show that {Z(x; t),x ∈ D, t ∈ T} is an m-variate Gaussian random field, we just
need to take a look at its finite-dimensional characteristic functions. In fact, for every
l ∈ N and arbitrary xk ∈ D and tk ∈ T (k = 1, . . . , l), the characteristic function of an
lm-variate random vector (Z′(x1; t1), . . . ,Z

′(xl; tl))
′ is

E exp

(
ı

l∑
k=1

ω′
kZ(xk; tk)

)

= Eexp

(
ı

l∑
k=1

ω′
kV0(tk)

)
Eexp

ı

∞∑
n=1

βn

cn,d∑
j=1

l∑
k=1

ω′
kVnj(tk)Sn,j

(
Σp

1
2w(xk)

)
= Eexp

(
ı

l∑
k=1

ω′
kV0(tk)

) ∞∏
n=1

cn,d∏
j=1

Eexp

(
ıβn

l∑
k=1

ω′
kVnj(tk)Sn,j

(
Σp

1
2w(xk)

))

= exp

(
−1

2

l∑
k=1

l∑
k′=1

ω′
k cov(V0(tk),V0(tk′))ωk′

)
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×
∞∏

n=1

cn,d∏
j=1

exp

(
−β2

n

2

l∑
k=1

l∑
k′=1

ω′
k cov(Vnj(tk)Sn,j

(
Σp

1
2w(xk)

)
,

Vnj(tk′)Sn,j

(
Σp

1
2w(xk′)

)
ωk′

)
= exp

(
−1

2

l∑
k=1

l∑
k′=1

ω′
kB0(tk, tk′)ωk′

)

×
∞∏

n=1

cn,d∏
j=1

exp

(
−β2

n

2

l∑
k=1

l∑
k′=1

ω′
kBn(tk, tk′)ωk′Sn,j

(
Σp

1
2w(xk)

)
Sn,j

(
Σp

1
2w(xk′)

))

= exp

(
−1

2

l∑
k=1

l∑
k′=1

ω′
kB0(tk, tk′)ωk′

)

×
∞∏

n=1

exp

−1

2

l∑
k=1

l∑
k′=1

ω′
kBn(tk, tk′)ωk′β2

n

cn,d∑
j=1

Sn,j

(
Σp

1
2w(xk)

)
Sn,j

(
Σp

1
2w(xk′)

)
= exp

(
−1

2

l∑
k=1

l∑
k′=1

ω′
kB0(tk, tk′)ωk′

)

×
∞∏

n=1

exp

(
−1

2

l∑
k=1

l∑
k′=1

ω′
kBn(tk, tk′)ωk′P

d−1
2

n (cosϑ(xk,xk′))

)

= exp

{
−1

2

l∑
k=1

l∑
k′=1

ω′
k

[
B0(tk, tk′) +

∞∑
n=1

Bn(tk, tk′)P
d−1
2

n (cosϑ(xk,xk′))

]
ωk′

}
ωk ∈ Rm, k = 1, . . . ,m,

where the sixth equality follows from Lemma 1, and ı represents the imaginary unit.

6.4. Proof of Theorem 2. (i) Similar to in the proof of Theorem 1, it can be verified
that the (entry-by-entry) convergence of

∞∑
n=0

Bn(t, t)P
( d−1

2 )
n (1)

implies that
∞∑

n=0

Bn(t1, t2)P
( d−1

2 )
n (1)

is absolutely convergent (entry-by-entry) for all tk ∈ T, k = 1, 2. The right-hand side
series of (14) converges in mean square, since U, {Vn(t), t ∈ T}, n ∈ N0 are independent,
and

ϖdE

(
n1+n2∑
n=n1

Vn(t)

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

))(n1+n2∑
k=n1

Vk(t)

βk
P
(U′ d−1

2 )
k

(
Σp

1
2w(x)

))′

=

n1+n2∑
n=n1

n1+n2∑
k=n1

E {Vn(t)(Vk(t))
′}

× E

{√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

) √
ϖd

βk
P
( d−1

2 )
k

(
U′Σp

1
2w(x)

)}
=

n1+n2∑
n=n1

E {Vn(t)(Vn(t))
′}E

{√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

) √
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x)

)}
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=

n1+n2∑
n=n1

Bn(t, t)P
( d−1

2 )
n (1) → 0, n1, n2 → ∞,

where the third equality is obtained from Lemma 2. The mean function of {Z(x; t),x ∈
D, t ∈ T} is clearly identical to 0, and its covariance matrix function is

cov(Z(x1; t1),Z(x2; t2))

= E

{(
V0(t1) +

√
ϖd

∞∑
n=1

Vn(t1)

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x1)

))

×

(
V0(t2) +

√
ϖd

∞∑
l=1

Vl(t2)

βl
P
( d−1

2 )
l

(
U′Σp

1
2w(x2)

))′}

= E {V0(t1)(V0(t2))
′}+

∞∑
n=1

∞∑
l=1

E {Vn(t1)(Vl(t2))
′}

× E

{√
ϖd

βn
P
( d−1

2 )
n

(
U′Σp

1
2w(x1)

) √
ϖd

βl
P
( d−1

2 )
l

(
U′Σp

1
2w(x2)

)}
= B0(t1, t2) +

∞∑
n=1

Bn(t1, t2)P
( d−1

2 )
n (cosϑ(x1,x2)), x1,x2 ∈ D, t1, t2 ∈ T,

where the last equality is due to Lemma 2 and the assumption E {Vn(t1)(Vl(t2))
′} = 0

(n ̸= l).
(ii) It suffices to verify that the covariance matrix function of (15) equals (16), while

the rest is analogous to the Part (i). In fact, we have

cov(Z(x1; t1),Z(x2; t2))

= E


V0(t1) +

√
ϖd

∞∑
n=1

Vn(t1)

[n2 ]∑
k=0

(
β
( d−1

2 )
k,n

) 1
2

βn−2k
P
( d−1

2 )
n−2k

(
U′Σp

1
2w(x1)

)

×

V0(t2) +
√
ϖd

∞∑
l=1

Vl(t2)

[ l
2 ]∑

j=0

(
β
( d−1

2 )
j,l

) 1
2

βl−2j
P
( d−1

2 )
l−2j

(
U′Σp

1
2w(x2)

)
′

=

∞∑
n=1

∞∑
l=1

E {Vn(t1)(Vl(t2))
′}

[n2 ]∑
k=0

[ l
2 ]∑

j=0

(
β
( d−1

2 )
k,n β

( d−1
2 )

j,l

) 1
2

× E

{ √
ϖd

βn−2k
P
( d−1

2 )
n−2k

(
U′Σp

1
2w(x1)

) √
ϖd

βl−2j
P
( d−1

2 )
l−2j

(
U′Σp

1
2w(x2)

)}

+ E {V0(t1)(V0(t2))
′} = B0(t1, t2) +

∞∑
n=1

E {Vn(t1)(Vl(t2))
′}

[n2 ]∑
k=0

β
( d−1

2 )
k,n

× E

{ √
ϖd

βn−2k
P
( d−1

2 )
n−2k

(
U′Σp

1
2w(x1)

) √
ϖd

βn−2k
P
( d−1

2 )
n−2k

(
U′Σp

1
2w(x2)

)}

= B0(t1, t2) +

∞∑
n=1

Bn(t1, t2)

[n2 ]∑
k=0

β
( d−1

2 )
k,n P

( d−1
2 )

n−2k (cosϑ(x1,x2))
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= B0(t1, t2) +

∞∑
n=1

Bn(t1, t2) (cosϑ(x1,x2))
n
, x1,x2 ∈ D, t1, t2 ∈ T,

where the third equality follows from Lemma 2 and E {Vn(t1)(Vl(t2))
′} = 0 (n ̸= l), the

fourth one is from Lemma 2, and the last one is from Lemma 3 of [33].

6.5. Proof of Theorem 3. (i) Since ℓ(x) is completely monotone on [0,∞), it possesses
an integral representation

(25) ℓ(x) =

∫ ∞

0

exp(−xu)dF (u), x ≥ 0,

by Bernstein’s theorem [52], where F (u) is a bounded and nondecreasing function on
[0,∞) such that the integral converges for all x ≥ 0. Consequently, we are able to
rewrite (17) as

Cij(x1,x2; t1, t2) =
∫∞
0

C̃ij(x1,x2; t1, t2;u) dF (u),
x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

where

C̃ij(x1,x2; t1, t2;u) = (g(ϑ(x1,x2)) + θij))
− 1

2 exp
(
− (t1−t2)

2

g(ϑ(x1,x2))+θij
u
)
,

x1,x2 ∈ D, t1, t2 ∈ R, u ≥ 0, i, j = 1, . . . ,m.

By Theorem 4 of [31], it suffices to verify that C̃ij(x1,x2; t1, t2;u), i, j = 1, . . . ,m, for-
mulate an m × m covariance matrix function on D × R, for every fixed u ≥ 0. This is
true by Theorems 3 and 4 of [31], since they can be rewritten as

C̃ij(x1,x2; t1, t2;u)

= 1√
π

∫∞
0

cos((t1 − t2)
√
uω) exp

(
−ω2

4 g(ϑ(x1,x2))
)
exp

(
−ω2

4 θij

)
dω,

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

where cos((t1 − t2)
√
uω) is a covariance function on R, exp

(
−ω2

4 g(ϑ(x1,x2))
)
is a co-

variance function on D since g(x) has a completely monotone derivative and ϑ(x1,x2))

is a variogram on D, and the matrix with entries exp
(
−ω2

4 θij

)
is positive definite by

Lemma 3, for each fixed ω ≥ 0.
(ii) According to the integral representation (25) of ℓ(x), (18) can be rewritten as

Cij(x1,x2; t1, t2) =
∫∞
0

C̃ij(x1,x2; t1, t2;u) dF (u),
x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

where

C̃ij(x1,x2; t1, t2;u)

= (g(ϑ(x1,x2)) + θij))
− 1

2 exp
(
− (g(ϑ(x1,x2)) + θij)

− 1
2 |t1 − t2|u

)
,

x1,x2 ∈ D, t1, t2 ∈ R, u ≥ 0, i, j = 1, . . . ,m,

and, moreover,

C̃ij(x1,x2; t1, t2;u)
= 2

π

∫∞
0

cos((t1 − t2)
√
uω) dω

g(ϑ(x1,x2))+θij+ω2

x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m.

They form an m×m covariance matrix function on D×R by Theorems 3 and 4 of [31],
since cos((t1− t2)

√
uω) is a covariance function on R and an m×m matrix function with

entries (
g(ϑ(x1,x2)) + θij + ω2

)−1
, x1,x2 ∈ D, t1, t2 ∈ R, i, j = 1, . . . ,m,

is a covariance matrix function on D, for each fixed u ≥ 0.
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(iii) It follows from Theorem 2 of [1], since ϑ(x1,x2)+γ(t1, t2) is conditionally negative
definite on D × T due to the fact that ϑ(x1,x2) is conditionally negative definite on D
[34] and the assumption on γ(t1, t2).

6.6. Proof of Theorem 4. It is sufficient to verify that B̃n(t) defined by (23) is an

m×m stationary covariance matrix functions on R, for each n ∈ N0. Notice that B̃n(t)
is equivalent to

B̃n(t) =

∞∑
l=−∞

Bn(l)Cν(t− l), t ∈ R,

where

(26) Cν(x) = (max(1− |x|, 0))ν , x ∈ R,

is a stationary covariance function on R with a spectral density function FCν (ω). Given
α ∈ (0, 1), we define

B̃n(t;α) =

∞∑
l=−∞

α|l|Bn(l)Cν(t− l), t ∈ R.

Observe that α|l| (l ∈ Z) is a stationary covariance function on Z. Its product with
Bn(l), α

|l|Bn(l), l ∈ Z, is certainly an m×m stationary covariance function on Z, with a

spectral density matrix function
∞∑

l=−∞
α|l|Bn(l) exp(ılω), ω ∈ R, which is positive definite

for each fixed ω ∈ R. Consequently, the Fourier transform of B̃n(t;α) exists, and∫
R
B̃n(t;α) exp(ıtω)dt

=

∞∑
l=−∞

α|l|Bn(l)

∫
R
Cν(t− l) exp(ıtω)dt

=

∞∑
l=−∞

α|l|Bn(l)

∫
R
g0(y) exp(ı(y + l)ω)dy (let y = t− l)

=

∞∑
l=−∞

α|l|Bn(l) exp(ılω)FCν
(ω), ω ∈ R,

is a positive definite matrix for each fixed ω ∈ R. Hence, B̃n(t;α) is an m×m stationary

covariance function on R [19]. So is lim
α→1−

B̃n(t;α) = B̃n(t), t ∈ R.
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121–226. https://www.numdam.org/item/AIHPB_1967__3_2_121_0/

16. G. Gaspari and S. E. Cohn, Construction of correlations in two and three dimensions, Q. J. R.
Meteorol. Soc. 125 (1999), 723–757. https://doi.org/10.1002/qj.49712555417

17. G. Gaspari, S. E. Cohn, J. Guo and S. Pawson, Construction and application of covariance
functions with variable length-fields, Q. J. R. Meteorol. Soc. 132 (2006), 1815–1838. https:

//doi.org/10.1256/qj.05.08

18. M. Grigoriu, Applied non-Gaussian processes: examples, theory, simulation, linear random
vibration, and MATLAB Solutions, Prentice-Hall, New Jersey, 1995.

19. E. J. Hannan, Multiple time series. Wiley, New York, 1970. https://doi.org/10.1002/

9780470316429

20. R. A. Horn and C. R.Johnson, Matrix analysis, Cambridge University Press, Cambridge, 2013.

https://doi.org/10.1017/CBO9780511810817

21. S. T. Huang and S. Cambanis, Spherically invariant processes: Their nonlinear structure,
discrimination, and estimation, J. Mul. Anal. 9 (1979), 59–83. https://doi.org/10.1016/

0047-259x(79)90067-8

22. D. R. Jensen and R. V. Foutz, The structure and analysis of spherical time-dependent processes,
SIAM J. Appl. Math. 49 (1989), 1834–1844. https://doi.org/10.1137/0149112

23. R, H. Jones, Stochastic processes on a sphere, Ann. Math. Statist. 34 (1963), 213–218. https:
//doi.org/10.1214/aoms/1177704257

24. R. E. Kass, The geometry of asymptotic inference, Statist. Sci. 4 (1989), 188–234. https:

//doi.org/10.1214/ss/1177012480

25. N. Leonenko, A. Malyarenko and A. Olenko, On spectral theory of random fields in the ball,

Theor. Probab. Math. Statist. 107 (2022), 61–76. https://doi.org/10.1090/tpms/1175

26. T. Lu, N. Leonenko and C. Ma, Series representations of isotropic vector random fields on
balls, Statist. Probab. Lett. 156 (2020), paper # 108583. https://doi.org/10.1016/j.spl.

2019.108583

27. T. Lu and C. Ma, Isotropic covariance matrix functions on compact two-point ho-
mogeneous spaces, J. Theor. Probab. 33 (2020), 1630–1656. https://doi.org/10.1007/

s10959-019-00920-1

28. T. Lu, C. Ma and Y. Xiao, Strong local nondeterminism and exact modulus of continuity for
isotropic Gaussian random fields on compact two-point homogeneous spaces, J. Theor. Probab.
36 (2023), 2403–2425. https://doi.org/10.1007/s10959-022-01231-8

29. C. Ma, Spatial autoregression and related spatio-temporal models, J. Mul. Anal. 88 (2004),
152–162. https://doi.org/10.1016/s0047-259x(03)00067-8

30. C. Ma, Vector random fields with second-order moments or second-order increments, Stoch.
Anal. Appl. 29 (2011), 197–215. https://doi.org/10.1080/07362994.2011.532039

31. C. Ma, Covariance matrices for second-order vector random fields in space and time, IEEE
Trans. Signal Proc. 59 (2011), 2160–2168. https://doi.org/10.1109/tsp.2011.2112651

32. C. Ma, Stationary and isotropic vector random fields on spheres, Math. Geosci. 44 (2012),
765–778. https://doi.org/10.1007/s11004-012-9411-8

https://doi.org/10.3150/18-bej1068
https://doi.org/10.3150/14-bej688
https://doi.org/10.3842/tsp-1833768554-46
https://doi.org/10.1007/978-1-4614-6660-4
https://doi.org/10.1109/tsp.2011.2166391
https://doi.org/10.1214/24-aos2368
https://doi.org/10.1214/24-aos2368
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1201/9781351077040
https://www.numdam.org/item/AIHPB_1967__3_2_121_0/
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1256/qj.05.08
https://doi.org/10.1256/qj.05.08
https://doi.org/10.1002/9780470316429
https://doi.org/10.1002/9780470316429
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1016/0047-259x(79)90067-8
https://doi.org/10.1016/0047-259x(79)90067-8
https://doi.org/10.1137/0149112
https://doi.org/10.1214/aoms/1177704257
https://doi.org/10.1214/aoms/1177704257
https://doi.org/10.1214/ss/1177012480
https://doi.org/10.1214/ss/1177012480
https://doi.org/10.1090/tpms/1175
https://doi.org/10.1016/j.spl.2019.108583
https://doi.org/10.1016/j.spl.2019.108583
https://doi.org/10.1007/s10959-019-00920-1
https://doi.org/10.1007/s10959-019-00920-1
https://doi.org/10.1007/s10959-022-01231-8
https://doi.org/10.1016/s0047-259x(03)00067-8
https://doi.org/10.1080/07362994.2011.532039
https://doi.org/10.1109/tsp.2011.2112651
https://doi.org/10.1007/s11004-012-9411-8


TIME-VARYING RANDOM FIELDS ON ARCCOS-QUASI-QUADRATIC METRIC SPACE 45

33. C. Ma, Time varying isotropic vector random fields on spheres, J. Theor. Probab. 30 (2017),

1763–1785. https://doi.org/10.1007/s10959-016-0689-1

34. C. Ma, Vector random fields on the probability simplex with metric-dependent covari-
ance matrix functions, J. Theor. Probab. 36 (2023), 1922–1938. https://doi.org/10.1007/

s10959-022-01217-6

35. C. Ma, Bifractional Brownian motions on metric spaces, J. Theor. Probab. 37 (2024), 1299–
1332. https://doi.org/10.1007/s10959-023-01284-3

36. C. Ma, Vector random fields on the arccos-quasi-quadratic metric space, Stochastics, To appear.
DOI: 10.1080/17442508.2024.2425402. https://doi.org/10.1080/17442508.2024.2425402

37. Z. Ma and C. Ma, Series representations and simulations of isotropic random fields in the

Euclidean space, Theor. Probab. Math. Statist. 105 (2021), 93–111. https://doi.org/10.1090/
tpms/1158

38. A. Malyarenko, Invariant Random Fields on Spaces with a Group Action, Springer, New York,

2013. https://doi.org/10.1007/978-3-642-33406-1
39. M. B. Marcus, ξ-radial Processes and Random Fourier Series, Mem. Amer. Math. Soc., Prov-

idence, RI, 1987.

40. M. G. McLeod, Stochastic processes on a sphere, Phy. Earth Plan. Interior 43 (1986), 283–299.
https://doi.org/10.1016/0031-9201(86)90018-X

41. C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive

definite functions, Constr. Approx. 2 (1986), 11–22. https://doi.org/10.1007/bf01893414
42. A. E. Nussbaum, Integral representation of functions and distributions positive definite relative

to the orthogonal group, Trans. Amer. Math. Soc. 175 (1973), 355–387. https://doi.org/10.

1090/s0002-9947-1973-0333600-6

43. A. E. Nussbaum, On functions positive definite relative to the orthogonal group and the rep-

resentation of functions as Hankel-Stieltjes transforms, Trans. Amer. Math. Soc. 175 (1973),
389–408. https://doi.org/10.1090/s0002-9947-1973-0333601-8

44. Planck Collaboration VII, Planck 2018 results VII: Isotropy and statistics of the CMB, Astron-

omy & Astrophysics, 641 (2020), A7. https://doi.org/10.1051/0004-6361/201935201
45. G. C. Reinsel, Elements of Multivariate Time Series Analysis, 2nd edition, Springer, New York,

1997.

46. W. Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7 (1963),
532–539. https://doi.org/10.1215/ijm/1255644960

47. J. Rosinski, On a class of infinitely divisible processes represented as mixtures of Gaussian

processes, Stable Processes and Related Topics, Cambanis, S., Samorodnitsky, G., and Taqqu,
M. S. eds., 27–41, Birkhauser, Boston, 1991. https://doi.org/10.1007/978-1-4684-6778-9_2

48. W. R. Schneider, Completely monotone generalized Mittag-Leffler functions, Expositiones

Matema. 14 (1996), 3–16.
49. I. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. https:

//doi.org/10.1215/s0012-7094-42-00908-6
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