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JUAN DU AND CHUNSHENG MA

TIME-VARYING VECTOR RANDOM FIELDS ON THE
ARCCOS-QUASI-QUADRATIC METRIC SPACE

An arccos-quasi-quadratic metric is defined on a subset of R4t1 such as a sphere, a
ball, an ellipsoidal surface, an ellipsoid, a simplex, a conic surface, or a hyperbolic
surface, and the corresponding metric space incorporates several important cases in a
unified framework that makes possible for us to study metric-dependent random fields
on different metric spaces in a unified manner. Over the arccos-quasi-quadratic metric
space, this paper constructs a class of time-varying vector random fields via either
spherical harmonics or ultraspherical polynomials, and builds up various parametric
and semiparametric covariance matrix structures. The extension problem is discussed
as well.

1. INTRODUCTION

This paper attempts to develop spatio-temporal vector random fields whose spatial in-
dex domains are termed as an arccos-quasi-quadratic metric space recently introduced in
[35, 36]. Such a metric space is a subset I of R4 together with a metric (distance func-
tion) that is the composition of arccosine and quasi-quadratic functions. More precisely,
over D we define the arccos-quasi-quadratic metric by

(1) 9(x1,x2) = arccos (w(x1)) Iw(xz)), x1,%2 € D,

where w(x) is a (d + 1)-variate function defined on D, X is a (d + 1) x (d + 1) strictly
positive definite matrix, |(w(x1))'Iw(x2)| < 1, x1,x2 € D, and (w(x1))'Zw(xz) = 1 if
and only if x; = x5. Important examples of this type of metric spaces are
(i) the unit sphere S = {x € R : ||x| = 1}, J(x1,x2) = arccos(x}x2), X1,Xs €
S?, in (1) w(x) = x and 3 = Iz, where ||x|| represents the Euclidean norm of
x € R and Iy, is a (d+ 1) x (d + 1) identity matrix;
(ii) an ellipsoidal surface D = {x € R : x'3x = 1}, J(x1,%x2) = arccos(x}¥xz),
and w(x) = x;
(iii) the unit ball B = {x € R?: || x| < 1}, with distance function [6, 10]

91, %2) = arceos (x4xz + /1= [Py = [%]?)

X
in (1), w(x) = and X = Iyq;

V=]

(iv) an ellipsoid D = {x € R? : x'3ox < 1}, 3 is a d x d strictly positive definite

matrix,
b'4
w() = a=(% 7).
V1 —x3px
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and

¥(x1,X2) = arccos (x'lonQ + \/1 — X Xox1 \/1 — X/QEOXQ) ;
(v) the probability simplex

d+1
1
Ad: {X:((El,...,{td+1>/€Rd+ X ZO,...,$d+1 ZO,Zxkzl},
k=1

with distance function [6, 10, 24]

d+1
’19(X1,X2) — arccos <Z \/$k1$k2> , X = (xlk; .. 'a‘rd-‘rl,k), S Ad, k= 1,2,

k=1
in (1), w(x) = (&1, /T2, ..., +/Tar1) and X = Ty1;
(vi) a simplex or a corner of the d-cube
d
]D):{XG]Rd: 21 >0,...,2q4 >0, Zxk<1}
k=1

¥(x1,x2) = arccos (Zi: VTr1Tr2 + \/(1 - kijl xm) <1 - 2: xk2)> 5
1

Xk = (T1k, ..., 2qx) €D, k=1,2,

in (1), w(x) = thwmn T ) and 35— Loy

(vii) the double conic surface

X
D={(x )ER“%Hﬂ=m%mmHns§,
d+1

with distance function [53]

¥(x1,%2) = arccos <X/1X2 + \/(1 — x3+171) (1 — x3+1,2)> ,

( X ) €D, k=1,2,
Td+1,k

X

in (1), w(x) =
Vi- T3

(viii) the hyperbolic surface

D;{( x )eRd—H:x? ||x|2:r2’rgxd+1gm}?

and X = Id+1;

Tt d+1

with distance function [53]

9(x1,X9) = arccos (X'le + \/(1 +r2 xi-&-l,l) (1 42— x3+1,2>> ,
( Xk ) eD k=12,
LTd41,k
x
yand X =T 4.

where 7 is a nonnegative constant, w(x) =
/ 2 _ g2
L+r2—a5,,
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Over the spherical metric space (S%, 1), spatial or spatio-temporal random fields are

extremely well studied [7, 8, 15, 19, 22, 23, 27, 28 33, 38, 40, 54, 55]. In contrast, just
recently vector random fields with the metric-dependent correlation structures on B¢ and
A4 are drawn to attention in [9, 26, 34], besides random fields with radial covariance func-
tions on B¢ are considered in [25, 42, 43] when B? is endowed with the Euclidean distance.

As an original and innovative contribution, this paper places these (non-Euclidean) met-
ric spaces into a unified context and attempts to study metric-dependent random fields
on different metric spaces in a unified manner. With a relatively wide coverage, the inves-
tigation on the arccos-quasi-quadratic metric space of random fields is expected to offer
more theoretical options to practical demands in climatology, cosmology, earth science,
and medical imaging, just to name but a few. Complex data in modern data analysis may
be described as elements of a metric space that satisfies certain structural conditions and
features a probability measure [12]. One of our applied motivations stems from astronom-
ical sciences, particularly the future European Space Agency mission Euclid and Cosmic
Microwave Background Stage 4 (CMB-S4) project; see https://cmb-s4.org. CMB-S4.

In Section 3 we construct m-variate second-order random fields on a spatio-temporal
domain D x T via two infinite series expressions, one is based on spherical harmonics
and the other is in terms of the ultraspherical polynomials, and present an infinite series
representation for the covariance matrix function of an m-variate elliptically contoured
random field on D x T by means of the ultraspherical polynomials. Many statistical
models in cosmological perturbation theory are time-varying isotropic Gaussian random
fields on S2. For instance, the temperature in CMB situation is expanded in spherical
harmonics, for an observer sitting in x at time t,

00 l
(2) T(x,t,n) =T() Y > a(x,t)Yix(n),

1=0 k=—1
where n is the direction of observation, and {Y,;(x),x € S%,j = 0,%+1,...,%n} is an
orthonormal basis of spherical harmonics on S?; see (3.8) of [13]. But, at least locally,
the true Universe is not perfectly homogeneous and isotropic[13, 44]. The advantage of

(8) or (13) developed in Section 3 allows for anisotropy, due to many possible selections
of w(x) and X over D in (1).

Section 4 establishes various parametric or semiparametric correlation structures on
D x T, with three approaches offered in Theorem 3 in terms of completely monotone
functions and conditionally negative definite matrices, noticing that the arccos-quasi-
quadratic metric (1) is not only a variogram on D but also a measure definite kernel
[35].

The extension problem is considered in Section 5, where a covariance matrix function
on D X Z that is metric-dependent on D and stationary on Z is extended to one on D x R.
It essentially provides an effective approach for generating covariance matrix models on
D xR from those on D x Z. We refer the reader to [16] for the extension problem in a more
general context, although it was primarily concerned with positive-definite functions on
Euclidean spaces and on groups of lattice points. Examples of stationary covariance
functions on R being extended to isotropic covariance functions in R? (d > 2) may be
found in [29].

Some preliminary results are made available in Section 2 for use. Section 6 presents
the proofs of lemmas and theorems that are stated in Sections 2-5 respectively. In
what follows let d > 2. Denote by N the set of positive integers, and by Ny the set
of nonnegative integers. The trace of a square matrix B is denoted by trace(B). For
a positive definite matrix B, there is a symmetric matrix Bz of the same order of B,
which is called its positive definite square root [20], such that B = B:B:.
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2. PRELIMINARY RESULTS

This section provides some preliminary results for our constructions of second-order
time-varying random fields on the arccos-quasi-quadratic metric space (D,#). The im-
portant building blocks in the next section are spherical harmonics and ultraspherical
or Gegenbauers polynomials [2], which are closely related to each other via the addition
formula displayed in Lemma 1 below. Lemma 2 is a rephrased version of Lemma 2 in [33],
where it illustrates a basis of the set of isotropic and mean square continuous random
fields on the spherical metric space (S%,19). Lemma 3 recalls a couple of key connections
between a positive definite matrix and a conditionally negative definite matrix, which
will be employed in Section 4 to formulate some parametric or semiparmetric covariance
matrix models on D x T.

Recall that the ultraspherical polynomials [50] possess the exact expressions
rM@) = 1,
(3]
A n—k+X\ n—
PM@) = oy ¥ D e (20) 2, s eRnEN,

k=0

where )\ is a positive constant, I'(x) is Euler’s gamma function, and [z] stands for the

1
greatest integer less than or equal to . In a particular case A = 3, Pygz)(x) = P,(x)

(n € Np) are the Legendre polynomials, and, when A = 1, Pél)(cos ) = W. Over
the interval [—1,1], pM (x) is bounded in absolute value, and

I(n+2X)
T(n+ 1)D(2))’

Spherical harmonics are special functions on S¢ (d > 2), and form an orthonormal
basis, so that each function defined on S? can be written as a sum of these spherical
harmonics. Using the Gram-Schmidt orthogonalization, it is possible to choose ¢y 4
spherical harmonics of degree n in d + 1 variables that are orthonormal with respect to
the invariant measure on S¢ [2], where

2n+d—-1)(n+d—2)!
nl(d —1)!
Denote the members of this orthonormal basis by S, ;(x), x € S%, j =1,...,¢,.4, and,

in the particular case d = 2, {Y,,;(x),x € S%,j = 0,+1,...,%n} is also adopted for CMB
data in (2). The orthonormal property is

/ Snvj(X)SkJ(X)dO'(X) = 5nk5jl7 Tl,k c N, j € {1, . 7Cn,d}7 l e {1, .. .,Ck7d},
sd

\me)\ < PM(1) = € [~1,1], n € No.

(3) Cn,d = , neN.

where o (-) represents the invariant measure on S? and 6, is the Kronecker delta function.
Under such an orthonormal basis, spherical harmonics connect with the ultraspherical
polynomials through the addition formula; see, for instance, Theorem 9.6.3 of [2]. A
rephrased version of the addition formula is displayed as (4) below, in the language of
the arccos-quasi-quadratic metric space (D, ¥).

Lemma 1.

Cn,d

(4) 5721 an’j (E%W(Xl)) Sh.j (Zﬁw(xﬂ) = P,g 2 )((30519(X1,XQ))7 X1,Xo € D,
j=1

where

d—1

(%54) 2 1
o den (1) o (d — l)wd 2
(5 b= | ) (B men
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i1
and wy = % is the surface area of S%.
Similarly, Lemma 2 of [33] is rephrased as follows, although it is not clear whether
{PTSle)(cos ¥(x1,X2)), X1, %2 € D,n € Ny ¢ would be a basis of the set of mean square

continuous random fields that are metric-dependent on the arccos-quasi-quadratic metric
space (D, 9).

Lemma 2. If U is a (d+1)-dimensional random vector uniformly distributed on S%
(d > 2), then, for a fized n € N,

(6) Zn(x) = \/B?Pé%) (U'z%w(x)) , xeD,

is a random field with mean 0 and covariance function
(%5%)
(7) cov(Zn(X1), Zn(x2)) = P * 7 (cos¥(x1,X2)), X1,X2 €D,

where B3, is defined in (5). Moreover, for i # j, {Z;(x),x € D} and {Z;(x),x € D} are
uncorrelated; that is

COV(Zfi(Xl), Zj(XQ)) = 0, X1,X9 € D.

For m > 2, a real m x m symmetric matrix ® = (0;;)mxm is said to be conditionally

negative definite (or almost negative definite) [41], if the inequality
m m
D> aiafi; <0
i=1 j=1

holds for any a; € R (k = 1,...,m) subject to the condition >  ar = 0. Examples of

conditionally negative definite matrices are =
(i) a matrix with identical entries,

(ii) a matrix with entries 8;; = 6; + 0;,

(ili) a matrix with entries 0;; = max(6;,6,),

(iv) a matrix with entries 6;; = |0; — 6;|, where 61, ..., 0,, are real numbers,

(v) a matrix with entries 6;; = ||0; — 0;||?, where 8; e R™,i=1,...,m.
For an m x m matrix ® = (60;;)mxm, denote by exp(—®) an m x m matrix whose
ij-th entry is exp(—0;;) ¢,j = 1,...,m. The crucial connection between a conditionally
negative definite matrix and a positive definite matrix is released in the following lemma,
for whose proof we refer the reader to Corollary 2.1 of [11] or Theorems 4.1.3 and 4.1.7

of [3].
Lemma 3. A real m x m symmetric matric ® = (0;;)mxm is conditionally negative
definite if and only if one of the following conditions holds:

(i) There exist a, € R and 0, € R™ (k=1,...,m) such that
ei]‘ =a; +a; + ||01 —0j||2, ,j=1,...,m.

(ii) There exist ar, € R (k =1,...,m) and an m X m positive definite matriz B =
(bij)mxm such that

Gij:ai—kaj—bij, i,j::[?.'.,m.

(ili) exp(—A@®) = (exp(—Ab;j))mxm i an m X m positive definite matriz for every
nonnegative constant \.
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3. TIME-VARYING VECTOR RANDOM FIELDS ON ARCCOS-QUASI-QUADRATIC METRIC
SPACE

Let Dx T be a spatio-temporal index domain, where (D, ¢#) is an arccos-quasi-quadratic
metric space with the metric (1), and T is a temporal domain such as R or Z. This section
introduces second-order vector random fields on D x T whose covariance matrix functions
depend on the metric ¥(x1,x2) and the time variable as well, via two constructions in
Theorems 1 and 2 respectively.

Denote by I,, an m x m identity matrix. For a sequence of m X m matrices {B,,n €

o0
Ny}, the series > B, is said to be (entry-by-entry) convergent, if each of its entries is

n=0
o0 d—1
convergent. As an example, the convergence of »_ BnP,g 2 )(1) is equivalent to that of

n=0
d—1

=S d—2
n=0 n7*By, because of P'g i )(1) = F(ng;;g;ilzl) ~ N1

An m-variate Gaussian random field on D x T is constructed in Theorem 1 via an
infinite series expression in terms of spherical harmonics, with an infinite series represen-
tation for its covariance matrix function by means of the ultraspherical polynomials.
Theorem 1. Assume that {V,;(t),t € T} is an m-variate Gaussian stochastic process
with mean function EV,,;(t) = 0 and covariance matriz function

n — 00.

COV(an(t1)7an(t2)) = Bn(t17t2)a fO’i‘ each n € ij € {17 s 7Cn,d}7

{Vo(t),t € T} is an m-variate Gaussian stochastic process with mean 0 and covariance
matriz function Bo(t,t2), and that {Vo(t),t € T} and {V,;(t),t € T}, n € N,j €
&) d—1

{1,...,cn.d}, are independent. If > Bn(t7t)P,S 2 )(1) converges for every t € T, then
n=1

Cn,d

(8) Z(x;1) = Vo) + Y Bu > Vij(t)Sn,; (E%w(x))  xeD, teT,

is an m-variate Gaussian random field on D x T, with mean 0 and covariance matric
function

o0 ae—_
cov (Z(x1;t1), Z(x25t2)) = > Bn(tl,tg)P,g 2 )(cosﬁ(xl,xz)),
n=0
X1,Xg € ]D)> tl,tQ € Ta

(9)

where ¢, q and {B,,n € N} are defined by (3) and (5), respectively.
In particular, for a fixed tg € T, {Z(x;ty),x € D} is a purely spatial random field
d—1

o0
on D with covariance matrix function Y. Bn(to,to)Prg
n=0
Observing that B, (to,t0) (n € Np) are positive definite matrices and rewriting them
simply as B, it leads to the following corollary; see Theorem 3.1 of [30].

Corollary 1.1. For a sequence {B,,n € Ny} of m x m positive definite matrices, if

cos ¥(x1,X2)), X1,%x2 € D.

o d=1

> BnRE 2 )(1) converges, then there exists an m-variate Gaussian random field on D

e . . X (45)

with metric-dependent covariance matriz function Y, B, P, * ’(cosd(x1,%2)), X1,X2 €
n=0

D.

The next corollary is obtained, when {Vq(t),t € T} and {V,;(t),t € T} in (8) are
assumed to be stationary on T.
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Corollary 1.2 Under the assumptions of Theorem 1, let {Vo(t),t € T} and {V,;(t),t €
T} be stationary with

cov(Vo(t1), Vo(t2)) = Bo(t1 — t2),
cov(Vinj(t1), Vii(tz)) = Bu(ti —t2), t1,t2 € T, neN,j € {1,...,cna}-

da—1
If Z B,.(0)Pp ( )(1) converges, then (8) is an m-variate Gaussian random field on

D >< ']I‘ and its covariance matriz function

d—1

cov(Z(xy;ty), Z(xg;t2)) = Bn(tlftg)P,g 2 )(cosﬁ(xl,xQ)),
n=0
X1,X2 €D, t1,t5 €T,

(10)

is metric-dependent on D and stationary on T. Its temporal margin, {Z(xo;t), t € T}, is
an m-variate stationary Gaussian stochastic process on T, with mean 0 and covariance

matriz function > By (t1 — tg)Pyg?>(1), t1,to € T, where xg € D is a fixed point.
n=0
Example 1. In (8) let’s choose {V(¢),t € Z} and {V,;(t),t € T} as m-variate station-

ary linear processes [15],

Vo(t) = > Preo(t —k),
k=0

V() = Y Wreni(t—k), teZ, neN, je{l,...,cha},
k=0

with mean 0 and covariance matrix function

(o]
S 9B, ¥,,,, leN,

(Bn(=1)), -l eN,

B, () =

where {¥, k € No} is a sequence of m x m matrices and Z (trace(¥}, W)z < oo, and
=0
{eo(t),t € Z} and {e,;(t),t € Z} are m-variate Gaussian Whlte noise with mean 0 and

covariance matrix function

BOa tl = tQ;
COV(€0(t1)7€0(t2)) = { 0 ty 7& ta, t1,t9 € 7,
) ) 3 )

B., t1=ts
COV(Enj(tl)asnj(tQ)) = { 0 t 7& to, t1,t9 € 7.

d—1
Under the convergent assumption of Z B, P( )( 1), (10) becomes
n=1
> W Co(V(x1,%2))¥hyy,  ta—t1 =1,
k=0
(11) COV(Z(Xl;tl),Z(XQ;tQ)) = X1,X2 € D, € Ny,
> U 1Co(I(x1,%2)) ¥y,  ta—t = —I,

k=0

o0 d-—1

where Co(9(x1,%2)) = > BnPrg 2 )(cos 9(x1,X2)), X1,%X2 € D, is an m X m covariance
n=0

matrix function on D by Corollary 1.1.
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In particular, if ¥, = 0 (kK > ¢ + 1), then {V((¢),t € Z} and {V,;(t),t € Z} are
m-variate moving average time series of order ¢ > 1, with covariance matrix function
q—1 ,
Z‘I’th‘Ithrl? l:O,].,...,q7
h=0

Bnl = q+l
( ) Z \Ilh—an\II;p l= -1,...,—q,

h=0
In this case, (11) reduces to

q—1
Z ‘I’hCO(’lg(Xl,Xg))‘I’;l+l, 12071,...761,
h=0
cov(Z(xy;t), Z(xg;t+1)) = ¢ atl
(Z(x131), Zxz; t+1) S W, Co(9(x1, %))W}, 1=—1,...,—q,
h=0

0? 1| >q, | €Z, x1,%2 €D.

In another particular case where {V(t),t € Z} and {V,;(t),t € Z} are m-variate
first-order autoregressive time series, with covariance matrix function

B, + ®B,(0)®', =0,
B,.(I)={ B,(0)(®), l €N,
& 'B,(0), —leN,

where ® is an m x m matrix with trace(® ®) < 1 and B,,(0) satisfies the equation
B, (0) = B,, + ®B,,(0)®’, whose solution can be derived by use of the vectorizing oper-
ation [45], (11) reduces to

Co(’l?(Xl,Xg)) + @Cl(ﬁ(xl,XQ))(I)/, [l = 0,
C (ﬁ(XhXQ))( )lv le Na
[ Cl(’ﬂ(XhXQ)), -l e N,
teZ, x1,x0 €D,

cov(Z(xi1;t), Z(xo;t+1)) =

where Cy (d(x1,%5)) = z B, (0)P{ T ) (cosd(x1,%2)), %1, %5 € D,

While Gaussian random fields are widely adopted for modelling spatial or spatio-
temporal data, it is well documented that many cosmological, geological, informational,
environmental, physical, and biological systems are highly complex, non-Gaussian, and

exhibit non-linear patterns of spatial or spatio-temporal connectivity [11, 18, 44]. Con-
taining the Gaussian case as a particular case, elliptically contoured (or spherically in-
variant) random fields [21, 30, 56] enjoy the following important properties:

(i) It is well known that all mean square estimation and predicition prob-
lems for Gaussian random fields have linear solutions and that Gaussian
random fields are closed under linear operations. These two properties
do not uniquely characterize the Gaussian one, but they do character-
ize the class of second-order elliptically contoured random fields, as is
observed in [21, 51].

(ii) An elliptically contoured random field may or may not have first-
order moments, such as a Student’s t or stable one.

(iii) Among all second-order random fields, the class of second-order
elliptically contoured random fields is one of the largest, if not the largest,
classes that allow for any given correlation structure.

An elliptically contoured random field is essentially a scale mixture of Gaussian ran-
dom fields, and it is also termed as a type G random field if it is infinitely divisible
[39, 47]. Examples of elliptically contoured random fields include Student’s t, Cauchy,
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power-law, exponential power, hyperbolic, hyperbolic cosine ratio, hyperbolic sine ratio,
hyperbolic secant, Laplace, logistic, variance Gamma, normal inverse Gaussian, a-stable,
K-differenced, K-combined, Linnik, and Mittag-Leffler ones.
Denote the right-hand side function of (9) by C(x1,t1;X2,t2). Being an m x m co-

variance matrix function, it certainly satisfies the following two properties:

(l) (C(Xl,tl;Xg,tQ))/ = C(Xg,tg;xl,tl), X € ]D),tk S T, k= 1,2;

(ii) the inequality

n
>

i=1 j=
holds for every n € N, arbitrary a € R™, xx € D, and t, € T, k=1,...,n.

m

agC(Xi,ti;xj,tj)aj Z 0
1

Such a function can be adopted as the covariance matrix function of an m-variate ellip-
tically contoured random field on D x T and is stated in Corollary 1.3, by Theorem 8 of
[30].
Corollary 1.3. There is an m-variate elliptically contoured random field on D x T with
covariance matriz function

oo d—1

cov(Z(xy;t1), Z(xa;t2)) = ZBn(tl,tg)RgT)(cosﬂ(xl,xQ)),

n=0

(12)
X1,X9 € ]D), t1,te € T.

One of the benefits of the infinite series expansion (8) is for simulation. To get an
implementable algorithm, the series expansion has of course to be truncated, so that
the simulation algorithm is delivered from the truncation of the infinite series expansion
at some finite order. It would be of interest to derive the rate of convergence of such
approximations, in terms of some bounds of B, (¢, t3) for large n, say.

Another infinite series expansion is presented in the next theorem, which is established
by [33] in a particular case where D = S?. More interestingly, the series representation
(15) provides an answer for the open question raised in [33] over the spherical metric
space (S¢,9).

Theorem 2. Suppose that {V,(t),t € T} is an m-variate second-order stochastic process
with EV,,(t) = 0 and cov(V,(t1), Vi(ta)) = B, (t1,t2) for each fized n € Ny, U is a
(d + 1)-variate random vector uniformly distributed on S¢, and that U, {V,(t),t € T},
n € Ny, are independent. Let {f,,n € N} be defined by (5).

d—1

Irf > Bn(t,t)RgT)(l) converges for every t € T, then
n=1

(i)

© d—1
(13) z&¢y=VMw+Vﬁm§:V;mf§2)(Uméw@»,xem,tem
n=1 n
is an m-variate random field on D x T, with mean 0 and covariance matriz
function
S ()
(14) cov(Z(xy;t1), Z(xa;t2)) = nz::OBn(tl,tg)Pn (cos ¥(x1,x2)),

X1,X9 € ]D), t1,t9 € T.

(if)

o DY
(15)  Z6st) = Volt) + V@i L Valt) 3 S5 P 5 (Usiw(),

k=0 Bn—2k:
xeD, teT,
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is an m-variate random field on D x T, with mean 0 and covariance matriz
function

(16) COV(Z(Xl;tl),Z(XQ;tQ)) = Bn(tl,t2)(COS’L9(X1,X2))n,
n=0
X1,X9 € D, tl,tg S T,

where

() _ =2 SHER)
Bk,n - 2"k'F(n—k+d—J2rl) 7k_0a 7a|:2:|

A key ingredient or building block in (13) or (15) is U, a random vector uniformly
distributed on S?. A uniform distribution on S can be easily simulated via standard

normal distributions [37], since d}ﬁ et jflrl is uniformly distributed on S,
> vz > YR
k=1 k=1

if Y1,...,Y 1 are independent and identically distributed standard normal random vari-

ables, according to Theorem 2.3 of [11].
Both the series representations (8) and (13) are useful for modeling and simulation.
The simulation algorithm via the truncation of (8) might be less efficient than (13) since,

in order to reach the same level of accuracy, one needs a ( > Cna+ 1)—term truncation
n=0

of the series representation (8), in contrast to an (¢ + 1)-term (13) that significantly
reduces the computational burden. On the other hand, the advantage of (8) is that its
finite-dimensional distributions are clearly Gaussian.

It is not sure whether (14) is a general form for m x m covariance matrix functions on
D x T that are metric-dependent over D, even in a particular case D = S¢ [33]. Tt may
be quite difficult to identify whether a certain function is of the form (9), simply because
the expression at its right-hand side may be too complicated to derive. This calls for
efficient methods to construct parametric or semiparametric spatio-temporal correlation
structures on D x T. Some constructing approaches are offered in Section 4.

4. PARAMETRIC OR SEMIPARAMETRIC COVARIANCE MATRIX MODELS

This section illustrates some parametric or semiparametric spatio-temporal correlation
structures on I x T. Three constructing approaches are offered in Theorem 3 using
two ingredients or building blocks: a completely monotone function and a conditionally
negative definite matrix, besides the arccos-quasi-quadratic metric ¥(x1,x2) that is a
variogram on D according to Theorem 3 of [34]. While an infinite series expression like
(9) may not be available, the existence of such a random field is ensured by Theorem 8
of [30].

By definition, a nonnegative and continuous function ¢(z) is completely monotone on
[0, 00), if it possesses derivatives of all orders and

dn
—1)"—4(x) >0, x>0, neN.
(1"t 2
Theorem 3. Assume that £(z) is a completely monotone function on [0,00), g(z) is
a strictly positive function on [0,00) with a completely monotone derivative, and that

© = (0ij)mxm is an mxm conditionally negative definite matriz with nonnegative entries.
Then
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(i) there is an m-variate elliptically contoured random field on D xR with direct/cross
covariance functions

_1 )2
(17) CU (X17 X2; tla t2) = (g(ﬁ(xh XQ)) + eij) 2/ <m) ’
X1,X2 €D, t1,t0 €R, 4,5 =1,...,m;
(ii) there is an m-variate elliptically contoured random field on DXR with direct/cross
covariance functions

) Cij(x1. %3 11, t2) = (9(0(x1,x2)) +05) 2 £ ((Q(ﬁ(xlvxz)) +0i)77 |t — t2|> :

(18
X1,X9 €D, t1,t0 €R, 2,5 =1,...,m;

(iil) there is an m-variate elliptically contoured random field on DX T with direct/cross
covariance functions

Cij(x1, %25 t1,t2) = £(V(x1,%2) + (1, t2) + 055),

(19) X1,X9 €D, t1,t0 €T, i,57=1,...,m,

provided that y(t1,t2) is a variogram on T.

There is a rich source of completely monotone functions on [0,00). For instance, the
Laplace transform of every nonnegative random variable is completely monotone.
Example 2. Some parametric examples of completely monotone functions ¢(z) on [0, 00)
are

%,whereo<al<a2,0<m1<ﬁ2,andue(0 1];

(¥ + ag)" — (2% 4+ a1)", where 0 < oy < ag, v € (0,1], and & € (0,1];

(i
(ii

(iii) In (¥ 4+ ag) — In (¥ + al), where 0 < a1 < ag and v € (0,1];
(iv) exp (—ax"), where @ > 0 and 0 < v < 1;
(v) exp(— owc”)(l + exp(—az¥)) 2, where @ >0 and 0 < v < 1;

- af)> ; where o > 0 and v > 0;

(
(tanh ay/T)
(
(

(vii , where a > 0 and v > 0;

cobl@n/)” where 0 < a1 < ay and v > 0

:EEEZ;%;) where 0 < a1 < ap and v > 0;

(x) 27 K, (a/), where a > 0, v > 0, and K, () is the modified Bessel function of
the second kind of order v;

N
(xi) 1—(w) , where 0 < a; < ag or 0 < ag < g, v € (0,1], and s € (0,1];

14+asx?

(xii) the Mittag-Leffler function [18]

Vlll

ix

)
)
)
)
)
(vi)
i)
i)
(ix)
)

“— I'(an+p)
where 0 < o<1 and 8 > a.
Next we display three examples of parametric or semiparametric covariance matrix
models on D x T.
Example 3. Let 8 > g be a constant and let v (t) € (0,1) (k=1,...,m) be positive-
valued functions on T. Then
8+, (1)
r(1-220r 9 vi(t)+v;(t)
Cl] (le X923 t17 t2) = Vi (t)_;,_VJ (t ) {BV7 (t)+yj (f) (Sln 7()(12’)@)) 9
X1,X9 €D, t1,to € T,i,5=1,...,m,
form an m x m covariance matrix function on D x T. To see this, we apply the identity

v 1 —e
V= du, © >0, 0<v <1,
€T 1_1(1_1/)/0v u1+V U, r = v
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to rewrite Cy;(x1, X2;t1,t2) as
Cij(x1,%x2;t1,t2)

it 4y (t2) vi(t1)+v;(t2)
F<1 f) ﬁyi(t1)+yj(t2) ~( 1=cos¥(x1,x2) 2
aitaj 2

l—exp(—Bzu)— 1—exp —Mu
= 2l E@ =) g
2

1 oo CXp(fg)Cxp(("osg(;l"Q)’U«)*Cxp(fﬁzu)
2 Jo vi(t1)+v;(t2)
3

du

ul™
k

o0 k
= (e (o3) 5 ) e (<) —exp (-5%0) )~
u

X1,X2 ED,tl,tQ €T, i,5=1,...,m.

They are direct/cross covariance functions of an m-variate elliptically contoured random

field on D by Theorems 3 and 4 of [31], since an m X m matrix function with entries
vi(t1)+v; (ta)
,1,%

u is obviously a temporal covariance function on T, and
u u” cos® ¥(x1,x2) u 9
e (~3) kzﬂ g e (—g) — e (-5)

is a covariance function on D by Theorem 2, for each fixed u > 0.

Example 4. Suppose that © = (0;;)mxm is an m x m conditionally negative definite
matrix and all its entries are positive, vi(t) (k = 1,...,m) are positive functions on T,
and 0 < a1 < ag. By Theorems 3 and 4 of [31], there exists an m-variate elliptically
contoured random field on D x T with direct/cross covariance functions

Cij(x1,X2;t1,t2) = T(vi(th) 4+ vj(t2)) {(19(x1,x2) +0i; + al)fui(tl)fyj(h)
— (¥(x1,%x2) + 0;5 + ag)_”i(tl)—yj(tz)} ’
X1, X2 GD’ tl’t2 ER, Z).] = 17...,ma

since

Cij(x1,x9;t1,t2) = fooo exp(—9(x1, XQ)u)u”i(tl)J”’j(m’l exp(—0;;u) (e — e~ ") du,

X1,X2 €D, t1,t20 €R, 4,5 =1,...,m,

where exp(—9(x1, X2)u) is a covariance function on D since ¥(x1,X2) is a variogram, an
m x m matrix function with entries u¥i(t1)+7i(t2)=1 ig 5 covariance matrix function on T,
and an m X m matrix with entries exp(—6;,u) is positive definite by Lemma 3, for each
fixed u > 0.
Example 5. If « is a positive constant, and © = (0;;)mxm is an m x m conditionally
negative definite matrix and all its entries are positive, then there exists an m-variate
elliptically contoured random field on D x T with direct/cross covariance functions

Cij(Xl,Xg;tl,tQ) = eXp(—Oz|t1 — tgl)EI"fC ( ’19(X1,X2) + Qij — 2\/%)
, ij

— T oltai—ta]
+6Xp(01|t1 t2|) EI‘fC ( 19(X1,X2) + 01] —+ QW s
x1,x0 €D, t1,t0 €R, 4,5=1,...,m,
by Theorems 3 and 4 of [31]. To see this, we apply the identity (see page 15 of [4])
5 fOOO cos(uw) exp (—(1 + wg)ﬁ) 11‘:)2
= exp(—u)Erfc (\/B — ﬁ) + exp(u) Erfe <\/B+ ﬁ) , ueR,B5>0,

to rewrite Cj;(x1,X2;t1,t2) as




36 JUAN DU AND CHUNSHENG MA

Cij(x1,%2;t1,t2) = g/ cos(a(ty — to)w) exp (_19(X17X2)(1 +w2))
0

dw

x exp (—0i;(1 + w?)) T2

X1,X9 €D, t1,t0 €R, 1,5 =1,...,m,
where cos(a(t; — ta)w) is a covariance function on R, exp (—d(x1,x2)(1 4+ w?)) is a co-
variance function on D, and an m x m matrix with entries exp (—Hij(l + w2)) is positive
definite by Lemma 3, for each fixed w > 0.

5. THE EXTENSION PROBLEM

While there are rich sources of multivariate time series models on Z for use [15],
it is often of interest to extend their index domain from Z to R. Given an m x m
covariance matrix function on D x Z that is metric-dependent on D and stationary on
Z, C(9(x1,%2);t) say, the extension problem addressed in this section is: is it possible
to extend its index domain from D x Z to D x R so that C(¥(x1,x2);t) is an m x m
covariance matrix function on D x R that is metric-dependent on D and stationary on
R? An answer is given in Theorem 4, under the assumption that C(¥(x1,x2);t) is of the
form (10) where T = Z.

Theorem 4. Suppose that B, (t) is an m x m stationary covariance matriz function on
d—1

9 d—1
Z, for each n € Ng. If > Bn(O)Rg 2 )(1) converges and

n=1
(20) C(9(x1,x2); Z = (cosﬁ(xl,xQ)), x1,x2 €D, t € Z,

is an mxm covariance matriz function on DX Z that is stationary on Z, then there exists
an m x m covariance matriz function C(¥(x1,x2);t) on D x R that is metric-dependent
on D and stationary on R, which is identical to C(9(x1,%2);t) over D X Z, i.e.,

(21) é(ﬁ(xl,XQ);t) = C(¥(x1,%2);t), x1,x2 €D, t € Z.

There might be several approaches to verify the existence of C(9(x1,x2);t) on D x R
with the desired properties. The idea here is to precisely construct a sequence {B,,(t),n €
No} of m x m stationary covariance matrix functions on R satisfying

(22) B, (t) =B,(t), t € Z, n € Ny,

and then to formulate C(9(x1,x5);t) as follows:

oo
C(9(x1,X2); Z n2 (cos¥(x1,X2)), X1,X2 €D, t1,t2 € R,

d—
which is well-defined since Z B, (0)P.7 (1) = 2 B, (0)Pa? (1) < oo. Clearly, (21)

holds for such a constructlon of C(9(x1,%2);1). For each n € Ny, one of possible formu-
lations of {B,(t),t € R, is

(23)  B,t)=(1+1-t)"B,()+(t—1)"B,(+1), 1<t<I+1,1€Z, teR,

which plainly enjoys the property (22), where v is a positive constant. This actually
provides an efficient method for constructing covariance matrix models on D x R based
on those on D x Z.
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Example 6. In (23) let B,,(!) be the covariance matrix function of an m-variate moving
average time series of order ¢ > 1 (see Example 1),

q—1

S w,B, ¥, [=01,....4q
h=0

Bnl = q+l

( ) Z ‘I’h—an\I’/h; = 71, ceey—(,

h=0

0, | >q, 1 €Z,

it yields

(q+1+t)¥,B, ¥, —q—1<t< —q,
(L+1—w”§fwh4ang
h:2+l+1
+t-01" Y ¥, B,
" I1<t<l+1,1l=—q+1,...,—1,
Bn(t) = (z+1—¢y/§fthnw;H

h=0
q—1—1

+(t =1 hzo U.B, )00,
I<t<i+1,1=01,...,q—1,
(q+17t)V\IIOBn‘I’/qv QStS(]JFl,
0, It >q+1,

which may be regarded as the covariance matrix function of an m-variate continuous-
time moving average process of order ¢, for each n € Ny. The resulting covariance matrix
function on D x R is

(q+ 1+ 1) ¥, Co(V(x1,%2)) Py, —q—-1<t<—q,
q+l1
(l + 1-— t)y Z ‘I’h_lCQ('&(Xl,Xg))‘I’%
h=0
q+i+1 ,
+(E =0 > ¥r1Co(V(x1,%2)) ¥,
h=0
I<t<l+1,1l=—q+1,...,—1,

. _ q—1
C(’l9(X17X2)7t) - (l +1— t)y Z ‘I’hCO(19<X1aX2))‘I’;l+l
h=0

q—1—1
+(t—=0" > ®,Co(I(x1,%2)) ¥,y
h=0

I<t<l+1,1=0,1,...,q—1,

(q+1—1)"®Co(I(x1,%2)) ¥, g<t<q+1,
0, [t| >q+1, x1,%x2 €D,
- (74)
where Co(¥(x1,%x2)) = Y. BnPy * 7(cos¥(x1,x2)), X1, %2 € D, is an m X m covariance

n=0
matrix function on D by Corollary 1.
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6. PROOF

6.1. Proof of Lemma 1. Over S¢ the addition formula connecting spherical harmonics
with the ultraspherical polynomials reads

C.
n,d d—1

(24) B2 Sy (1) Sy (2) = PLF ) (sxa), 31,32 € 8%

j=1
see, for instance, Theorem 9.6.3 of [2]. If x; € D (k = 1,2), then, by the definition of the
arccos-quasi-quadratic metric,

1525 wloxi) |7 = (wock)’ Sowloce) = 1,
i.e., W2w(xy) € S Substituting x;, in (24) by S2w(xy) (k = 1,2) results in (4).

6.2. Proof of Lemma 2. According to Lemma 2 of [33], the random field
/. d—1
{der(L =) (Ux),x € Sd}
Bn
)
has mean 0 and covariance function P, * 7 (
vV i d—1
{;dPi( ) (Ux),xe Sd} and {\/;713]( ) (Ux),x e Sd}
@ J

are uncorrelated. Observing that X2w(xy) € S? whenever x; € D (k = 1,2), we obtain

x)x3), and, for i # j,

cov(Z,(x1

Zn(x2))
(\/6: U’E%w(xl)) , ‘/57?13(“ ) (U E2w(xz)))
d ) d—1

21 <(22W(X1)>/EéW(X2)) :P,g 2 )(cos(ﬁ(xl,xQ)), x1,X2 € D.

Clearly, EZ,,(x) = 0,x € D, and, for i # j, cov(Z;(x1), Z;(x2)) = 0,%x1,%2 € D.

d—1

6.3. Proof of Theorem 1. The (entry-by-entry) convergence of Bn(t,t)Rg 2 )(1)

n=1
d—1
implies that Z B, (t17t2)P( 2 )(1) is absolutely convergent (entry-by-entry) for all
ty €T, k = 1 2 To see this, let V,,;(t) = (Vij1(t),..., Vajm (), t € T,n € N,j €

{1,. Cn,d} It follows from the Cauchy-Schwarz inequality and the inequality of arith-
metic and geometric means that

bik,n(t1 t2)] = [cov(Vayi(t1), Vasik(t2))]
< var(Vyga(t)) var(V k(t2)))
<

var(Vij,i(t1))+var(Va k(t2)))

)

2
biin(t1,t1)+by to,t .
()b (tata) g 4y €T, Gk =1,...,

which implies

—1
Z|bzkn t17t2)|Pn Z‘bzzn t17t2 ( 2 )(1)
n=0

+ 3 Z |bkk,n(t1at2)|P7gT)(l) < 00,

(“z%)
since P, * /(1) > 0.
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o0 a1
Under the convergent assumption of > B, (¢, t)P,g 2 )(1) for every t € T, the infinite

series at the right-hand side of (8) is convergent in mean square over x € D and ¢ x T,
since the independent assumption among V,,;(t)s implies

(iﬁ 35 V050 (SHwix >)) (iﬂ Vi) (zéw<x>)>

n1+n7: n?irnQ Cn.d Ch.d k=n1 z—ll 1
- kZ O Z1 Z E{Vni(0(Vi(1))'} Sn s EEW(XD Sk (Eéw(x))
e v 1
= n; Bn(t,t) Z S n,j (EQW( )) Sn,j (EEW(X)>
ni+n2 (d 1)
= X But:)Pa 7 (1)

— 0, ny,ne — 00,

where the third equality is due to Lemma 1. Obviously, the mean vector function EZ(x;t)
is identical to 0. It follows from Lemma 1 that

Cn,d

COV(Z(Xl;tl), Z(XQ; tg)) =E VQ tl + Z Bn ZVW tl (E%W(Xl))

X <V0(t2) + Z B Z qu',(tQ)Sk?i (EéW(XQ))>

Z BVt (Volta)'} +
53 A S S BV () (Vi) } S (Bl S (B i)
n=1k=1 j=1i=1
= By(t1,t2) —l—ZB (t1,t2) ﬁ andS J( 2W(X1)) Shn.j (E%W(Xg))
j=1

= Bo(t1,t2) + ZBn(t17tQ)P,ET)(COS'l?(Xl,XQ)), X1,Xo €D, tq1,t0 € T.

n=1

To show that {Z(x;t),x € D,¢t € T} is an m-variate Gaussian random field, we just
need to take a look at its finite-dimensional characteristic functions. In fact, for every

I € N and arbitrary xx € D and ¢t € T (k = 1,...,1), the characteristic function of an
Im-variate random vector (Z'(x1;t1),...,2Z'(x;;t)) is

I
Eexp (sz%Z(xk; tk)>

||
/@\
MN
&
N
if

l 00
= Eexp (z w}, Vo(ty ) H H Eexp (zﬁn Zw%an(tk)Smj (Eéw(xk))>
k j=1 k=1
!

exp( % Z W, cov(Vo(ts), Vo(tk/))wk/>
k=1k'=1
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oo Cn,d 52 l l e
X H H exp (—ZH Z Z wﬁcB (tk,tk/)wk/SnJ (E2w(xk)> S (EQW(Xk/))>
n=1j=1 k=1k'=1
l l
= exp ( Z Z kBQ tk,tk/)wk/>
k= r—=1
o) l l Cn,d
X H exp —% Z Z w;Bn(tk, tk/)wk/ﬁi Z STLJ (E%W(Xk)) STLJ (E%W(Xk/)>
n=1 k=1k'=1 j=1

l l
Z Z kao tk,tk/)wk/>

k=1

||
/_\
l\D\»—l

d—1

) l l
1
X Hexp( B g g n(th, te ) Wi Pn 2 (cosﬁ(xk,xk/))>
k=1k’'=1

d—1
Bo tk,tk/ +ZB” tk,tk/)P 2 (COS’&(Xk,Xk/)) Wi
n=1

wy €ER™, k=1,....m

where the sixth equality follows from Lemma 1, and 2 represents the imaginary unit.

6.4. Proof of Theorem 2. (i) Similar to in the proof of Theorem 1, it can be verified
that the (entry-by-entry) convergence of

S Bt 0P T (1)
n=0

implies that
Z B, (t1,t2)P, = )(1)

is absolutely convergent (entry—by—entry) for all t, € T, k = 1,2. The right-hand side
series of (14) converges in mean square, since U, {V,,(t),t € T}, n € Ny are independent,

and

’I’L1+n2 n1+n2 / a1 /

i (3 VA (ostvi) ) (8T (i)

= R k=n;

=Y Y E{V.0)(Vi®)}
n=ni k=n;
e { YA (Untw) YD (Untvi)

_ nsz{vn@)(vn(t»'}E{Tpﬁ) (wsiwio) R (Ushwto) |

n=mniy
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ni+nz (ﬂ)
= Z B, (t,t)Py; * /(1) = 0, n1,ne — 0o,

n=niy

where the third equality is obtained from Lemma 2. The mean function of {Z(x;t),x €
D, ¢ € T} is clearly identical to 0, and its covariance matrix function is

cov(Z(xy;t1), Z(x2;t2))

—-E { <Vo(t1) +V@a Y V%i(mprg%) (U’E%w(xl))>

n=1

X <Vo(t2) + @Z Vlﬁ(lm)Pl(dz;l) (U/Eéw(x2)>> }
=1

= E{Vo(t))(Vo(t2))'} + > Y E{Val(t)(Vi(t2))'}
n=1[=1
/ a1 / d—1 .
% E{ derg 2 ) <U/E%W(X1)) ﬂ})l( 2 ) (U/E2W(X2)>}
Bn ﬁl
= Bo(t1,t2) + Z B, (t1,t2)Pn *
n=1
where the last equality is due to Lemma 2 and the assumption E {V,,(t1)(Vi(t2))'} =0
(n#1).
(ii) It suffices to verify that the covariance matrix function of (15) equals (16), while
the rest is analogous to the Part (i). In fact, we have

)(COS19(X1,X2)), X1,Xo €D, t1,t2 €T,

cov(Z(xy;t1), Z(x2;t2))

0o 00 [%] [%] d—1 d—1 %
= S BV () (Vi(2))'} (6,5,: )5} ))
n=11=1 k=0j=0

X E{ VT P(j%l) (U’E%w(xﬁ) \/w*ljpl(d;;) (U’Eéw()@))}

e [%] d—1
+E{Vo(t2)(Vo(t2))'} = Bo(ta, t2) + > E{Va(t1)(Vi(t2))'} D 6£,7>

n=1 k=0

B { SZLp) (wntwia) YEL P (i) |

67172/6 " 67172]0 n—2k

= Bo(tl,tz) + Z Bn(tl,tg) ﬂlgl%l)Pygji) (COS’(9(X1,X2))
=0

w3

b

n=1
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o0
= Bo(tl,tg) + Z Bn(tl,tg) (COS@(Xl,Xg))n , X1,X92 € D, t1,ts € T,
n=1
where the third equality follows from Lemma 2 and E {V,,(¢1)(V(t2))'} = 0 (n # 1), the
fourth one is from Lemma 2, and the last one is from Lemma 3 of [33].

6.5. Proof of Theorem 3. (i) Since ¢(x) is completely monotone on [0, 00), it possesses
an integral representation

(25) Lz) = /000 exp(—zu)dF(u), x >0,

by Bernstein’s theorem [52], where F'(u) is a bounded and nondecreasing function on
[0,00) such that the integral converges for all x > 0. Consequently, we are able to
rewrite (17) as

Cij(x1,%x25t1,t2) = fooo Cij(x1, X5 b1, to; u) dF (u),
x1,x2 €D, t1,t0€R, 4,5=1,...,m,
where

~ _1 — 2
Cij(x1,X2;5t1,t2;u) = (9(¥(x1,X2)) + 045)) " % exp (—WMU) )
X1,X9 €D, t1,t €eR, ©v>0, 4,5=1,...,m.

By Theorem 4 of [31], it suffices to verify that éij(X17x2;t1,t2;u),i’j =1,...,m, for-
mulate an m X m covariance matrix function on D x R, for every fixed v > 0. This is
true by Theorems 3 and 4 of [31], since they can be rewritten as

Cij(X1,X2; b1, t25u)

2 2
= % fooo cos((t; — ta2)y/uw) exp (—“’Tg(ﬁ(xl,)(g))) exp (—%Gij> dw,
xX1,X9 €D, t1,t0 €R, 1,5 =1,...,m,

where cos((t1 — t2)y/uw) is a covariance function on R, exp (—%g(ﬁ(xl,xz))) is a co-
variance function on I since g(x) has a completely monotone derivative and ¥(x1,x2))
is a variogram on D, and the matrix with entries exp (7%29”,) is positive definite by

Lemma 3, for each fixed w > 0.
(ii) According to the integral representation (25) of ¢(z), (18) can be rewritten as
Cij(x1,%a5t1,t2) = [ Cij(x1,Xa;5t1, to;u) dF (u),
X1,X9 €D, t1,t2 €R, 1,5 =1,...,m,

where

C'z'j(thz;tlatz;U)
_1

= (9(9(x1,x2)) + 0i5)) % exp (— (9(I(x1,%2)) + 0i5) 2 [t1 — t2\u) )
X1,X9 €D, t1,t0 € R, u>0,¢,5=1,...,m,

and, moreover,
Cij(x1, %2511, t2; 1)
_ 2 [ . d
T fO cos((t1 — t2)\/aw) g(ﬁ(xhxz;))-i-@ij-i-w?
X1,X9 € ]D), t1,t2 € R, i7j = L...,m.

They form an m X m covariance matrix function on D X R by Theorems 3 and 4 of [31],
since cos((t; — t2)+/uw) is a covariance function on R and an m x m matrix function with
entries

(9(9(x1,%x2)) + b5 +W2)71, x1,x2 €D, #1,t2 €R, 4,5=1,...,m,

is a covariance matrix function on D, for each fixed u > 0.
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(iii) It follows from Theorem 2 of [1], since ¥(x1,%2)+7(t1, t2) is conditionally negative
definite on D x T due to the fact that 9(x1,x2) is conditionally negative definite on D
[34] and the assumption on y(t1,ts2).

6.6. Proof of Theorem 4. It is sufficient to verify that B, (t) defined by (23) is an
m X m stationary covariance matrix functions on R, for each n € Ny. Notice that B,,(t)
is equivalent to

Bn(t) = i Bn(l)cu(t - l)7 te R7
l=—00

where
(26) C,(z) = (max(1 — |z[,0))", z € R,

is a stationary covariance function on R with a spectral density function F¢, (w). Given
a € (0,1), we define
o0
B.(ta)= Y o'B,()C,(t—1), teR.

l=—00

Observe that al!l (I € Z) is a stationary covariance function on Z. Its product with
B, (1), /"B, (1),1 € Z, is certainly an m x m stationary covariance function on Z, with a

[ee]
spectral density matrix function > ol/B,, (1) exp(sw),w € R, which is positive definite

l=—0o0

for each fixed w € R. Consequently, the Fourier transform of B,, (¢; ) exists, and

/ B, (t; o) exp(utw)dt
R

= > al'l — 1) exp(tw
l;@ Bn(l)/RCV(t 1) exp(1tw)dt

oo

= > a"Ba@) [ aolu)explaty + D)y ety =t~ 1)

l=—0c0 R

oo

— Z oa''B,, (1) exp(ilw) Fe, (w), w € R,

l=—o00

is a positive definite matrix for each fixed w € R. Hence, B,L(t; «) is an m X m stationary
covariance function on R [19]. So is liHll B, (t;a) = B,(t),t € R.
a—1_
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