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A. A. DOROGOVTSEV AND NAOUFEL SALHI

UNIVERSAL GENERALIZED FUNCTIONALS AND FINITELY
ABSOLUTELY CONTINUOUS MEASURES ON BANACH SPACES

To the memory of professor Habib Ouerdiane

In this paper we collect several examples of convergence of functions of random
processes to generalized functionals of those processes. We remark that the limit
is always finitely absolutely continuous with respect to Wiener measure. We try
to unify those examples in terms of convergence of probability measures in Banach
spaces. The key notion is the condition of uniform finite absolute continuity.

INTRODUCTION

In this article we discuss the positive generalized functionals from the stochastic pro-
cesses. The idea of generalized functionals is closely related to the investigation of geo-
metric properties of the random processes. Simple but important examples are the local
time of Wiener process [19] and the Rice formula [1].

Example 0.1. Let w(t), ¢t € [0,1] be a standard Wiener process. It is well known [19,
p.32] that for any @ € R there exists the local time which w spends at the infinitesimal
small neighborhood of z, i.e.

.1t
{(x) = Ly — 51_%1+ %/o Liycpie (w(t))dt.

Keeping in mind that in the sense of generalized functions
li 71 1 =4
1m —
e [z—e,z+e€] B

where §, denotes the Dirac delta function at the point x, one can write formally

1
£(x)z/0 6z (w(t))dt.

Such expression is very useful for production of new formulas for local time which can
then be proved rigorously. For example, occupation formula for bounded measurable
function f

/]R f(z)l(z)dz = /R f(z) /0 1 b2 (w(t))dtdz

:/01</Rf(a:)5m(w(t))dx>dt
-/ o),
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or Kac moment formula

1 1
_IE/O /O 5 (w(tr)) -+ 8 (w(t,))dty - - dt,

=n! /ogtl...gtng1 IE<(5z (w(h)) c by (w(tn)))dtl iy,

|/ 1 _=2 1 1 1 gt gt
=n! —e 2t N e s
A, CME VEVER-H V—f1

where A, = {(t1, -+ ,tn) : 0 < t1-+- < t, < 1}. In this case also it is useful to create a
formal definition of &, (w(t)) and the rules of manipulation with it. Such formal definition
was done in [5, 16] and became to be a partial case of the notion of generalized Wiener
function.

The same problem arises under the consideration of the number of upcrossings of a
stochastic process.

Example 0.2. Suppose that £(t), ¢ € [0,1] is a centered Gaussian process with the
smooth covariance. Then, for fixed level ¢, the expected number of upcrossings of the
level ¢ by the process £ is equal [1, p. 263-264] to the following expression

+oo
(1) / / xqe(c, x)dxdt.

Here ¢;(z) is the joint distribution of £(¢) and &’(t). Formally, expression (1) can be
obtained easily. Every upcrossing is associated with the formal expression

(2) 3e (£()) L0400 (€'(1))€'(2)
Keeping in mind that the result of action of é. on the continuous bounded function is
the value of the function at the point ¢ we easily get the Rice formula

®) /o1 E(éc (EO)L0rrem) (0)E'W) >dt - /o1 /O+<><> vqi(c, v)dwdt.

Such approach together with the formal expression was proposed by M. Kac [15]. But
how to bring the rigorous sense to the expression (2)?

One of the possible applications of the mentioned theory is the study of the geometry
of the trajectories of multi-dimensional Brownian motion. Such investigations are related
to the mathematical model of free linear polymer [4, 12]. In this model, a trajectory of
Wiener process is treated as an instant conformation of the long linear polymer molecule.
Then, the excluded volume effect leads to the necessity to study self-intersections. In
this way Evans measure arises. Since the theory is useful and well-developed for Wiener
process then it is natural to ask about the same constructions and properties for processes
different from Wiener process. A lot of attempts were done in this direction (see, for
instance, [19, 22, 17]) but here we mention the class of processes introduced by A.A.
Dorogovtsev and called Gaussian integrators.

Definition 0.1. [6] A (one dimensional) centered Gaussian process z(t),¢ € [0, 1] is said
to be an integrator if there exists a constant C' > 0 such that for any arbitrary partition
0=ty <ty <---<t,=1and real numbers ag, - ,a,_1 :

n—1 2 n—1
(4) B> ar(z(tern) —2t)| < CD ap(ters — t).

k=0 k=0

For such processes some singular functionals were considered (see, for example, [8, 9]).

Recently, in [11] the large deviation principle for the measure which is corresponding to

generalized functional of self-intersection was obtained.
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In order to define generalized Wiener functions we need to introduce the family of
Sobolev spaces D?7 over Wiener space (see for example [13, 24] for more details). First
of all, let w(t) = (wi(t), - ,wq(t)), t = 0, be a d-dimensional Brownian motion and
denote by o(w) the o-field generated by it. It is known that every square integrable
Wiener random variable ) € L? (€2, o(w), P) has an It6-Wiener expansion [20, p.13] which
consists on the L2-convergent series with orthogonal summands

n=>_ Ii(fx)
k=0

where I (f) denotes a k-multiple Itd stochastic integral of the deterministic and sym-
metric square integrable kernel f,. Now let v € R. The Sobolev space D?7 is the
completion of the following space :

{77: ZIk(fk) € LQ(Q,U(w),}P’), n e N}

k=0
with respect to the norm :

n

Inlls., = >0+ 1) ELu(f2)?

k=0
If 0 < 71 < 2 then the following inclusions are true

D*7 Cc D" c D*° = L*(Q, o(w),P) C D>~ C D72,

Moreover, for any real number v the space D%~ is the dual space of D??Y. When v < 0,
the elements of D7 are called generalized Wiener functionals. The spaces D> are
defined respectively as projective and inductive limits

2, _ 2, 2,—0c0 _ 2,—
D +OO—OW>OD 77 ]D) OO—U—y>0D ’Y'

Elements of D% are called Wiener test functions.
Without loss of generality, the probability space (Q,J(w),]P’) can be replaced by the
classical Wiener space

<% ([0, 1], R%), B(% ([0, 1], Rd)) , Mo)

where
(%0([0,1],RY) = {w : [0,1] — R?, continuous, w(0) = 0}
is endowed with the Borel o-field B(%o([o, 1],]Rd)> generated by the supremum norm
and with the standard Wiener measure .
A test function F € D*7° is said to be positive if
Fw)>=20 po—ae.
A generalized Wiener function n € D*~> is said to be positive if the bilinear pairing
with any positive test function F' € D*** is non-negative :
(n, F) = 0.
A Sugita theorem [24] states that any positive generalized Wiener function can be rep-
resented by a measure on the Wiener space.
Theorem 0.1. [21] If a generalized Wiener functional n € D%~
ezrists a unique finite positive measure 6 on ‘50([0, 1},]1%‘1) such that

1s positive then there

VF e F&& (%([o, 1],Rd)), (n,F) = [50([071]7Rd) F(w) 0(dw) .
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Here F6° (‘50([0, 1],Rd)> denotes the set of Wiener test functions F € D> of the

form
F(w) = f(d1(w), -+, ¢n(w))

where f € €2°(R?) and ¢y, , ¢ € (%0([0, 1],Rd))*.

In view of mentioned works we face the following general problem which is main object
of discussions in this paper. Let us formulate it in the abstract form.

Let B be a real separable Banach space with the norm || -||. All the measures on B are
supposed to be defined on the Borel o-field B. Also, all functions on B are supposed to
be Borel measurable. Consider a family ®., € > 0 of functions on B such that for every
€ >0, . : B — R has a continuous Frechet derivative and is bounded on B together
with its derivative. Suppose that u is a probability measure on B with all finite moments
of the norm and such that finite-dimensional polynomials are dense in Lo (B , B, ,u). Then,
for every € > 0, ®. has an expansion via orthogonal polynomials

o0
P, = Z It
n=0
Suppose that, for every e > 0, &. > 0 and for every n > 0 there exists a limit
I? =Ly — lim I¢.
n 2 EIE)I%) n
Then the formal series
(o]
> I
n=0

can be considered as a non-negative generalized functional on the measurable space
(B, B, ,u). In certain cases it can be associated with some new measure v on B (as in
Sugita theorem). In this article we discuss the following problem. When for the family
{®.,e > 0} there exists a set of probability measures M such that for every u € M,
®. converges to a generalized functional on (B,B7 u)? Consider an example of such
situation.

Example 0.3. Let B = %0([0, 1},]1%) be the 1-dimensional Wiener space. Define the
family ®. as follows :

1 _fm?
e 2e
\2me

Now consider as a measure p the standard Wiener measure po on ‘50([0, 1],R). Then,
(see, for example, [10]) ®. converges when ¢ — 07 to a positive generalized functional
which has an Ito-Wiener expansion

va%O([Oal]v]R); (I)s(f):

(oo}

(I)O(f) = Z ﬁHn(o)Hn (f(l))
n=0 """

where H,, denote the Hermite polynomials
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If we denote by w(t),t € [0, 1], the one-dimensional Wiener process then, for any Wiener
test function F' € D?+°° we have

(o, F) = lim ((I)E’F)LZ(B,MO)

= lim E[ég(w)F(w)}

~ iy Efp (0[P (0]

1
= —E|F(w)|lw(l) =0].
TElFw)u(1) =0]
Here p. is the density of the centered normal distribution with variance €. From this
point we deduce that the generalized functional ®; corresponds to the distribution of
the Brownian bridge. From other side, define u as a distribution in ‘50([0, 1],]R) of the
random process

n(t) =t.£, te€[0,1]

where € is a standard Gaussian random variable. Then, again, ®. converges when ¢ — 0%
to a generalized functional with the same chaotic expansion but with another measure
representation via Sugita theorem. Now it is a probability measure concentrated on the
one function f = 0. Actually, it can be checked that ®. converges to a generalized
functional for a very wide set of measures p. In this sense, ®. is universal.

In this paper we will discuss the conditions for universality of the different families
{®.,e > 0}. To do this we use the notion of finite absolute continuity of measures on
the Banach space introduced in [7]. This notion defines connection between the weak
moments of two probability measures.

Definition 0.2. [7] A finite measure v with weak moments of arbitrary order on the
Banach space B is finitely absolutely continuous with respect to the probability measure
p (this fact is denoted v << p) if for any n € N there exists a constant ¢, > 0 such
that for any polynomial P, : R® — R with degree at most n and any ¢1,--- ,¢, € B*
we have

[ a0 ontnane) < ea( [ PHor()e on)iano)

1
2

Note that if p is a Gaussian measure on B and v is a measure related to a positive
generalized functional on (B, B, ,u) then, evidently,

v <<g M-
This observation leads to the following idea. It seems that uniform condition of finite
absolute continuity
P <<opu, >0

where @,y denotes the measure which has the density ®. with respect to p, will guarantee
existence of the generalized functional ® on (B, B, 1) which is a limit of ®. when e
tends to 0. We present the corresponding example related to the functional counting
self-intersections.

Example 0.4. Let w(t),t € [0,1] be a d-dimensional Brownian motion and let u €
RZ\ {0}. Consider the following formal expression

(5) p(u) = A 6u (w(tg) - w(tl))dtldtg.
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In [13] a rigorous meaning was associated to p(u) as follows. First we define the Dirac
S-function 6, as a limit of the family {p¢(. — u),e > 0} where
1 [Els
d d
pe(x ziexp(——>7 e>0,re R
a( ) (2’/T€)% %

(p! will simply be denoted p..)

Consequently, p(u) should be understood as

(6) p(u) = lim e (w(tz) — w(ty) — u)dtydts.
e—0 Ao

Denote by @, the integral in the right hand side of (6). It was proved (see [13]) that ®.
has an It6-Wiener expansion given by

W =y X[ {Lm (M g ()

k=0 1+ tng=k * B2 1<j<d
d
X Pyt e (w)dtrdts.

By taking the limit when ¢ — 0 in each term of (7) we obtain the formal It6-Wiener
expansion of p(u)

® o= ¥ [T {m (H e, ()}

k=0ni++na=k "’ 22 1<j<d
d
X ptz*h (u)dtldtg.

It was proved in [13] that the formal series p(u) is in fact an element of the Sobolev

spaces D?” such that
< 4—d
TS

and that ®. converges, when ¢ — 0, to p(u) in each of those spaces.

Therefore, if d > 4 then the intersection local time formally defined by p(u) is a
positive generalized Wiener functional, and not a square integrable random variable as
in the case d < 3. Moreover, using Sugita theorem, (see [10]), p(u) can be represented
by a measure on the Wiener space ‘50([0, 1], Rd).

Correspondingly to the above mentioned arguments, the article is divided into three
parts. The first part contains necessary definitions and facts about finite absolute con-
tinuity, mostly from [7, 21]. Second part contains a proof of convergence of ®. under
uniform finite absolute continuity. The last part contains concrete examples of universal
families ., ¢ > 0.

1. SURVEY ABOUT FINITE ABSOLUTE CONTINUITY AND POLYNOMIALLY NON
DEGENERATE MEASURES

We recall here some definitions, examples and statements introduced and analysed
mainly by A.A. Dorogovtsev in [7].
We consider a Banach space B equipped with a probability measure p and satisfying
the assumptions presented in the introduction. For every n € N let P,, be the set of
all polynomials of degree less or equal to n defined on B. Denote by P, its closure
in Lo (B7M). Define K,, as the orthogonal complement of P, in P,.i. Since the set
of all finite dimensional polynomials is dense in Lo (B , u) then the following orthogonal
decomposition holds

Ly(B,p) = @Kn
n=0
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Denote by .J,, the orthogonal projection in Lo (B, u) onto K,. Denote by H, s the space
of n-linear continuous symmetric forms on B. If we denote by Hs the space K; then the
space H, , can be identified with the symmetric part of the tensor power HSZ’". Denote
by || - || the associated norm.

Definition 1.1. [7] A measure p on B is called polynomially non-degenerate if there
exist sequences (¢, ), and (Cy,),, of positive numbers such that, for any finite dimensional
n-linear symmetric continuous form A, on B, the following inequality holds

2
alldnll < [ (714) @) < Cul Al

Every Gaussian measure on B is polynomially non-degenrate. Besides, for every n € N,
the constants ¢, and C,, in Definition 1.1 become equal to n!. The following results
present more examples of polynomially non-degenerate measures.

Lemma 1.1. [7] Suppose a measure p is polynomially non-degenerate and a measure v
is such that p ~ v and the following conditions are satisfied
d d
(1) 0 < ess inf &~ < ess sup—y < 00
du du
(2) the mean value of v is equal to 0.
Then v is polynomially non-degenerate.
Lemma 1.2. [7] Suppose that B is a real separable Hilbert space and u is a Gaussian

measure on B with mean value zero and the non degenerate correlation operator whose
eigenvalues {\n,n > 0} are such that

Z A log?(n) < oco.
n=1

Then the measure v, obtained from p by restriction to the ball B(0,7) of center 0 and
radius v and by normalization, is polynomially non-degenerate.

Now we focus on the notion of finite absolute continuity presented in Definition 0.2.
In the remainder of this section we assume that the reference measure p is polynomially
non-degenerate. One of the main examples of finite absolutely continuous measures is
provided by the following result.

Theorem 1.1. [21] Let n € D%~ be a positive generalized Wiener function and v be the
measure on the Wiener space ‘KO([O, 1],Rd) associated to n. Then v is finitely absolutely
continuous with respect to the Wiener measure pig.

Finite absolute continuity may imply absolute continuity in certain cases.

Example 1.1. [7] The sequence (cy,)n>0 in definition 0.2 can be chosen bounded if, and
only if, v << p and

dv

— € Ly(B, ).

g € L2(Bon)
Lemma 1.3. [7] Suppose that v and p are Gaussian measures in a real separable Hilbert

space B that have the same correlation operator S and mean values 0 and h, respectively.
If v << p then v << p.

If a measure v is finitely absolutely continuous with respect to p then it is possible to
obtain a chaotic expansion of v with respect to p in the sense precised by the following
theorem.
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Theorem 1.2. [7] Let v be a probability measure on B which is finitely absolutely con-
tinuous with respect to . Then there exists a sequence of kernels A,, € H,, s such that
for any polynomial Q defined on B the following equality holds

/B Q) =3 /B Q) Ay (@) ).

2. EXISTENCE OF THE GENERALIZED FUNCTIONAL

The aim of this section is to illustrate how the finite absolute continuity can guarantee
the weak compactness of the set of finite measures. The reason behind such kind of
statements is the following. Let {@8,6 > 0} be a family of non-negative functions
defined on the Banach space B and let u be a probability measure on B. Assume
that the measures ®.u (P, is now a density with respect to p) are finitely absolutely
continuous with respect to p and for any polynomial G on B there exists a limit

611_% BG(u)q)E(u)u(du).

Then, the weak compactness of ., > 0, can guarantee that ®. converges when ¢ —
0 to some measure which is a positive generalized functional from p. The same can
happen for another probability measure . Then we will get another measure (positive
genarlized functional from ). This will emphasize the universality of the family ®.,e > 0
(it produces positive generalized functionals from different measures). But firstly we have
to guarantee weak compactness. It occurs that the condition of uniform finite absolute
continuity is enough for that in some cases. The corresponding statements are presented
in this section.

We consider two cases : when B is a Hilbert space and when B is the Wiener space
‘K([O, 1],Rd). Such choice is enough for our purposes. Let us start from the Hilbert
space. Suppose that g is polynomially non-degenerate centered probability measure on
the Hilbert space H such that

VheH: /H(h, u)?p(du) > 0.

Theorem 2.1. Suppose that the probability measure i on H has finite strong moments
of any order and let the family of finite measures {iq, & € ©} on H satisfies conditions

Al. for every a € ©, po has all weak moments
A2. for every a € O, o <<g p with the constants {c&, n > 0}
A3. for everyn >0

sup cg 1= ¢, < 00.
ac®

Then the family {uq, o € O} is weakly compact.

Proof. Since p is polynomially non-degenerate then, according to Definition 1.1, there
exists a constant Cy > 0 such that for any continuous linear form ¢ € H* we have (by
taking A (z1,22) = p(21)p(22))

/HSD<U)4/~L(dU) < Cz(L@(U)Qu(du))2.

In other words,

VheH, /H(h,u)‘m(du) < Cg(/}LI(h,u)2p(du))2.
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Let S be the covariance operator of the measure y. Denote by {ey; k > 1} the orthonor-
mal eigenbasis of S. Then, for every a € ©

(9) Z/ er, )2 o (du) < Z”/ ek, u)tp(du) < Coc§ Z/ ek, u) p(du).

Taking into account that p has finite strong moment of order 2, it can be checked that

10 sup / ers ) o (du) — 0.
(10) oup 3= [ fen i)
It is known (see [2]) that (9) and (10) are sufficient for the weak compactness of {14, o €
e}
Theorem is proved. O

Remark 2.1. As it can be seen from the proof, only second and fourth moments were
used but we formulate the theorem in a frame of our main considerations.

Now consider the space B = C5([0, 1],Rd). Suppose that the measure p is centered
and polynomially non-degenerate.

Theorem 2.2. Suppose that the family {pa, a« € O} of finite measures on B satisfies
conditions Al, A2 and A3 of Theorem 2.1 and the probability measure u on B satisfies
the condition

(11)  3e>0 3vy>0 Vit €[0,1] / |u(ts) — u(t1)||2u(du) <cltz =t
B

Then the family {uo, o € O} is weakly compact in B.

Proof. Similarly to the previous proof it can be checked that for an arbitrary m > 1
there exists Cy, > 0 such that for every ¢ € B*

/wwmwwsa%/ww%wﬁ
B B

Then it follows from the condition of the theorem that for some mg > 1
2m, m 1+
/ [utz) — u(t)]|*™ w(du) < Conge™|ts — 1]
B

where 8 > 0. Now from uniform finite absolute continuity one can conclude that

(12) sup/ H || Ho(du) < 00
and for some D > 0
(13) th,tg S [O 1 sup/ H tg —u(tl)H 2mo (du D’tz —t1’1+6.
a€®
It is known (see [3, p.82]) that (12) and (13) are sufficient for weak compactness of
{lta, ax € O},
Theorem is proved. O

Theorem 2.3. Suppose that the probability measure p and the family of finite measures
{<I>€,u,£ > 0} on B satisfy conditions of Theorem 2.1 or 2.2 and, in addition, for any
finite dimensional polynomial G there exists a limit

lim [ G(u)®.(u)p(du).

e—=0 /B
Then, all partial limits of ®.p when € — 0 can be treated as positive generalized func-
tionals from the measure p and have the same formal orthogonal expansion with respect
to p.
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3. EXAMPLES OF UNIVERSAL FAMILIES

In this section we consider concrete approximating families and their limits. Let us
start from the generalized local time.

Example 3.1. Suppose that £(t), ¢t € [0,1] is a centered Gaussian process such that
(1) Vt €1]0,1], E€3(t) = 02(t) > 0
(2) 3e¢>0,37 >0, Vi, bs € [0,1] : Elé(ta) — ()| < cfta — 1]
Note that under these conditions £ has a continuous modification. Consequently, the
distribution p of £ is a centered Gaussian measure in ([0, 1],R). We recall that every
Gaussian measure is polynomially non-degenerate and has finite strong moments of any
order. Moreover, condition (11) in Theorem 2.2 follows immediately from the assumption
on the process £&. Now consider for € > 0 the functional on Cf([O, 1], R) defined by

B.(f) = /0 pe (1) dt

where p. is the density of the centered normal distribution with variance .

For every € > 0 denote by u. the measure on ‘5([0, 1], R) which has the density ®. with
respect to p.

Let us check that the measures p. are uniformly finitely absolutely continuous with
respect to p.

Assumption Al is satisfied because ®. is bounded and p has finite strong moments of
any order.

Let us check assumptions A2 and A3. Fix n € N and consider a finite dimensional
polynomial P,, of degree n on ‘5([0, 1], R). Then

‘[g([o 1 ]R) Pn(f):U’E(df)‘ = [g([o . R) (I)E(f)Pn(f)'u(df)‘
— [E(@.(&)P(9))]
= [ [ (e

= | [ =l BE @) a
< [ Elpteto) [Bra @)l

The conditional expectation in the last expression can be written

E(P,(6)[€(t) = Qn(&(), 1)
where
Quiart) = E(P.(0)]¢(r) = )

is a polynomial of degree not greater than n. Thus,

E[p-(6(0)) [E(P.(O1€0)]] = [ p2(@)|@u(eDlpozc (@i

Using Newton-Leibniz formula, Cauchy inequality and integration by parts formula it
can be checked that, when

min o?(t) > 0,
t€(0,1]
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and for any x € R,

xT

Po2(o) (@) Qu(a,1)| = ‘ | (@0 + Qa0 oz (21

— 00

xT

L (@ulest)) P ()i

<

| Qe tmn @z + | [

c1 \//RQ%(Z,t)paz(t)(z)dz + \//R (dilz(Qn(z,t)))ngz(t)(z)dz
<en ¢ /R Q2 (2 Dpoee)(2)dz
(E(Pn<g>y§<t>>)2]

—cn E(Pg(g)).
It follows that

‘/ (o) Fue(d ‘\Cn\// (01%) P2 (f)p(df).

Since the constant ¢,, does not depend on & then assumptions A2 and A3 are satisfied.
According to Theorem 2.2 the family {u., e > 0} is weakly compact in ([0, 1], R).

=cpA | E

Example 3.2. Let w(t) = (w1(t), -+ ,wq(t)) be a d-dimensional Brownian motion and
A an invertible bounded linear operator in the Hilbert space L2([0,1]). Define a multi-
dimensional Gaussian integrator by

(14 X(t) = (X(t).- . Xa(1), X;() :/O (ALo,9)(s)dw;(s), j =1, .d

The distribution g of X is a centered Gaussian measure in B = % ([0, 1], Rd). Moreover,
for any 0 < t1 < to < 1 we have

2
/B [u(tz) = u(t)]| w(du) = E[|X (t2) — X (t0)[I* = dl| ALy, o |I* < dlA]P(E2 — ).
Now fix u € R%\ {0} and consider the functional defined on B by
1
F0) = [ () - w)de, e > 0
0

Let us check that the measures . defined on % ([0,1],R?) by

are uniformly finitely absolutely continuous with respect to p.

Assumption A1 is satisfied because ®. is bounded and the Gaussian measure p has finite
strong moments of any order.

Now consider a finite dimensional polynomial P, of degree n on B. Similarly to Example
3.1 one can check that

‘/ Po(f) e (df) ‘ - ‘/ F( (df)‘ /1 [g(X(t)_u) ‘E(PH(X)|X(t))Hdt.
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The conditional expectation can be written
E(Pu(X)|X (1) = Qu(X(2),1)
where
Qula,1) = B(Pu(X)|X (1) = 2)

is a polynomial of degree not greater than n. Therefore,
B[ (X0~ ) EPOIX0)]] = [ 22— 0)]Qu(an )l @)

pg"’(t) “Qn (-5 t)|(u)

where o2(t) = ||Aljg 4|* is the variance of X;(t) for any j € {1,--- ,d}.
Since A is invertible then there exist 0 < m < M such that

(15) ViVt <o(t) < VMV

d
:pe*

Let us recall that for 02 > 0 the Hilbert space Lo (Rd,pgz (J;)dx) has an orthonormal
basis :

d
e 'T;
Rn17...7nd(x) = O'n1+ tna H Hnj (;J), Ny, ,Ng € N
Jj=1
where Hj, j > 0, are Hermite polynomials. Consequently,
Qn(.%',t) = Z anlg"';nd(t>Rn17"'7nd(x)
ni+-+ng<n

and therefore

Pan@) D (R g (0)]

ni+-+ng<n

<pgz(t)(x) Z anl,"',nd(t)Q Z Rnl""ynd(w)2

ni+-Fng<n nit-+na<n

= P2y (@)]|Qu 1)

Paey () - Qula,1)] =

R, ...n 2
Lz(Rd,piz(t)(z)dm) Z 1570 d(x)

ni+-+ng<n

- |E (IE(Pn(X)|X(t)))2 o (@) S Rupna()?

ni+-+ng<n

< (maux{\/M7 1})” E(Pﬁ(X)) Pi?(t) (2) Z ﬁ H’%j (%)

ni+-4ng<n j=1

Now we use the following inequality (see e.g. [3])

2

(16) VneN Ja,>0 VreR |H,(z) <ane®

Consequently, there exists C,, > 0 such that

Pa (@) Qul,6)| < Co[E(P2X)) Py (@)
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Therefore,

‘/ e df \/ P2 / pe*p20'2 t) u)dt
1
= C[3(R2) [ o prp ()t

One can check that there exists a constant C(u) > 0 such that for any ¢ € [0, 1],
pg+202(t)(u) < C(u).

Finally, there exists a constant ¢, = C,,C'(u) which does not depend on & and such that

| / PolFypedf)| < eny[E(PR(X))

Thus, assumptions A2 and A3 are satisfied.

According to Theorem 2.2 the family {y., € > 0} is weakly compact in ¢'([0, 1], R?).

In addition, for any finite dimensional polynomial P, on ‘K([O, 1], Rd) we have, using the
previous computations,

| Pt = / e (g - Qu(0)) (w)at

o |, P (0@ )t

e—0

Therefore, we can apply Theorem 2.3. As a consequence of this, one can say that the local
time of the multidimensional integrator (14) at any point different from the origin exists
as a generalized function and admits an expansion into a series of multiple stochastic
integrals with respect to the integrator itself.

Example 3.3. We continue with the multidimensional Gaussian integrator defined by
(14). Let pu be the distribution of X in the Banach space B = %;([0,1],R?). Fix
u € R%\ {0} and consider the functional defined on B by

Go() = [ #((0) = 1(s) ~ w)asat, e > 0.

2

Let us check that the measures . defined on B by
dpie

dp
are uniformly finitely absolutely continuous with respect to p. Consider a finite dimen-
sional polynomial P,, of degree n on B. Similarly to Example 3.2 one can check that

‘/BGE(f)Pn(f)u(df)‘ g/AzE[ X () — X(s) —u) ‘]E(Pn(X)|X(t)—X(s))Hdsdt
</ pe
/A

Qu(a,5,t) = E(Pa(X)|X (1) - X(5) = 2)
is a polynomial of degree not greater than n, and
O'(S, t) = HA]-[s,t] H
Since A is invertible then there exist 0 < m < M such that

(17) Vmvt—s <o(s,t) < VMVE—s

g

pi2(s,t) “Qn(8,t) ‘ (u)dsdt

where
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Using again the orhtonormal basis of Lqy (Rd, pl, (m)dx) one can find a constant C,, > 0

such that
Piz(a(@) - Qu(a.5,1)| < Coy [B(P2X) ) Py @):

|| GanPurmtan| < Cuy[B(PRC0) [ sy s
= C[B(P20) [ p i )i
< c(u)Cpy /IE(P,%(X)) .

Since the constant c¢(u)C, does not depend on & then we deduce the uniform finite
absolute continuity of the family {u., € > 0} with respect to p.

According to Theorem 2.2 the family {u., e > 0} is weakly compact in ‘5([0, 1], Rd).

In addition, for any finite dimensional polynomial P, on ‘@”([O, 1], Rd) we have, using the
previous computations,

| cenpaputan = [ o (g - @) (o)

Thus,

e—0

pg2(s,t) (U)Qn(U, S, t)dsdt.
JAD

Therefore, we can apply Theorem 2.3. From this point, one can deduce that the inter-
section local time of the multidimensional integrator (14), formally defined by,

pX(u):/ 6u (X (t) — X (s))dsdt = lin%)Gs(X),ueRd\{O}
Ay e—
is a generalized function from X and admits a chaos expansion with respect to X.
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