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UNIVERSAL GENERALIZED FUNCTIONALS AND FINITELY

ABSOLUTELY CONTINUOUS MEASURES ON BANACH SPACES

To the memory of professor Habib Ouerdiane

In this paper we collect several examples of convergence of functions of random
processes to generalized functionals of those processes. We remark that the limit

is always finitely absolutely continuous with respect to Wiener measure. We try

to unify those examples in terms of convergence of probability measures in Banach
spaces. The key notion is the condition of uniform finite absolute continuity.

Introduction

In this article we discuss the positive generalized functionals from the stochastic pro-
cesses. The idea of generalized functionals is closely related to the investigation of geo-
metric properties of the random processes. Simple but important examples are the local
time of Wiener process [19] and the Rice formula [1].

Example 0.1. Let w(t), t ∈ [0, 1] be a standard Wiener process. It is well known [19,
p.32] that for any x ∈ R there exists the local time which w spends at the infinitesimal
small neighborhood of x, i.e.

ℓ(x) = L2 − lim
ε→0+

1

2ε

∫ 1

0

1[x−ε,x+ε]

(
w(t)

)
dt.

Keeping in mind that in the sense of generalized functions

lim
ε→0+

1

2ε
1[x−ε,x+ε] = δx

where δx denotes the Dirac delta function at the point x, one can write formally

ℓ(x) =

∫ 1

0

δx
(
w(t)

)
dt.

Such expression is very useful for production of new formulas for local time which can
then be proved rigorously. For example, occupation formula for bounded measurable
function f ∫

R
f(x)ℓ(x)dx =

∫
R
f(x)

∫ 1

0

δx
(
w(t)

)
dtdx

=

∫ 1

0

(∫
R
f(x)δx

(
w(t)

)
dx
)
dt

=

∫ 1

0

f
(
w(t)

)
dt,
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or Kac moment formula

Eℓ(x)n = E
∫ 1

0

· · ·
∫ 1

0

δx
(
w(t1)

)
· · · δx

(
w(tn)

)
dt1 · · · dtn

= n!

∫
0⩽t1···⩽tn⩽1

E
(
δx
(
w(t1)

)
· · · δx

(
w(tn)

))
dt1 · · · dtn

= n!

∫
∆n

1

(2π)
n
2
e−

x2

2t1
1√
t1

1√
t2 − t1

· · · 1√
tn − tn−1

dt1 · · · dtn,

where ∆n = {(t1, · · · , tn) : 0 ⩽ t1 · · · ⩽ tn ⩽ 1}. In this case also it is useful to create a
formal definition of δx

(
w(t)

)
and the rules of manipulation with it. Such formal definition

was done in [5, 16] and became to be a partial case of the notion of generalized Wiener
function.

The same problem arises under the consideration of the number of upcrossings of a
stochastic process.

Example 0.2. Suppose that ξ(t), t ∈ [0, 1] is a centered Gaussian process with the
smooth covariance. Then, for fixed level c, the expected number of upcrossings of the
level c by the process ξ is equal [1, p. 263-264] to the following expression

(1)

∫ 1

0

∫ +∞

0

xqt(c, x)dxdt.

Here qt(x) is the joint distribution of ξ(t) and ξ′(t). Formally, expression (1) can be
obtained easily. Every upcrossing is associated with the formal expression

(2) δc
(
ξ(t)

)
1(0,+∞)

(
ξ′(t)

)
ξ′(t)

Keeping in mind that the result of action of δc on the continuous bounded function is
the value of the function at the point c we easily get the Rice formula

(3)

∫ 1

0

E
(
δc
(
ξ(t)

)
1(0,+∞)

(
ξ′(t)

)
ξ′(t)

)
dt =

∫ 1

0

∫ +∞

0

xqt(c, x)dxdt.

Such approach together with the formal expression was proposed by M. Kac [15]. But
how to bring the rigorous sense to the expression (2)?

One of the possible applications of the mentioned theory is the study of the geometry
of the trajectories of multi-dimensional Brownian motion. Such investigations are related
to the mathematical model of free linear polymer [4, 12]. In this model, a trajectory of
Wiener process is treated as an instant conformation of the long linear polymer molecule.
Then, the excluded volume effect leads to the necessity to study self-intersections. In
this way Evans measure arises. Since the theory is useful and well-developed for Wiener
process then it is natural to ask about the same constructions and properties for processes
different from Wiener process. A lot of attempts were done in this direction (see, for
instance, [19, 22, 17]) but here we mention the class of processes introduced by A.A.
Dorogovtsev and called Gaussian integrators.

Definition 0.1. [6] A (one dimensional) centered Gaussian process x(t), t ∈ [0, 1] is said
to be an integrator if there exists a constant C > 0 such that for any arbitrary partition
0 = t0 < t1 < · · · < tn = 1 and real numbers a0, · · · , an−1 :

(4) E

[
n−1∑
k=0

ak(x(tk+1)− x(tk))

]2
≤ C

n−1∑
k=0

a2k(tk+1 − tk).

For such processes some singular functionals were considered (see, for example, [8, 9]).
Recently, in [11] the large deviation principle for the measure which is corresponding to
generalized functional of self-intersection was obtained.
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In order to define generalized Wiener functions we need to introduce the family of
Sobolev spaces D2,γ over Wiener space (see for example [18, 24] for more details). First
of all, let w(t) = (w1(t), · · · , wd(t)), t ⩾ 0, be a d-dimensional Brownian motion and
denote by σ(w) the σ-field generated by it. It is known that every square integrable
Wiener random variable η ∈ L2

(
Ω, σ(w),P

)
has an Itô-Wiener expansion [20, p.13] which

consists on the L2-convergent series with orthogonal summands

η =

∞∑
k=0

Ik(fk)

where Ik(fk) denotes a k-multiple Itô stochastic integral of the deterministic and sym-
metric square integrable kernel fk. Now let γ ∈ R. The Sobolev space D2,γ is the
completion of the following space :{

η =

n∑
k=0

Ik(fk) ∈ L2
(
Ω, σ(w),P

)
, n ∈ N

}
with respect to the norm : ∥∥η∥∥2

2,γ
=

n∑
k=0

(k + 1)γ E Ik(fk)
2 .

If 0 < γ1 < γ2 then the following inclusions are true

D2,γ2 ⊂ D2,γ1 ⊂ D2,0 = L2
(
Ω, σ(w),P

)
⊂ D2,−γ1 ⊂ D2,−γ2 .

Moreover, for any real number γ the space D2,−γ is the dual space of D2,γ . When γ < 0,
the elements of D2,γ are called generalized Wiener functionals. The spaces D2,±∞ are
defined respectively as projective and inductive limits

D2,+∞ = ∩γ>0D2,γ , D2,−∞ = ∪γ>0D2,−γ .

Elements of D2,+∞ are called Wiener test functions.
Without loss of generality, the probability space

(
Ω, σ(w),P

)
can be replaced by the

classical Wiener space (
C0

(
[0, 1],Rd

)
,B
(
C0

(
[0, 1],Rd

))
, µ0

)
where (

C0

(
[0, 1],Rd

)
=
{
ω : [0, 1] → Rd, continuous, ω(0) = 0

}
is endowed with the Borel σ-field B

(
C0

(
[0, 1],Rd

))
generated by the supremum norm

and with the standard Wiener measure µ0.
A test function F ∈ D2,+∞ is said to be positive if

F (ω) ⩾ 0 µ0 − a.e.

A generalized Wiener function η ∈ D2,−∞ is said to be positive if the bilinear pairing
with any positive test function F ∈ D2,+∞ is non-negative :

(η, F ) ⩾ 0.

A Sugita theorem [24] states that any positive generalized Wiener function can be rep-
resented by a measure on the Wiener space.

Theorem 0.1. [24] If a generalized Wiener functional η ∈ D2,−∞ is positive then there
exists a unique finite positive measure θ on C0

(
[0, 1],Rd

)
such that

∀ F ∈ FC∞
b

(
C0

(
[0, 1],Rd

))
, (η, F ) =

∫
C0

(
[0,1],Rd

) F (ω) θ(dω) .



12 A. A. DOROGOVTSEV AND NAOUFEL SALHI

Here FC∞
b

(
C0

(
[0, 1],Rd

))
denotes the set of Wiener test functions F ∈ D2,+∞ of the

form

F (ω) = f(ϕ1(ω), · · · , ϕn(ω))

where f ∈ C∞
b (Rd) and ϕ1, · · · , ϕn ∈

(
C0

(
[0, 1],Rd

))∗
.

In view of mentioned works we face the following general problem which is main object
of discussions in this paper. Let us formulate it in the abstract form.

Let B be a real separable Banach space with the norm ∥·∥. All the measures on B are
supposed to be defined on the Borel σ-field B. Also, all functions on B are supposed to
be Borel measurable. Consider a family Φε, ε > 0 of functions on B such that for every
ε > 0, Φε : B → R has a continuous Frechet derivative and is bounded on B together
with its derivative. Suppose that µ is a probability measure on B with all finite moments
of the norm and such that finite-dimensional polynomials are dense in L2

(
B,B, µ

)
. Then,

for every ε > 0, Φε has an expansion via orthogonal polynomials

Φε =

∞∑
n=0

Iεn.

Suppose that, for every ε > 0, Φε ⩾ 0 and for every n ⩾ 0 there exists a limit

I0n = L2 − lim
ε→0

Iεn.

Then the formal series
∞∑

n=0

I0n

can be considered as a non-negative generalized functional on the measurable space(
B,B, µ

)
. In certain cases it can be associated with some new measure ν on B (as in

Sugita theorem). In this article we discuss the following problem. When for the family
{Φε, ε > 0} there exists a set of probability measures M such that for every µ ∈ M,
Φε converges to a generalized functional on

(
B,B, µ

)
? Consider an example of such

situation.

Example 0.3. Let B = C0

(
[0, 1],R

)
be the 1-dimensional Wiener space. Define the

family Φε as follows :

∀ f ∈ C0

(
[0, 1],R

)
, Φε(f) =

1√
2πε

e−
f(1)2

2ε .

Now consider as a measure µ the standard Wiener measure µ0 on C0

(
[0, 1],R

)
. Then,

(see, for example, [10]) Φε converges when ε → 0+ to a positive generalized functional
which has an Itô-Wiener expansion

Φ0(f) =

∞∑
n=0

1

n!
√
2π

Hn(0)Hn

(
f(1)

)
where Hn denote the Hermite polynomials

Hn(x) = (−1)ne
x2

2

( d

dx

)n
e−

x2

2 .
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If we denote by w(t), t ∈ [0, 1], the one-dimensional Wiener process then, for any Wiener
test function F ∈ D2,+∞, we have

(Φ0, F ) = lim
ε→0

(
Φε, F

)
L2

(
B,µ0

)
= lim

ε→0
E
[
Φε(w)F (w)

]
= lim

ε→0
E
[
pε(w(1))E

[
F (w)|w(1)

]]
=

1√
2π

E
[
F (w)|w(1) = 0

]
.

Here pε is the density of the centered normal distribution with variance ε. From this
point we deduce that the generalized functional Φ0 corresponds to the distribution of
the Brownian bridge. From other side, define µ as a distribution in C0

(
[0, 1],R

)
of the

random process

η(t) = t.ξ, t ∈ [0, 1]

where ξ is a standard Gaussian random variable. Then, again, Φε converges when ε → 0+

to a generalized functional with the same chaotic expansion but with another measure
representation via Sugita theorem. Now it is a probability measure concentrated on the
one function f ≡ 0. Actually, it can be checked that Φε converges to a generalized
functional for a very wide set of measures µ. In this sense, Φε is universal.

In this paper we will discuss the conditions for universality of the different families
{Φε, ε > 0}. To do this we use the notion of finite absolute continuity of measures on
the Banach space introduced in [7]. This notion defines connection between the weak
moments of two probability measures.

Definition 0.2. [7] A finite measure ν with weak moments of arbitrary order on the
Banach space B is finitely absolutely continuous with respect to the probability measure
µ (this fact is denoted ν <<0 µ) if for any n ∈ N there exists a constant cn > 0 such
that for any polynomial Pn : Rn → R with degree at most n and any ϕ1, · · · , ϕn ∈ B∗

we have∣∣∣ ∫
B

Pn(ϕ(ω), · · · , ϕn(ω))dν(ω)
∣∣∣ ⩽ cn

(∫
B

P 2
n(ϕ1(ω), · · · , ϕn(ω))dµ(ω)

) 1
2

.

Note that if µ is a Gaussian measure on B and ν is a measure related to a positive
generalized functional on

(
B,B, µ

)
then, evidently,

ν <<0 µ.

This observation leads to the following idea. It seems that uniform condition of finite
absolute continuity

Φεµ <<0 µ, ε > 0

where Φεµ denotes the measure which has the density Φε with respect to µ, will guarantee
existence of the generalized functional Φ0 on

(
B,B, µ

)
which is a limit of Φε when ε

tends to 0. We present the corresponding example related to the functional counting
self-intersections.

Example 0.4. Let w(t), t ∈ [0, 1] be a d-dimensional Brownian motion and let u ∈
Rd \ {0}. Consider the following formal expression

(5) ρ(u) =

∫
∆2

δu
(
w(t2)− w(t1)

)
dt1dt2.
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In [13] a rigorous meaning was associated to ρ(u) as follows. First we define the Dirac
δ-function δu as a limit of the family {pdε(.− u), ε > 0} where

pdε(x) =
1

(2πε)
d
2

exp
(
− ∥x∥2

2ε

)
, ε > 0, x ∈ Rd.

(p1ε will simply be denoted pε.)
Consequently, ρ(u) should be understood as

(6) ρ(u) = lim
ε→0

∫
∆2

pdε
(
w(t2)− w(t1)− u

)
dt1dt2.

Denote by Φε the integral in the right hand side of (6). It was proved (see [13]) that Φε

has an Itô-Wiener expansion given by

(7) Φε =

∞∑
k=0

∑
n1+···+nd=k

∫
∆2

∏
1⩽j⩽d

{
1

nj !
Hnj

(wj(t2)− wj(t1)√
t2 − t1 + ε

)
Hnj

( uj√
t2 − t1 + ε

)}
× pdt2−t1+ε(u)dt1dt2.

By taking the limit when ε → 0 in each term of (7) we obtain the formal Itô-Wiener
expansion of ρ(u)

(8) ρ(u) =

∞∑
k=0

∑
n1+···+nd=k

∫
∆2

∏
1⩽j⩽d

{
1

nj !
Hnj

(wj(t2)− wj(t1)√
t2 − t1

)
Hnj

( uj√
t2 − t1

)}
× pdt2−t1(u)dt1dt2.

It was proved in [13] that the formal series ρ(u) is in fact an element of the Sobolev
spaces D2,γ such that

γ <
4− d

2
and that Φε converges, when ε → 0, to ρ(u) in each of those spaces.

Therefore, if d ⩾ 4 then the intersection local time formally defined by ρ(u) is a
positive generalized Wiener functional, and not a square integrable random variable as
in the case d ⩽ 3. Moreover, using Sugita theorem, (see [10]), ρ(u) can be represented
by a measure on the Wiener space C0

(
[0, 1],Rd

)
.

Correspondingly to the above mentioned arguments, the article is divided into three
parts. The first part contains necessary definitions and facts about finite absolute con-
tinuity, mostly from [7, 21]. Second part contains a proof of convergence of Φε under
uniform finite absolute continuity. The last part contains concrete examples of universal
families Φε, ε > 0.

1. Survey about finite absolute continuity and polynomially non
degenerate measures

We recall here some definitions, examples and statements introduced and analysed
mainly by A.A. Dorogovtsev in [7].
We consider a Banach space B equipped with a probability measure µ and satisfying
the assumptions presented in the introduction. For every n ∈ N let Pn be the set of
all polynomials of degree less or equal to n defined on B. Denote by Pn its closure
in L2

(
B,µ

)
. Define Kn as the orthogonal complement of Pn in Pn+1. Since the set

of all finite dimensional polynomials is dense in L2

(
B,µ

)
then the following orthogonal

decomposition holds

L2

(
B,µ

)
=

∞⊕
n=0

Kn.
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Denote by Jn the orthogonal projection in L2

(
B,µ

)
onto Kn. Denote by Hn,s the space

of n-linear continuous symmetric forms on B. If we denote by H2 the space K1 then the
space Hn,s can be identified with the symmetric part of the tensor power H⊗n

2 . Denote
by ∥ · ∥n the associated norm.

Definition 1.1. [7] A measure µ on B is called polynomially non-degenerate if there
exist sequences (cn)n and (Cn)n of positive numbers such that, for any finite dimensional
n-linear symmetric continuous form An on B, the following inequality holds

cn∥An∥2n ⩽
∫
B

(
JnAn

)2
(ω)dµ(ω) ⩽ Cn∥An∥2n.

Every Gaussian measure onB is polynomially non-degenrate. Besides, for every n ∈ N,
the constants cn and Cn in Definition 1.1 become equal to n!. The following results
present more examples of polynomially non-degenerate measures.

Lemma 1.1. [7] Suppose a measure µ is polynomially non-degenerate and a measure ν
is such that µ ∼ ν and the following conditions are satisfied

(1) 0 < ess inf
dν

dµ
⩽ ess sup

dν

dµ
< ∞

(2) the mean value of ν is equal to 0.

Then ν is polynomially non-degenerate.

Lemma 1.2. [7] Suppose that B is a real separable Hilbert space and µ is a Gaussian
measure on B with mean value zero and the non degenerate correlation operator whose
eigenvalues {λn, n ⩾ 0} are such that

∞∑
n=1

λn log
2(n) < ∞.

Then the measure ν, obtained from µ by restriction to the ball B(0, r) of center 0 and
radius r and by normalization, is polynomially non-degenerate.

Now we focus on the notion of finite absolute continuity presented in Definition 0.2.
In the remainder of this section we assume that the reference measure µ is polynomially
non-degenerate. One of the main examples of finite absolutely continuous measures is
provided by the following result.

Theorem 1.1. [21] Let η ∈ D2,−∞ be a positive generalized Wiener function and ν be the
measure on the Wiener space C0

(
[0, 1],Rd

)
associated to η. Then ν is finitely absolutely

continuous with respect to the Wiener measure µ0.

Finite absolute continuity may imply absolute continuity in certain cases.

Example 1.1. [7] The sequence (cn)n⩾0 in definition 0.2 can be chosen bounded if, and
only if, ν << µ and

dν

dµ
∈ L2

(
B,µ

)
.

Lemma 1.3. [7] Suppose that ν and µ are Gaussian measures in a real separable Hilbert
space B that have the same correlation operator S and mean values 0 and h, respectively.
If ν <<0 µ then ν << µ.

If a measure ν is finitely absolutely continuous with respect to µ then it is possible to
obtain a chaotic expansion of ν with respect to µ in the sense precised by the following
theorem.
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Theorem 1.2. [7] Let ν be a probability measure on B which is finitely absolutely con-
tinuous with respect to µ. Then there exists a sequence of kernels An ∈ Hn,s such that
for any polynomial Q defined on B the following equality holds∫

B

Q(ω)ν(dω) =

∞∑
n=0

∫
B

Q(ω)An(ω)µ(dω).

2. Existence of the generalized functional

The aim of this section is to illustrate how the finite absolute continuity can guarantee
the weak compactness of the set of finite measures. The reason behind such kind of
statements is the following. Let

{
Φε, ε > 0

}
be a family of non-negative functions

defined on the Banach space B and let µ be a probability measure on B. Assume
that the measures Φεµ (Φε is now a density with respect to µ) are finitely absolutely
continuous with respect to µ and for any polynomial G on B there exists a limit

lim
ε→0

∫
B

G(u)Φε(u)µ(du).

Then, the weak compactness of Φε, ε > 0, can guarantee that Φε converges when ε →
0 to some measure which is a positive generalized functional from µ. The same can
happen for another probability measure µ̃. Then we will get another measure (positive
genarlized functional from µ̃).This will emphasize the universality of the family Φε, ε > 0
(it produces positive generalized functionals from different measures). But firstly we have
to guarantee weak compactness. It occurs that the condition of uniform finite absolute
continuity is enough for that in some cases. The corresponding statements are presented
in this section.
We consider two cases : when B is a Hilbert space and when B is the Wiener space
C
(
[0, 1],Rd

)
. Such choice is enough for our purposes. Let us start from the Hilbert

space. Suppose that µ is polynomially non-degenerate centered probability measure on
the Hilbert space H such that

∀ h ∈ H :

∫
H

(h, u)2µ(du) > 0.

Theorem 2.1. Suppose that the probability measure µ on H has finite strong moments
of any order and let the family of finite measures {µα, α ∈ Θ} on H satisfies conditions

A1. for every α ∈ Θ, µα has all weak moments
A2. for every α ∈ Θ, µα <<0 µ with the constants {cαn, n ⩾ 0}
A3. for every n ⩾ 0

sup
α∈Θ

cαn := cn < ∞.

Then the family {µα, α ∈ Θ} is weakly compact.

Proof. Since µ is polynomially non-degenerate then, according to Definition 1.1, there
exists a constant C2 > 0 such that for any continuous linear form φ ∈ H∗ we have (by
taking A2(x1, x2) = φ(x1)φ(x2))∫

H

φ(u)4µ(du) ⩽ C2

(∫
H

φ(u)2µ(du)
)2

.

In other words,

∀ h ∈ H,

∫
H

(h, u)4µ(du) ⩽ C2

(∫
H

(h, u)2µ(du)
)2

.
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Let S be the covariance operator of the measure µ. Denote by {ek; k ⩾ 1} the orthonor-
mal eigenbasis of S. Then, for every α ∈ Θ

(9)

∞∑
k=1

∫
H

(ek, u)
2µα(du) ⩽ cα2

∞∑
k=1

√∫
H

(ek, u)4µ(du) ⩽ C2c
α
2

∞∑
k=1

∫
H

(ek, u)
2µ(du).

Taking into account that µ has finite strong moment of order 2, it can be checked that

(10) sup
α∈Θ

∞∑
k=n

∫
H

(ek, u)
2µα(du) −−−−→

n→∞
0.

It is known (see [2]) that (9) and (10) are sufficient for the weak compactness of {µα, α ∈
Θ}.
Theorem is proved. □

Remark 2.1. As it can be seen from the proof, only second and fourth moments were
used but we formulate the theorem in a frame of our main considerations.

Now consider the space B = C
(
[0, 1],Rd

)
. Suppose that the measure µ is centered

and polynomially non-degenerate.

Theorem 2.2. Suppose that the family {µα, α ∈ Θ} of finite measures on B satisfies
conditions A1, A2 and A3 of Theorem 2.1 and the probability measure µ on B satisfies
the condition

(11) ∃ c > 0 ∃ γ > 0 ∀ t1, t2 ∈ [0, 1]

∫
B

∥∥u(t2)− u(t1)
∥∥2µ(du) ⩽ c

∣∣t2 − t1
∣∣γ .

Then the family {µα, α ∈ Θ} is weakly compact in B.

Proof. Similarly to the previous proof it can be checked that for an arbitrary m ⩾ 1
there exists Cm > 0 such that for every φ ∈ B∗∫

B

φ(u)2mµ(du) ⩽ Cm

(∫
B

φ(u)2µ(du)

)m

.

Then it follows from the condition of the theorem that for some m0 ⩾ 1∫
B

∥∥u(t2)− u(t1)
∥∥2m0

µ(du) ⩽ Cm0c
m0
∣∣t2 − t1

∣∣1+β

where β > 0. Now from uniform finite absolute continuity one can conclude that

(12) sup
α∈Θ

∫
B

∥∥u(0)∥∥2µα(du) < ∞

and for some D > 0

(13) ∀ t1, t2 ∈ [0, 1] sup
α∈Θ

∫
B

∥∥u(t2)− u(t1)
∥∥2m0

µα(du) ⩽ D
∣∣t2 − t1

∣∣1+β
.

It is known (see [3, p.82]) that (12) and (13) are sufficient for weak compactness of
{µα, α ∈ Θ}.
Theorem is proved. □

Theorem 2.3. Suppose that the probability measure µ and the family of finite measures{
Φεµ, ε > 0

}
on B satisfy conditions of Theorem 2.1 or 2.2 and, in addition, for any

finite dimensional polynomial G there exists a limit

lim
ε→0

∫
B

G(u)Φε(u)µ(du).

Then, all partial limits of Φεµ when ε → 0 can be treated as positive generalized func-
tionals from the measure µ and have the same formal orthogonal expansion with respect
to µ.
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3. Examples of universal families

In this section we consider concrete approximating families and their limits. Let us
start from the generalized local time.

Example 3.1. Suppose that ξ(t), t ∈ [0, 1] is a centered Gaussian process such that

(1) ∀ t ∈ [0, 1], Eξ2(t) = σ2(t) > 0

(2) ∃ c > 0, ∃ γ > 0, ∀ t1, t2 ∈ [0, 1] : E
∣∣ξ(t2)− ξ(t1)

∣∣2 ⩽ c
∣∣t2 − t1

∣∣γ .
Note that under these conditions ξ has a continuous modification. Consequently, the
distribution µ of ξ is a centered Gaussian measure in C

(
[0, 1],R

)
. We recall that every

Gaussian measure is polynomially non-degenerate and has finite strong moments of any
order. Moreover, condition (11) in Theorem 2.2 follows immediately from the assumption
on the process ξ. Now consider for ε > 0 the functional on C

(
[0, 1],R

)
defined by

Φε(f) =

∫ 1

0

pε
(
f(t)

)
dt

where pε is the density of the centered normal distribution with variance ε.
For every ε > 0 denote by µε the measure on C

(
[0, 1],R

)
which has the density Φε with

respect to µ.
Let us check that the measures µε are uniformly finitely absolutely continuous with
respect to µ.
Assumption A1 is satisfied because Φε is bounded and µ has finite strong moments of
any order.
Let us check assumptions A2 and A3. Fix n ∈ N and consider a finite dimensional
polynomial Pn of degree n on C

(
[0, 1],R

)
. Then∣∣∣ ∫

C
(
[0,1],R

) Pn(f)µε(df)
∣∣∣ = ∣∣∣ ∫

C
(
[0,1],R

) Φε(f)Pn(f)µ(df)
∣∣∣

=
∣∣∣E(Φε(ξ)Pn(ξ)

)∣∣∣
=
∣∣∣E∫ 1

0

pε
(
ξ(t)

)
dt Pn(ξ)

∣∣∣
=
∣∣∣ ∫ 1

0

E
[
pε
(
ξ(t)

)
E
(
Pn(ξ)

∣∣ξ(t))]dt∣∣∣
⩽
∫ 1

0

E
[
pε
(
ξ(t)

) ∣∣∣E(Pn(ξ)
∣∣ξ(t))∣∣∣]dt.

The conditional expectation in the last expression can be written

E
(
Pn(ξ)

∣∣ξ(t)) = Qn(ξ(t), t)

where

Qn(x, t) = E
(
Pn(ξ)

∣∣∣ξ(t) = x
)

is a polynomial of degree not greater than n. Thus,

E
[
pε
(
ξ(t)

) ∣∣∣E(Pn(ξ)
∣∣ξ(t))∣∣∣] = ∫

R
pε(x)

∣∣Qn(x, t)
∣∣pσ2(t)(x)dx.

Using Newton-Leibniz formula, Cauchy inequality and integration by parts formula it
can be checked that, when

min
t∈[0,1]

σ2(t) > 0,
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and for any x ∈ R,∣∣∣pσ2(t)(x)Qn(x, t)
∣∣∣ = ∣∣∣∣∣

∫ x

−∞

( −z

σ2(t)
Qn(z, t) +

d

dz
Qn(z, t)

)
pσ2(t)(z)dz

∣∣∣∣∣
⩽

∣∣∣∣∣
∫ x

−∞

−z

σ2(t)
Qn(z, t)pσ2(t)(z)dz

∣∣∣∣∣+
∣∣∣∣∣
∫ x

−∞

d

dz

(
Qn(z, t)

)
pσ2(t)(z)dz

∣∣∣∣∣
⩽ c1

√∫
R
Q2

n(z, t)pσ2(t)(z)dz +

√∫
R

( d

dz

(
Qn(z, t)

))2
pσ2(t)(z)dz

⩽ cn

√∫
R
Q2

n(z, t)pσ2(t)(z)dz

= cn

√√√√E

[(
E
(
Pn(ξ)

∣∣ξ(t)))2]

= cn

√
E
(
P 2
n(ξ)

)
.

It follows that ∣∣∣ ∫
C
(
[0,1],R

) Pn(f)µε(df)
∣∣∣ ⩽ cn

√∫
C
(
[0,1],R

) P 2
n(f)µ(df).

Since the constant cn does not depend on ε then assumptions A2 and A3 are satisfied.
According to Theorem 2.2 the family {µε, ε > 0} is weakly compact in C

(
[0, 1],R

)
.

Example 3.2. Let w(t) = (w1(t), · · · , wd(t)) be a d-dimensional Brownian motion and
A an invertible bounded linear operator in the Hilbert space L2([0, 1]). Define a multi-
dimensional Gaussian integrator by

(14) X(t) =
(
X1(t), · · · , Xd(t)

)
, Xj(t) =

∫ 1

0

(
A1[0,t]

)
(s)dwj(s), j = 1, · · · , d

The distribution µ of X is a centered Gaussian measure in B = C0

(
[0, 1],Rd

)
. Moreover,

for any 0 ⩽ t1 < t2 ⩽ 1 we have∫
B

∥∥u(t2)− u(t1)
∥∥2µ(du) = E∥X(t2)−X(t1)∥2 = d∥A1[t1,t2]∥

2 ⩽ d∥A∥2(t2 − t1).

Now fix u ∈ Rd \ {0} and consider the functional defined on B by

Fε(f) =

∫ 1

0

pdε
(
f(t)− u

)
dt, ε > 0.

Let us check that the measures µε defined on C0

(
[0, 1],Rd

)
by

dµε

dµ
= Fε

are uniformly finitely absolutely continuous with respect to µ.
Assumption A1 is satisfied because Φε is bounded and the Gaussian measure µ has finite
strong moments of any order.
Now consider a finite dimensional polynomial Pn of degree n on B. Similarly to Example
3.1 one can check that∣∣∣ ∫

B

Pn(f)µε(df)
∣∣∣ = ∣∣∣ ∫

B

Fε(f)Pn(f)µ(df)
∣∣∣ ⩽ ∫ 1

0

E
[
pdε
(
X(t)− u

) ∣∣∣E(Pn(X)
∣∣X(t)

)∣∣∣]dt.
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The conditional expectation can be written

E
(
Pn(X)

∣∣X(t)
)
= Qn(X(t), t)

where

Qn(x, t) = E
(
Pn(X)

∣∣∣X(t) = x
)

is a polynomial of degree not greater than n. Therefore,

E
[
pdε
(
X(t)− u

) ∣∣∣E(Pn(X)
∣∣X(t)

)∣∣∣] = ∫
Rd

pdε(x− u)
∣∣Qn(x, t)

∣∣pdσ2(t)(x)dx

= pdε ∗
∣∣∣pdσ2(t) ·Qn(·, t)

∣∣∣(u)
where σ2(t) = ∥A1[0,t]∥2 is the variance of Xj(t) for any j ∈ {1, · · · , d}.
Since A is invertible then there exist 0 < m < M such that

(15)
√
m
√
t ⩽ σ(t) ⩽

√
M

√
t

Let us recall that for σ2 > 0 the Hilbert space L2

(
Rd, pdσ2(x)dx

)
has an orthonormal

basis :

Rn1,··· ,nd
(x) = σn1+···+nd

d∏
j=1

Hnj

(xj

σ

)
, n1, · · · , nd ∈ N

where Hj , j ⩾ 0, are Hermite polynomials. Consequently,

Qn(x, t) =
∑

n1+···+nd⩽n

αn1,··· ,nd
(t)Rn1,··· ,nd

(x)

and therefore

∣∣∣pdσ2(t)(x) ·Qn(x, t)
∣∣∣ = ∣∣∣pdσ2(t)(x)

∑
n1+···+nd⩽n

αn1,··· ,nd
(t)Rn1,··· ,nd

(x)
∣∣∣

⩽ pdσ2(t)(x)

√ ∑
n1+···+nd⩽n

αn1,··· ,nd
(t)2

√ ∑
n1+···+nd⩽n

Rn1,··· ,nd
(x)2

= pdσ2(t)(x)
∥∥∥Qn(·, t)

∥∥∥
L2

(
Rd,pd

σ2(t)
(x)dx

)√ ∑
n1+···+nd⩽n

Rn1,··· ,nd
(x)2

=

√√√√E

[(
E
(
Pn(X)

∣∣X(t)
))2]

pdσ2(t)(x)

√ ∑
n1+···+nd⩽n

Rn1,··· ,nd
(x)2

⩽
(
max{

√
M, 1}

)n √E
(
P 2
n(X)

)
pdσ2(t)(x)

√√√√ ∑
n1+···+nd⩽n

d∏
j=1

H2
nj

( xj

σ(t)

)
.

Now we use the following inequality (see e.g. [8])

(16) ∀ n ∈ N ∃ an > 0 ∀x ∈ R |Hn(x)| ⩽ ane
x2

4

Consequently, there exists Cn > 0 such that∣∣∣pdσ2(t)(x) ·Qn(x, t)
∣∣∣ ⩽ Cn

√
E
(
P 2
n(X)

)
pd2σ2(t)(x).
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Therefore,∣∣∣ ∫
B

Pn(f)µε(df)
∣∣∣ ⩽ Cn

√
E
(
P 2
n(X)

)∫ 1

0

pdε ∗ pd2σ2(t)(u)dt

= Cn

√
E
(
P 2
n(X)

)∫ 1

0

pdε+2σ2(t)(u)dt.

One can check that there exists a constant C(u) > 0 such that for any t ∈ [0, 1],

pdε+2σ2(t)(u) ⩽ C(u).

Finally, there exists a constant cn = CnC(u) which does not depend on ε and such that∣∣∣ ∫
B

Pn(f)µε(df)
∣∣∣ ⩽ cn

√
E
(
P 2
n(X)

)
.

Thus, assumptions A2 and A3 are satisfied.
According to Theorem 2.2 the family {µε, ε > 0} is weakly compact in C

(
[0, 1],Rd

)
.

In addition, for any finite dimensional polynomial Pn on C
(
[0, 1],Rd

)
we have, using the

previous computations,∫
B

Fε(f)Pn(f)µ(df) =

∫ 1

0

pdε ∗
(
pdσ2(t) ·Qn(·, t)

)
(u)dt

−−−→
ε→0

∫ 1

0

pdσ2(t)(u)Qn(u, t)dt.

Therefore, we can apply Theorem 2.3. As a consequence of this, one can say that the local
time of the multidimensional integrator (14) at any point different from the origin exists
as a generalized function and admits an expansion into a series of multiple stochastic
integrals with respect to the integrator itself.

Example 3.3. We continue with the multidimensional Gaussian integrator defined by
(14). Let µ be the distribution of X in the Banach space B = C0

(
[0, 1],Rd

)
. Fix

u ∈ Rd \ {0} and consider the functional defined on B by

Gε(f) =

∫
∆2

pdε
(
f(t)− f(s)− u

)
dsdt, ε > 0.

Let us check that the measures µε defined on B by

dµε

dµ
= Gε

are uniformly finitely absolutely continuous with respect to µ. Consider a finite dimen-
sional polynomial Pn of degree n on B. Similarly to Example 3.2 one can check that∣∣∣ ∫

B

Gε(f)Pn(f)µ(df)
∣∣∣ ⩽ ∫

∆2

E
[
pdε
(
X(t)−X(s)− u

) ∣∣∣E(Pn(X)
∣∣X(t)−X(s)

)∣∣∣]dsdt
⩽
∫
∆2

pdε ∗
∣∣∣pdσ2(s,t) ·Qn(·, s, t)

∣∣∣(u)dsdt
where

Qn(x, s, t) = E
(
Pn(X)

∣∣∣X(t)−X(s) = x
)

is a polynomial of degree not greater than n, and

σ(s, t) = ∥A1[s,t]∥.

Since A is invertible then there exist 0 < m < M such that

(17)
√
m
√
t− s ⩽ σ(s, t) ⩽

√
M

√
t− s
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Using again the orhtonormal basis of L2

(
Rd, pdσ2(x)dx

)
one can find a constant Cn > 0

such that ∣∣∣pdσ2(s,t)(x) ·Qn(x, s, t)
∣∣∣ ⩽ Cn

√
E
(
P 2
n(X)

)
pd2σ2(s,t)(x).

Thus, ∣∣∣ ∫
B

Gε(f)Pn(f)µ(df)
∣∣∣ ⩽ Cn

√
E
(
P 2
n(X)

)∫
∆2

pdε ∗ pd2σ2(s,t)(u)dsdt

= Cn

√
E
(
P 2
n(X)

)∫
∆2

pdε+2σ2(s,t)(u)dsdt

⩽ c(u)Cn

√
E
(
P 2
n(X)

)
.

Since the constant c(u)Cn does not depend on ε then we deduce the uniform finite
absolute continuity of the family {µε, ε > 0} with respect to µ.
According to Theorem 2.2 the family {µε, ε > 0} is weakly compact in C

(
[0, 1],Rd

)
.

In addition, for any finite dimensional polynomial Pn on C
(
[0, 1],Rd

)
we have, using the

previous computations,∫
B

Gε(f)Pn(f)µ(df) =

∫
∆2

pdε ∗
(
pdσ2(s,t) ·Qn(·, s, t)

)
(u)dsdt

−−−→
ε→0

∫
∆2

pdσ2(s,t)(u)Qn(u, s, t)dsdt.

Therefore, we can apply Theorem 2.3. From this point, one can deduce that the inter-
section local time of the multidimensional integrator (14), formally defined by,

ρX(u) =

∫
∆2

δu
(
X(t)−X(s)

)
dsdt = lim

ε→0
Gε(X), u ∈ Rd \ {0}

is a generalized function from X and admits a chaos expansion with respect to X.
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