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M. A. BELOZEROVA

LIMIT BEHAVIOR OF MEASURE-VALUED SOLUTIONS TO

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH

INTERACTION

The classification of critical points of solutions to deterministic differential equation

with interaction is proposed. The critical points of the type ”A” and of the type
”B” are introduced. The large time behavior of measure-valued solutions to such

equations in the neighbourhoods of critical points of both types is studied.

1. Introduction

Stochastic flows were studied intensively since the works by K. Ito [7], I.I. Gihman,
A.V. Skorohod [6]. In [8] K. Ito considered such flows as random analogues of flows
generated by ordinary differential equations. Stochastic flows generated by stochastic
differential equations were investigated in details by H. Kunita [9].

In the paper [1] by A. A. Dorogovtsev a new class of stochastic differential equation
with interaction{

dx(u, t) = a(x(u, t), µt, t)dt+
∫
Rd

b(x(u, t), µt, t, q)W (dt, dq)

x(u, 0) = u, µt = µ0 ◦ x(·, t)−1

was introduced. Here W is a Brownian sheet that plays the role of a random medium in
which the particles that form the stochastic flow move, µ0 is a probability measure, that
is initial distribution of mass of particles, x(u, ·) is the trajectory of the particle, that left
the point u at zero time, µt characterize the distribution of mass of particles at time t.

In monograph [5] by A.A. Dorogovtsev properties of stochastic flows, generated by
SDE with interaction, have been obtained. The limit behavior of solutions to SDE
with interaction in one-dimensional case have been studied in [4]. In [2] the existence
of intermittency phenomena with dissipative coefficients has been proved by showing
uniform convergence of their Lyapunov exponents.

Ordinary differential equations with interaction are deterministic cases of SDE with
interaction. They can be used by describing processes that appear by changing speeds
of movements of particles along trajectories of ordinary differential equation by the next
way.

Consider differential equation

(1)

{
dξ(u, t) = f (ξ(u, t)) dt

ξ(u, 0) = u,

where f ∈ C1
b (Rd,Rd×d).
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Let M be the set of all probability measures on B
(
Rd
)
, µ0 ∈ M. Consider the next

functional

Its =

t∫
s

∫
Rd

φ(u)µτ (du)dτ, 0 ≤ s ≤ t < +∞, φ ∈ Cb

(
Rd
)
, µt = µ0 ◦ (ξ(·, t))−1, t ≥ 0.

and time

(2) τ(t) = inf{r ≥ 0, Ir0 = t}.
Then the process

νt = µτ(t), t ≥ 0

can be considered like description of movement of particles along the trajectories ξ(u, ·)
with the velocity, that depends on the distribution of the mass of all particles. It occurs
that this model is related to ODE with interaction.

Consider
x(u, t) = ξ(u, τ(t)).

Then from (1) and (2) we have
dx(u, t) = f (x(u, t))

(∫
Rd

φ(v)νt(dv)

)−1

dt

x(u, 0) = u,
νt = ν0 ◦ x(·, t)−1, u ∈ Rd, t ≥ 0.

The work is devoted to the study of the asymptotic behavior of measure-valued solu-
tions to nonlinear ODE with interaction, that contains this case.

2. Main results

Consider the equation

(3)


dx(u, t) =

∫
Rd

f (x(u, t), v)µt(dv)dt

x(u, 0) = u,
µt = µ0 ◦ x(·, t)−1,

where f ∈ C1(Rd × Rd,Rd×d), initial measure µ0 satisfies the condition
∫
Rd

||v||µ0(dv) <

+∞.

Definition 2.1. We call the point x0 ∈ Rd a critical point of the type ”A” of the system
(3) if

(4) f(x0, ·) ≡ 0.

If x0 is a critical point of the type ”A” , then x(x0, t) ≡ x0 satisfy (3).

Definition 2.2. We call the point x0 ∈ Rd a critical point of the type ”B” of the system
(3) if

(5) f(·, x0) ≡ 0.

The next example shows the situation for a linear case.

Example 2.1. Consider the equation

(6)


dx(u, t) =

(
A
∫
Rd

vµt(dv)

)
dt

x(u, 0) = u,
µt = µ0 ◦ x(·, t)−1,
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where A ∈ Rd×d, initial measure µ0 is such, that
∫
Rd

||v||µ0(dv) < +∞.

This equation has a unique critical point zero and it is of the type ”B”.
Let mt =

∫
Rd

vµt(dv). Then from (6) it follows that

mt = eAtm0.

In such a case from (6) we get

x(u, t) = eAtm0 + u−m0.

Then if all eigenvalues of the matrix A have negative real parts, we have

(7) lim
t→∞

x(u, t) = u−m0.

By the help of obtained asymptotic behavior of x we can investigate the asymptotic
behavior of µt.

For µ, ν ∈ M let us define C(µ, ν) as a set of all probability measures on B
(
Rd × Rd

)
,

that has µ, ν as their marginal distributions.
We call the Wasserstain ditance of zero order on M the metric

γ0(µ, ν) = inf
C(µ,ν)

∫∫
Rd×Rd

||u− v||
1 + ||u− v||

κ(du, dv).

In the example

γ0 (µt, µ0 −m0) ≤
∫
R

∥x(u, t)− u−m0∥
1 + ∥x(u, t)− u−m0∥

µ0 (du) .

Using (7) from this we have

lim
t→∞

γ0 (µt, µ0 −m0) = 0.

Thus, in this case the set of measures {µt, t ≥ 0} has exactly one limit point µ0 −m0.

Now let us consider general case of equation (3).
Let us introduce some notations firstly. Let A ∈ Rd×d and all eigenvalues λ1, ..., λd of

the matrix A have negative real parts. Then we can take α > 0 such that

Re(λi) < −α < 0 ∀i = 1, ..., d.

Because columns of the matrix eAt are the elements of fundamental system of solutions
to respective linear system of ODE, we can choose K > 0 such that

(8)
∥∥eAt

∥∥ < Ke−αt for all t ≥ 0.

We will denote the constant α
K as M(A), and the constant K as K(A).

Let x0 ∈ Rd be a critical point of the type ”A” or of the type ”B” of the system (3).
Then we can write the function f in the next way

(9) f(x1, x2) = Jf(x,x0)(x0)(x1 − x0) + Jf(x0,x)(x0)(x2 − x0) +

2∑
k=1

Rk(x1, x2)(xk − x0),

where Jf(x0,x) is the Jacobian matrix of the function f(x0, x) and Jf(x,x0) is the Jacobian
matrix of the function f(x, x0).

Let x0 ∈ Rd be a critical point of the type ”A” or of the type ”B”. Let us introduce
the next notations

(10) x̃(u, t) = x(u, t)− x0, m̃t =

∫
R

vµt(dv)− x0.

The following theorem describes the limit behavior of the first moment of µt.
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Theorem 2.1. Let x0 ∈ Rd is a critical point of the type ”A” or of the type ”B” of
the system (3), all eigenvalues of the matrix Jf(x0,x)(x0)+Jf(x,x0)(x0) have negative real
parts and for every k ∈ {1, 2}

(11) sup
x1,x2∈Rd

∥Rk(x1, x2)∥ = Mk <
1

2
M
(
Jf(x0,x)(x0) + Jf(x,x0)(x0)

)
.

Then

lim
t→∞

∫
Rd

vµt(dv) = x0.

Proof. Using representation (9) and notation (10) from (3) we get

(12)

dx̃(u, t) =
(
Jf(x,x0)(x0)x̃(u, t) + Jf(x0,x)(x0)m̃t

)
dt+

+
∫
Rd

(R1 (x(u, t), v) x̃(u, t) +R2 (x(u, t), v) v)µt(dv)dt.

Let
A = Jf(x,x0)(x0) + Jf(x0,x)(x0).

Then m̃t is a solution to the equation

(13) dm̃t = Am̃tdt+

∫
Rd

∫
Rd

(R1 (u, v) (u− x0) +R2 (u, v) (v − x0))µt(dv)µt(du)dt.

Because all eigenvalues λ1, ..., λd of the matrix A have negative real part, we can take
α > 0 such that

Re(λi) < −α < 0 ∀i = 1, ..., d.

and K > 0 such that ∥∥eAt
∥∥ < Ke−αt for all t ≥ 0,

where M(A) = α
K .

We have from (13), that
(14)

m̃t = m0e
At +

t∫
0

eA(t−s)

∫
Rd

∫
Rd

(R1 (u, v) (u− x0) +R2 (u, v) (v − x0))µs(dv)µs(du)ds.

Using (8) and (11) it follows from (14)

∥m̃t∥ ≤ Ke−αt∥m0∥+
t∫

0

Ke−α(t−s)2M ∥m̃s∥ ds,

where M = max{M1,M2}.
Then

eαt ∥m̃t∥ ≤ K∥m0∥+
t∫

0

2MKeαs ∥m̃s∥ ds.

From this inequality by Gronwall-Bellman lemma we get, that m̃t satisfies the estimation

(15) ∥m̃t∥ ≤ K∥m0∥e(−α+2MK)t ∀t ≥ 0.

Then, because M < M(A) we have the inequality −α + 2MK < 0 and therefore for
every m0 we have

(16) lim
t→∞

m̃t = 0.

By (10) the statement of the theorem follows from this.
□
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Let us notice, that it follows from (16) and (15), that system (13) is globally sta-
ble (look, for example, [10]) if conditions of Theorem 2.1 are fulfilled. Then by such
conditions the system can have only one critical point.

The following theorems contain results about asymptotic behavior of µt.

Theorem 2.2. Let x0 ∈ Rd be a critical point of the type ”B” of the system (3), all
eigenvalues of the matrix Jf(x0,x)(x0) have negative real parts, the function R1(x1, x2) ≡
0, R2 depends only on x2 and

(17) sup
x2∈Rd

∥R2(x2)∥ = M < M
(
Jf(x0,x)(x0)

)
.

Then in Wasserstain distance

lim
t→∞

µt = µ0 −
∫
Rd

vµ0(dv) + x0.

Proof. Because x0 is a critical point of the type ”B” of the system (3) using (9) we get

(18) f(x1, x2) = Jf(x0,x)(x0)(x2 − x0) +R2(x2)(x2 − x0).

Then by (18) and (10) we have that m̃t is the solution to the equation

(19) dm̃t = Jf(x0,x)(x0)m̃tdt+
∫
Rd

R2 (v) (v − x0)µt(dv)dt.

Because all eigenvalues of the matrix Jf(x0,x)(x0) have negative real parts it follows from
theorem 2.1 that mt satisfies the estimation (15).

We have from (19)

(20) x̃(u, t) = u− x0 + m̃t − m̃0.

Then by (15), it follows from (20) that

lim
t→∞

x(u, t) = u− m̃0.

From the inequality

γ0 (µt, µ0 −m0) ≤
∫
Rd

∥x(u, t)− u− m̃0∥
1 + ∥x(u, t)− u− m̃0∥

µ0 (du) .

we get

lim
t→∞

γ0 (µt, µ0 − m̃0) = 0.

Theorem is proved.
□

Theorem 2.3. Let x0 ∈ Rd be a critical point of the type ”A” of the system (3),
all eigenvalues of the matrix Jf(x,x0)(x0) have negative real parts, R2 satisfies Lipschitz

condition by x2 ∈ Rd with Lipschitz constant L, such that L ≤ M(Jf(x,x0)(x0))
2∥m0∥K(Jf(x,x0)(x0))

and

(21) sup
x1,x2∈Rd

∥R1(x1, x2)∥ = M1 <
1

2
M
(
Jf(x,x0)(x0)

)
uniformly as x1, x2 ∈ Rd,

(22)

sup
x1,x2∈Rd

∥R2(x1, x2)−R2(x0, x2)∥ = M2 <
1

2
M
(
Jf(x,x0)(x0)

)
uniformly as x1, x2 ∈ Rd,

Then in Wasserstain distance

lim
t→∞

µt = δ{x0}.
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Proof. Because x0 is a critical point of the type ”A” of the system (3) we have from (9)
(23)
f(x1, x2) = Jf(x,x0)(x0)(x1−x0)+(R2(x1, x2)−R2(x0, x2)) (x2−x0)+R1(x1, x2)(x1−x0).

Then it follows from (23) that the function m̃t satisfies the equation

(24)

dm̃t = Jf(x,x0)(x0)m̃tdt+

+
∫
Rd

∫
Rd

((R2 (v, u)−R2(x0, u)) (u− x0) +R1 (v, u) (v − x0))µt(dv)µt(du)dt.

Because all eigenvalues of the matrix Jf(x0,x)(x0) have negative real parts it follows using
conditions on R1 and R2 from theorem 2.1 that mt satisfies the estimation (15).

Let

A = Jf(x,x0)(x0).

Using (3) we have

(25)

dx̃(u, t)
dt

= Ax̃(u, t) + x̃(u, t)
∫
Rd

R1 (x̃(u, t) + x0, v)µt(dv)+

+
∫
Rd

(R2 (x̃(u, t) + x0, v)−R2(x0, v)) (v − x0)µt(dv).

Because all eigenvalues λ1, ..., λd of the matrix A have negative real part, we can take
α > 0 such that

Re(λi) < −α < 0 ∀i = 1, ..., d.

and K > 0 such that ∥∥eAt
∥∥ < Ke−αt for all t ≥ 0,

where M(A) = α
K , K = K(A).

We have from (25), that

(26)

x̃(u, t) = (u− x0)e
At +

t∫
0

eA(t−s)

(
x̃(u, s)

∫
Rd

R1 (x̃(u, s) + x0, v)µs(dv)+

+
∫
Rd

(R2 (x̃(u, s) + x0, v)−R2(x0, v)) (v − x0)µs(dv)

)
ds.

Using (21) and Lipshitz condition on R2 it follows from (26), that

∥x̃(u, t)∥ ≤ Ke−αt∥u− x0∥+
t∫

0

Ke−α(t−s)(M + LK∥m0∥) ∥x̃(u, s)∥ ds,

where M = M
(
Jf(x,x0)(x0)

)
.

Then

eαt ∥x̃(u, t)∥ ≤ K∥u− x0∥+
t∫

0

2MKeαs ∥m̃s∥ ds.

From this inequality by Gronwall-Bellman lemma we get, that x̃(u, t) satisfies the esti-
mation

∥x̃(u, t)∥ ≤ K∥u− x0∥e(−α+2MK)t ∀t ≥ 0.

Then because −α+ 2MK < 0 we get

lim
t→∞

x̃(u, t) = 0.
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Using the inequality

γ0
(
µt, δ{x0}

)
≤
∫
Rd

∥x(u, t)− x0∥
1 + ∥x(u, t)− x0∥

µ0 (du) .

we get, that

lim
t→∞

γ0
(
µt, δ{x0}

)
= 0.

Theorem is proved. □

Let us notice, that in case f(x1, x2) ≡ f(x1) we have, that R2 ≡ 0 Theorem 2.3 is
exactly the result of classical theory of ODE as x0 = 0 (look, for example, [10], p. 88)
that claims

lim
t→∞

x(t, u) = 0.

Let us consider examples for Theorem 2.3 and Theorem 2.4.

Example 2.2. Consider the equation
dx(u, t) =

∫
R2

((
−1 0
0 −2

)
+ 1

80

(
sin ∥v∥ cos ∥v∥ sin ∥2v∥
sin ∥3v∥ sin ∥4v∥

))
vµt(dv)dt,

x(u, 0) = u,
µt = µ0 ◦ x(·, t)−1,

where initial measure µ0 is such, that
∫
Rd

||v||µ0(dv) < +∞.

Here we have

(27) A =

(
−1 0
0 −2

)
, eAt =

(
e−t 0
0 e−2t

)
.

Then we can take M(A) = 1
20 . So, conditions of Theorem 1 and Theorem 2 are fulfilled

and by Theorem 2.2

lim
t→∞

µt = µ0 −
∫
Rd

vµ0(dv)

in Wasserstain distance.
This equation has a unique critical point zero and it is of the type ”B”.
Let us note, that if we consider the system

dy =

((
−1 0
0 −2

)
+

1

80

(
sin ∥y∥ cos ∥y∥ sin ∥2y∥
sin ∥3y∥ sin ∥4y∥

))
ydt,

then zero solution of this system is globally asymptotically stable by Corollary 6.27 in
[10], that give us, that all solutions to this system vanish on infinity.

Example 2.3. Consider the equation

dx(u, t) =

((
−1 0
0 −2

)
x(u, t)+

+

(
sin ∥x(u, t)∥ 0

0 sin ∥4x(u, t)∥

) ∫
R2

v
3200∥m0∥(1+∥v∥)µt(dv)

)
dt,

x(u, 0) = u,
µt = µ0 ◦ x(·, t)−1,

where initial measure µ0 is such, that
∫
Rd

||v||µ0(dv) =< +∞, m0 =
∫
Rd

||v||µ0(dv).
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Here we also have (27) and take M(A) = 1
20 . So, conditions of Theorem 2.1 and

Theorem 2.3 are fulfilled and by Theorem 2.3

lim
t→∞

µt = δ0

in Wasserstain distance.
This equation has a unique critical point zero and it is of the type ”A”.
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