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M. A. BELOZEROVA

LIMIT BEHAVIOR OF MEASURE-VALUED SOLUTIONS TO
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH
INTERACTION

The classification of critical points of solutions to deterministic differential equation
with interaction is proposed. The critical points of the type ”A” and of the type
”?B” are introduced. The large time behavior of measure-valued solutions to such
equations in the neighbourhoods of critical points of both types is studied.

1. INTRODUCTION

Stochastic flows were studied intensively since the works by K. Ito [7], I.I. Gihman,
A.V. Skorohod [6]. In [8] K. Ito considered such flows as random analogues of flows
generated by ordinary differential equations. Stochastic flows generated by stochastic
differential equations were investigated in details by H. Kunita [9].

In the paper [1] by A. A. Dorogovtsev a new class of stochastic differential equation
with interaction

{ dz(u,t) = a(z(u, t), p, t)dt + [ b(z(u,t), p, t, )W (dt, dq)
Rd
2(u,0) = u, = pg o (1)~
was introduced. Here W is a Brownian sheet that plays the role of a random medium in
which the particles that form the stochastic flow move, g is a probability measure, that
is initial distribution of mass of particles, z(u, -) is the trajectory of the particle, that left
the point u at zero time, p; characterize the distribution of mass of particles at time ¢.

In monograph [5] by A.A. Dorogovtsev properties of stochastic flows, generated by
SDE with interaction, have been obtained. The limit behavior of solutions to SDE
with interaction in one-dimensional case have been studied in [4]. In [2] the existence
of intermittency phenomena with dissipative coefficients has been proved by showing
uniform convergence of their Lyapunov exponents.

Ordinary differential equations with interaction are deterministic cases of SDE with
interaction. They can be used by describing processes that appear by changing speeds
of movements of particles along trajectories of ordinary differential equation by the next
way.

Consider differential equation

df(u, t) = f (f(u, t)) dt
S { £(u,0) = u,

where f € C} (R, R4*4).
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Let 9t be the set of all probability measures on B (Rd), o € M. Consider the next
functional

// wp-(du)dr, 0< s <t <400, ¢ €C,(RY), p=poo(&(-t)~", t=>0.
s Rd
and time
(2) 7(t) = inf{r > 0, I = t}.
Then the process
vy = /’L’T(t)7 t> 0
can be considered like description of movement of particles along the trajectories &(u, -)
with the velocity, that depends on the distribution of the mass of all particles. It occurs

that this model is related to ODE with interaction.
Consider

z(u,t) = &(u, 7(t)).
Then from (1) and (2) we have

—1
dx(u,t) = f o(v)vy dv) dt

(U, 0) = u,
vi=wvpox(-t)", ueRd t>0.
The work is devoted to the study of the asymptotic behavior of measure-valued solu-
tions to nonlinear ODE with interaction, that contains this case.

2. MAIN RESULTS

Consider the equation

f f(z v) pe(dv)dt

3) z(u, 0)
pe = o o z(-, t)‘l,
where f € C1(R? x R?, R%*9)  initial measure j satisfies the condition [ |[v||uo(dv) <

Rd
+00.
Definition 2.1. We call the point 2y € R? a critical point of the type ”A” of the system
(3) if
(4) f(zo,) =0.

If 2 is a critical point of the type "A” | then z(xq,t) = o satisfy (3).
Definition 2.2. We call the point 2y € R? a critical point of the type "B” of the system
(3) if
(5) f(20) = 0.

The next example shows the situation for a linear case.

Example 2.1. Consider the equation

dr(u,t) = (Afvutdz))d
Rd
x(u,0) = u
1

pe = po o w(, )7,

(6)
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where A € R%*?, initial measure pg is such, that [ ||v||uo(dv) < +o0.
R4
This equation has a unique critical point zero and it is of the type "B”.

Let my = [ vuy(dv). Then from (6) it follows that
Rd
my = eAth.
In such a case from (6) we get
z(u,t) = e*'mg + u — mo.
Then if all eigenvalues of the matrix A have negative real parts, we have
(7) tlgrolo x(u,t) = u — my.

By the help of obtained asymptotic behavior of x we can investigate the asymptotic
behavior of p;.

For p, v € M let us define C'(p, v) as a set of all probability measures on B (]Rd X Rd),
that has p, v as their marginal distributions.

We call the Wasserstain ditance of zero order on 9 the metric

o]
) - du,dv.
k)= il //1+\|u—v|| ld, dv)

In the example

|z (u,t) — u —mg||
o —mg) < du) .
70(,“’15 /’LO 0)_/1+||x(u’t)_u_m0||,u’o( )
R

Using (7) from this we have
lim 7o (412, o — mo) = 0.
t—o0
Thus, in this case the set of measures {u:,t > 0} has exactly one limit point g — myp.

Now let us consider general case of equation (3).
Let us introduce some notations firstly. Let A € R?*? and all eigenvalues Ay, ..., A\q of
the matrix A have negative real parts. Then we can take o > 0 such that

Re(\) < —a<0 Vi=1,...d.

Because columns of the matrix e are the elements of fundamental system of solutions

to respective linear system of ODE, we can choose K > 0 such that
(8) HeAtH < Ke ™ forallt>0.

We will denote the constant % as M(A), and the constant K as K(A).

Let 29 € R? be a critical point of the type "A” or of the type "B” of the system (3).
Then we can write the function f in the next way

2
(9) f(@1,72) = Jp(a.00) (T0) (@1 — 20) + Jp(2g,0)(0) (w2 — 20) + > Ri(w1, z2)(2x — 20),
k=1

where J¢ (5, 1) is the Jacobian matrix of the function f(xo, ) and J¢ (5 4,) is the Jacobian
matrix of the function f(x,xo).

Let 29 € R? be a critical point of the type ”"A” or of the type ”B”. Let us introduce
the next notations

(10) T(u,t) = z(u,t) —xg, M= /vut(dv) — Zp.
R
The following theorem describes the limit behavior of the first moment of ;.
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Theorem 2.1. Let 2y € R? is a critical point of the type "A” or of the type "B” of
the system (3), all eigenvalues of the matriz J¢(zy.2)(0) + J ¢ (z,20) (Zo) have negative real
parts and for every k € {1,2}

1
(11) Sup 1Bx ()| = My < SM (Tp(a,2) (%0) + I pa,20) (0)) -
T1,T2€
Then
tl‘g&/vut(dv) = xp.
R4
Proof. Using representation (9) and notation (10) from (3) we get
d%(u, t) = (.]f(z’xo)(xo)%(u, t) + Jf(zg,x) (J?o)’l%t) dt+
12
(12) + [ (R1 (z(u,t),v) Z(u,t) + Ro (z(u,t),v) v) pe(dv)dt.
Rd
Let

A= T ,20)(20) + T f(ag.) (T0)-
Then m; is a solution to the equation

(13)  dify = Aigdt + / / (Ry (1, ) (1 — 20) + Ra (1, 0) (v — 20)) e (dv) g () dt.
Rd Rd

Because all eigenvalues \Ap, ..., \g of the matrix A have negative real part, we can take
a > 0 such that

Re(\) < —a<0 Vi=1,...d.
and K > 0 such that

HeAtH < Ke™® forallt>0,
where M(A) = &.

We have from (13), that

(14)

t
my = moet + /eA(t’S) //(Rl (u,v) (u — ) + Ra (u,v) (v — 20)) ps(dv) s (du)ds.
0 Rd Rd
Using (8) and (11) it follows from (14)

t
I < Ke=moll + [ Ke=22 || s,
0

where M = max{M;, Ms}.

Then
t
e ||igl] < K ol + /2MKe“S 7]l ds.
0
From this inequality by Gronwall-Bellman lemma we get, that m; satisfies the estimation
(15) ||| < K |[mo||e(=oF2ME wt > 0.

Then, because M < M(A) we have the inequality —a + 2M K < 0 and therefore for
every mg we have

(16) 1t1g1010 my = 0.

By (10) the statement of the theorem follows from this.
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Let us notice, that it follows from (16) and (15), that system (13) is globally sta-
ble (look, for example, [10]) if conditions of Theorem 2.1 are fulfilled. Then by such
conditions the system can have only one critical point.

The following theorems contain results about asymptotic behavior of p;.

Theorem 2.2. Let o € R? be a critical point of the type "B” of the system (3), all
eigenvalues of the matriz Jy (4, »)(x0) have negative real parts, the function Ry(x1,z2) =
0, Ry depends only on xo and

(17) sup ||Ra(x2)|| = M < M (Jf(z9,2)(20)) -

CEQGRd
Then in Wasserstain distance
lim py = po — /Uuo(dv) + zo.
t—o00
Rd

Proof. Because z is a critical point of the type "B” of the system (3) using (9) we get

(18) f(@1,22) = Jf(@.2) (T0) (22 — 20) + Ra(w2) (w2 — 20).
Then by (18) and (10) we have that m; is the solution to the equation
(19) dmy = Jf(zg,0)(Xo)medt + [ Ra (v) (v — x0) e (dv)dt.
Rd

Because all eigenvalues of the matrix J¢ (4, )(20) have negative real parts it follows from
theorem 2.1 that m; satisfies the estimation (15).
We have from (19)

(20) Z(u,t) = u — xo + My — Mo.
Then by (15), it follows from (20) that
tlgélo z(u,t) = u — my.

From the inequality

Yo (pe, o — mo) < /

Rd

Jax(u,£) — w — it
T+, 6) — u — ]

pio (du) .

we get
lim o (p¢, pto — Mo) = 0.
t—o0

Theorem is proved.
O

Theorem 2.3. Let o € R? be a critical point of the type "A” of the system (3),
all eigenvalues of the matriz Jy(y »)(x0) have negative real parts, Ry satisfies Lipschitz

M(Jf(z,zg)(fﬂo))

and
2[[mo | K(J(z,20)(®0))

condition by xo € R® with Lipschitz constant L, such that L <
1 .
(21) sup |[|[Ri(z1,22)| = M1 < oM (Jf(zwo) (0)) uniformly as 1,z € R,
z1,x2ERY
(22)

1 .
sup . |R2(z1, 22) — Ra(zo,x2)|| = M2 < §M (Jf(z,xo)(ﬂﬁo)) uniformly as x1, 2 € RY,
x1,x2ER

Then in Wasserstain distance

tlggo Ha = Oz}
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Proof. Because x is a critical point of the type ”A” of the system (3) we have from (9)
(23)
f(x1,72) = J(0,00)(T0) (T1—20)+(Ra(71, ¥2) — Ra(z0,22)) (v2—20)+R1 (21, 2)(21—20).
Then it follows from (23) that the function m; satisfies the equation
dmy = Jf(w7wo)(:r0)ﬁltdt+

(24)
+ [ [ ((R2 (v,u) — Ra(wo,u)) (u— z0) + R (v,u) (v — x0)) g (dv) pe (du)dt.
R R
Because all eigenvalues of the matrix J¢ (4, ) (70) have negative real parts it follows using
conditions on Ry and Ry from theorem 2.1 that m; satisfies the estimation (15).
Let

A= Jf(w,zo)(a:())'
Using (3) we have

) a5 B 0

(25)

+ [ (R2 (Z(u, t) + z0,v) — Ra(z0,v)) (v — 20) e (dv).
Rd

Because all eigenvalues A1, ..., Ay of the matrix A have negative real part, we can take
a > 0 such that

Re(\) < —a<0 Vi=1,..,d.
and K > 0 such that
HeAtH < Ke ™t forallt>0,

where M(A) = &, K = K(A).
We have from (25), that

F(u,t) = (u— ) At—f—fe“‘(t s)< Z(u, s le (u, 8) + o, v) ps(dv)+

(26)

+R£ Ry (Z(u, 8) + mo,v) — Ra(z0,v)) (v — xo),us(dv)> ds.

Using (21) and Lipshitz condition on R it follows from (26), that
5w 0)] < K~ ol + [ Ke= 01 + LK mol) |3, 9)] ds,

where M = M (J¢(z.20)(%0))-

Then
t

e s )] < Kllu—aoll + [ 20156 || ds.
0
From this inequality by Gronwall-Bellman lemma we get, that Z(u,t) satisfies the esti-
mation
|Z(u, )| < K|lu— xoe~oF2ME v >,
Then because —a + 2M K < 0 we get

lim Z(u,t) = 0.

t—o0
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Using the inequality

Hx(uvt) xOH
Yo (fbe, 05 < o (du) .
0( 2Rat 0}) /1+||33(u,t)—w0|| O( u)

R
we get, that
Hm o (112, 0¢0y) = 0.
Theorem is proved. O
Let us notice, that in case f(x1,x2) = f(z1) we have, that Ry = 0 Theorem 2.3 is

exactly the result of classical theory of ODE as xzy = 0 (look, for example, [10], p. 88)
that claims

lim z(¢,u) = 0.
t—o0
Let us consider examples for Theorem 2.3 and Theorem 2.4.

Example 2.2. Consider the equation

-1 0 i in ||2
da(ut) = [ (( A ) +810< sin [[v||  cos||v]| sin ||2v]] ))vut(dv)dt,

R2 sin ||3v|| sin [|[4v||
z(u,0) = u,
pe = po o (- 1)1,

where initial measure j is such, that [ ||v]|po(dv) < 4oc.
Rd
Here we have

. -1 0 At e_t 0
(27) A_< O _2>7 € _( 0 e—Zt)'

Then we can take M(A) = 5. So, conditions of Theorem 1 and Theorem 2 are fulfilled
and by Theorem 2.2

lim gy = po — /v,ug(dv)
t—o00
]Rd
in Wasserstain distance.

This equation has a unique critical point zero and it is of the type "B”.
Let us note, that if we consider the system

-1 0 L ( sinflyll  cos |yl sin || 2y]]
dy = — . : dt
Y (( 0 -2 ) T80 ( sin|3y|  sin|4y] v
then zero solution of this system is globally asymptotically stable by Corollary 6.27 in

[10], that give us, that all solutions to this system vanish on infinity.

Example 2.3. Consider the equation

dz(u,t) = (( Bl _02 )x(u,t)—l—
sin [|z(u, t)] 0 v
+ ( 0 sin |4 (u, 1) ) J, 00T R e(dV) |
z(u,0) = u,
pie = pio o (-, )71,

where initial measure jq is such, that [ ||v||po(dv) =< +o00, mo = [ ||v||po(dv).
R4 Rd
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Here we also have (27) and take M(A) = 5. So, conditions of Theorem 2.1 and
Theorem 2.3 are fulfilled and by Theorem 2.3

lim u; = dg
t—o00

in Wasserstain distance.
This equation has a unique critical point zero and it is of the type "A”.

9.

10.
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