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ON THE LIMITING BEHAVIOR OF REDUCED PROCESSES

GENERATED FROM BRANCHING PROCESSES POSSIBLY HAVING

INFINITELY VARIANCE

This paper considers a critical reduced process generated by a Galton-Watson branch-

ing process in which the number offspring of one particle possibly has infinite variance
and conditional limit theorem proved. The rate of weak convergence of the critical

reduced processes to the limit law is also obtained in the case when the number
offspring of one particle has a finite variance.

1. Introduction and statement of results.

Let {Z (0) = 1, Z (k) , k ≥ 1} be a Galton-Watson branching process in which the
number offspring of one particle has a generating function

f (s) = Esξ =

∞∑
k=0

pks
k, 0 ≤ s ≤ 1, where pk = P (ξ = k) , k = 0, 1, 2, ...

Let A = f ′ (1) <∞. The branching process {Z (k) , k ≥ 0} is called subcritical, critical
or supercritical if A < 1, A = 1 or A > 1 respectively.

We denote by Z (m,n) the number of particles at a moment m (m ≤ n) in the process
{Z (k) , k ≥ 0} whose offsprings exist at the moment n.

The random process {Z (m,n) , 0 ≤ m ≤ n} is called a reduced process generated
by the process {Z (k) , k ≥ 0}. The reduced process {Z (m,n) , 0 ≤ m ≤ n} is called
subcritical, critical or supercritical if the corresponding Galton-Watson branching process
{Z (k) , k ≥ 0} is such, respectively. Reduced processes generated by Galton–Watson
branching processes were introduced by Fleischmann and Prehn [1]. Fleischmann and
Siegmund-Schultze [2] in case when {Z (m,n) , 0 ≤ m ≤ n} is critical reduced process
and f ′′ (1) < ∞ proved a conditional functional limit theorem, which established the
weak convergence as n→ ∞ of stepwise random processes {Z ([nt] , n) , 0 ≤ t ≤ 1} under
condition {Z (0) = 1, Z (n) > 0} to the Yule process (with a modified time scale) in the
space D[0,1] with the Skorokhod J-topology, where the sign [a], here and henceforth,
denotes integer part number a. Liu and Vatutin [3] for critical reduced processes proved
conditional limit theorems under conditions Z (0) = 1, 0 < Z (n) ≤ τ (n), where τ (n) =
O (n), or τ (n) = o (n) for n → ∞. In [6], a similar problem was solved for reduced
critical Bellman-Harris branching processes. In the mentioned works it is assumed that
the variance of the number offspring of one particle is finite.

Estimating the rate of convergence to the limit law in limit theorems for branch-
ing processes is an important and urgent problem. In work [8] V. Nagaev and R.I.
Mukhamedkhanova obtained an estimate of the rate of convergence in Yaglom’s limit
theorem for critical branching processes. In [9], using a modified Stein method, upper
bounds were obtained for the Kolmogorov and Kantorovich–Wasserstein metrics in Ya-
glom’s theorem. In this paper, we obtain an estimate of the rate of convergence to the
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limit law for reduced critical processes in the Kolmogorov metric in the case when the
number offspring of one particle has a finite variance.

We denote by fn (s) the n-th iteration f (s) :

f0 (s) = s, f1 (s) = f (s) , ..., fn (s) = fn−1 (f (s))

and let B = {Z (0) = 1, Z (n) > 0}. Through PB , EB we denote respectively a condi-
tional probability and conditional mathematical expectation for given B.
If

A = f ′ (1) = Eξ = 1, 0 < σ2 = f ′′ (1) <∞,

it is known (see, for example, [4], Chapter I, paragraph 9) that

(1) P (Z (n) > 0/Z (0) = 1) = 1− fn (0) ∼
2

σ2n
as n→ ∞,

and Yaglom’s conditional limit theorem also holds:

lim
n→∞

PB

(
2Z (n)

σ2n
< y

)
= 1− e−y, y ≥ 0.

Fleischmann and Sigmund-Schulze [2] considered critical reduced processes with
0 < σ2 <∞ and proved that for s ∈ [0, 1] and for any t ∈ [0, 1)

(2) lim
n→∞

EBs
Z([nt],n) =

(1− t) s

1− ts
.

Suppose that the generating function f (s) of the form

(3) f (s) = s+ (1− s)
1+α

L (1− s) , s ∈ [0, 1] ,

where α ∈ (0, 1] is some fixed number, a function L (x) is slowly varying at zero, i.e. such
that for any constant c > 0

L (cx)

L (x)
→ 1, x→ 0.

It is easy to see that if f ′′ (1) < ∞, then representation (1) holds with α = 1 (by virtue
of the Taylor formula). In the case α = 1 a random variable with generating function

(3) may have a finite variance (for example, in the case f (s) = s + 1
2 (1− s)

2
and may

has a infinite variance (for example, ([5]), in the case

f (s) = s+
1

2
(1− s)

2

(
1

2
− 1

4
log (1− s)

)
.

If (3) holds then, as is known from [5] for any λ ≥ 0 the following limit relation holds:

(4) lim
n→∞

EBe
−λ(1−fn(0))Z(n) = 1− λ (1 + λα)

−1/α .

The next the question arises: what the asymptotic behavior the critical reduced pro-
cess in the case when the generating function of the number offspring of one particle has
the form (3). The following theorems answer that question.

Theorem 1.1. If (3) holds, then for s ∈ [0, 1] and for any t ∈ [0, 1)

(5) EBs
Z([nt],n) → 1−

(
(1− s)

α

1− t+ t (1− s)
α

)1/α

, n→ ∞

and for any 0 ≤ t1 ≤ t2 < 1 and j ∈ N ,s ∈ [0, 1]

(6) EB

[
sZ([nt2],n)

/
Z ([nt1] , n) = j

]
→

[
1−

(
t2 − t1
1− t1

+
1− t2

(1− t1) (1− s)
α

)−1/α
]j

as n→ ∞.
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Corollary 1.1. Finite-dimensional distributions of the random process {Z ([nt] , n) , 0 ≤
t ≤ 1}, under the condition {Z (0) = 1, Z (n) > 0}, weakly converge as n→ ∞ to the cor-
responding finite-dimensional distributions inhomogeneous Markov process {X (t) , 0 ≤
t ≤ 1}, the transition probabilities of which are determined by a generating function of
the form as in the limit (6).

In the case when α = 1 (5) implies (2).
Comment. Repeating verbatim the second part of the argument, the proof of the theo-
rem from [2], one can be convinced that the processes under the condition are relatively
compact. Therefore, taking into account the corollary 1.1, we come to the conclusion that
these processes weakly converge to a process in space with the Skorokhod J-topology. At
the same time, it must be taken into account that

P (X (t+ h) = 1/X (t) = 1) = ψ′ (t, s)s=0 =
1− t− h

1− t

Theorem 1.2. Let the condition (3) be satisfied and Z (0) = ψ (x, n) = [xnL (1− fn (0))]
1
α

with probability 1, where x > 0 is a constant. Then for s ∈ [0, 1] and for any t ∈ [0, 1)

E
[
sZ([nt],n)

/
Z (0) = ψ (x, n)

]
→ e−(

x
α )

1/α
(t+ 1−t

(1−s)α )
−1/α

as n→ ∞.

If we set t = 0, then in the limit we obtain the generating function of the Poisson
distribution, which is intuitively clear due to the independence and identical distribution
of the number of descendants of particles in the Galton-Watson branching process.

Let F and G be two distribution functions. Let us dK (F,G) denote the Kolmogorov
distance between the distribution functions F and G:

dK (F,G) = sup
x∈R

|F (x)−G (x)| .

Theorem 1.3. Let {Z (m,n) , 0 ≤ m ≤ n} be a reduced process generated by a critical
branching process Z = {Z (k) , k ≥ 0} for which 0 < σ2 and K = f ′′′ (1) <∞. Then

dK (Wt,n,W ) = C

∣∣∣∣ 2K3σ4
− 1

∣∣∣∣ log [n (1− t)]

n (1− t)
2 (1 + o (1)) ,

where
Wt,n (x) = P (Z ([nt] , n) < x/Z0 = 1, Zn > 0) , W (x) = (1− t)

∑
k<x t

k and here in af-
ter C is a constant, not always the same.

Comment. In [8], S.V. Nagaev and R.I. Mukhamedkhanova proved that if 0 < σ2 and
K = f ′′′ (1) < ∞, then the following estimate for the rate of convergence in Yaglom’s
theorem is valid:

dK (Fn, E) = C
log2 n

n
(1 + o (1)) ,

where Fn(y) = PB(
2Z(n)
σ2n < y), E(y) = 1 − e−y, y ≥ 0. In [9], using the Stein method,

an upper estimate for the Wasserstein distance in Yaglom’s theorem was obtained.

2. Proof of theorems

For proof of aur main results we will need the following lemmas.

Lemma 2.1. [5]. If (3) holds and an, bn, n ∈ N both sequences of positive numbers
tend to zero as n → ∞ and there exist constant numbers 0 < K1 < K2 < ∞ such that
for sufficiently large n

0 < K1 <
an
bn

< K2 <∞,

then
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L (an)

L (bn)
→ 1 as n→ ∞.

Lemma 2.2. [5]. If (3) holds, then

αn (1− fn (0))
α
L (1− fn (0)) → 1 as n→ ∞.

Lemma 2.3. [8] Let 0 < σ2 and K = f ′′′ (1) <∞. Then

P (Zn > 0) = 1− fn (0) =
2

σ2n
+

2

σ2

(
2K

3σ4
− 1

)
lnn

n2
+ o

(
lnn

n2

)
.

Proof of Theorem 1.1.
We have

EBs
Z([nt],n) =

E
[
sZ([nt],n)I (Z (n) > 0)

/
Z (0) = 1

]
P (Z (n) > 0/Z (0) = 1)

=

=
E
[
sZ([nt],n)

/
Z (0) = 1

]
− E

[
sZ([nt],n)I (Z (n) = 0)

/
Z (0) = 1

]
1− fn (0)

=

(7) =
f[nt]

(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
)
− fn (0)

1− fn (0)
.

By Lemma 1.2

(8) 1− fk (0) ∼
1

[αkL (1− fk (0))]
1/α

→ 0, k → ∞.

Therefore, for large enough k we have

(9) fk (0) + (1− fk (0)) s ∼ 1− 1− s

[αkL (1− fk (0))]
1/α

.

Considering (3) and the property of a slowly varying function we obtain

1− fk+1 (0)

1− fk (0)
=

1− f (fk (0))

1− fk (0)
=

1− fk (0)− (1− fk (0))
1+α

L (1− fk (0))

1− fk (0)
=

(10) = 1− (1− fk (0))
α
L (1− fk (0)) → 1

as n→ ∞. It follows that for any ε > 0 there is a number N0 that is for everyone n ≥ N0

(11) 1− ε ≤
1− fn−[nt]+1 (0)

1− f[n(1−t)] (0)
≤ 1 + ε.

Then, by Lemma 1.1 and (11)

(12)
L
(
1− fn−[nt]+1 (0)

)
L
(
1− f[n(1−t)] (0)

) → 1 as n→ ∞.

Now from (9), (11)-(12) we obtain

(13) fn−[nt] (0) +
(
1− fn−[nt] (0)

)
s ∼ 1− 1− s[

α (1− t)nL
(
1− f[n(1−t)] (0)

)]1/α
as n→ ∞.
From (13) and from fk (0) → 1, k → ∞, we conclude that there is a natural number
r = r (t, s, n) → ∞ such that

(14) fr (0) ≤ fn−[nt] (0) +
(
1− fn−[nt] (0)

)
s ≤ fr+1 (0) .
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From Lemma 1.2 and from (13)-(14) we obtain

1

[α (r + 1)L (1− fr+1 (0))]
1/α

≤ 1− s[
α (1− t)nL

(
1− f[n(1−t)] (0)

)]1/α ≤

(15) ≤ 1

[αrL (1− fr (0))]
1/α

.

Now we proof that

(16)
L
(
1− f[n(1−t)] (0)

)
L
(
1− f[n(1−t)]+m (0)

) → 1 as n→ ∞,

where m ∼ n (1− t)
(
(1− s)

−α − 1
)
. To prove the relation (16), by Lemma 1.1, it is

enough to show that the sequence
1−f[n(1−t)]+m(0)

1−f[n(1−t)](0)
, n ≥ 1 limited from below and above. Indeed, is obvious

1− f[n(1−t)]+m (0)

1− f[n(1−t)] (0)
≤

1− f[n(1−t)] (fm (0))

1− f[n(1−t)] (0)
≤

1− f[n(1−t)] (0)

1− f[n(1−t)] (0)
= 1.

Further, it is clear that

(17)
1− f[nt]+m (0)

1− f[nt] (0)
=
m−1∏
i=0

1− f[nt]+i+1 (0)

1− f[nt]+i (0)
.

By virtue of (8) and Lemma 1.2 for sufficiently large n we have

1− f[nt]+i+1 (0)

1− f[nt]+i (0)
= 1−

(
1− f[nt]+i (0)

)α
L
(
1− f[nt]+i (0)

)
> 1− 2

α ([nt] + i)
.

From here and from (17) we get

1− f[nt]+m (0)

1− f[nt] (0)
>

m−1∏
i=0

(
1− 2

α ([nt] + i)

)
>

(
1− 2

α [nt]

)m
∼ e−

2m
αnt ∼ e−

2(1−t)
α(1−s)αt

as n→ ∞.
Now from (15) and (16) we have

(18) r ∼ n (1− t)

(1− s)
α as n→ ∞.

Relations (14)-(18) and (8) allow us to conclude

f[nt]
(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
)
∼ f[nt] (fr (0)) = f[nt]+r (0) ∼

∼ 1− 1− s[
α ([nt] + r)nL

(
1− f[nt]+r (0)

)]1/α ∼

(19) ∼ 1−
[
α

(
t+

1− t

(1− s)
α

)
nL
(
1− f[nt]+r (0)

)]−1/α

.

Similar to (16), we can proof the ratio

L (1− fn (0))

L
(
1− f[nt]+r (0)

) → 1 as n→ ∞.

From here and from (19) we obtain

(20) f[nt]
(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
)
∼ 1− 1− fn (0)(

t+ 1−t
(1−s)α

)1/α .
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Now from (8), (20) and (7) it follows

EBs
Z([nt],n) =

f[nt]
(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
)
− fn (0)

1− fn (0)
=

→ 1−
(
t+

1− t

(1− s)
α

)−1/α

, n→ ∞.

Now we prove (4). For ease of recording, instead of [nt] will write nt. We have

EB

(
sZ(nt2,n)

/
Z (nt1, n) = j

)
=

=
[
E
(
sZ(n(t2−t1),n(1−t1))

/
Z (0) = 1, Z (n (1− t1)) > 0

)]j
.

Obviously that from last relation and from (3) immediately follows (4).
The proof of Theorem 1.1 is complete.

Proof of corollary 1.1
Due the Markov property of the process we have for any

mi, ki ∈ N, i = 1, r, m1 < ... < mr < m, k, j ∈ N

PB
(
Z (m1, n) = ki, i = 1,mr−1, Z (mr, n) = j, Z (m,n) = k

)
=

PB
(
Z (m1, n) = ki, i = 1,mr−1, Z (mr, n) = j

)
PB (Z (m,n) = k/Z (mr, n) = j) .

Now the weak convergence of finite-dimensional distributions of the process
{Z ([nt] , n) , 0 ≤ t ≤ 1} (for given {Z (0) = 1, Z (n) > 0}) follows from the last relation,
from (3)-(4) and from the method of mathematical induction.
Proof of Theorem 1.2.
Let us denote by {Zi (k) , k ≥ 0} the Galton-Watson branching process generated by

i-th the particle from the initial particles i = 1, ..., ψ (x, n). Let {Zi (m,n) , 0 ≤ m ≤ n}
the reduced process generated by the process {Zi (k) , k ≥ 0}. Taking into account the
additivity properties of Galton-Watson processes, it is easy to see that

E
[
sZi(m,n)

/
Zi (0) = 1

]
= E

[
E
[
sZi(m,n)

/
Zi (0) = 1, Zi (m)

]]
=

= E
[
[fn−m (0) + (1− fn−m (0)) s]

Zi(m)
/
Zi (0) = 1

]
=

(21) = fm (fn−m (0) + (1− fn−m (0)) s) .

It’s clear that

(22) Z (m,n) =

ψ(x,n)∑
i=1

Zi (m,n) ,

moreover, Zi (m,n) are independent and identical distributed. From (21)-(22) it follows
that

E
[
sZ([nt],n)

/
Z (0) = ψ (x, n)

]
=
[
f[nt]

(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
)]ψ(x,n)

.

From here and from (20) we obtain

E
[
sZ([nt],n)

/
Z (0) = ψ (x, n)

]
=
(
f[nt]

(
fn−[nt] (0) +

(
1− fn−[nt] (0)

)
s
))ψ(x,n)

=

=

(
1−

[
α

(
t+

1− t

(1− s)
α

)
nL (1− fn (0))

]−1/α
)ψ(x,n)

→ e−(
x
α )

1/α
(t+ 1−t

(1−s)α )
−1/α

as n→ ∞, which completes the proof of Theorem 1.2.
Proof of Theorem 1.3.
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For convenience of notation, we will write everywhere instead [a] of a. It is easy to see

φn (t, s) = E
[
sZ(nt,n)

/
Z0 = 1, Zn > 0

]
=

(23)
fnt
(
fn(1−t) (0) +

(
1− fn(1−t) (0)

)
s
)
− fn (0)

1− fn (0)
= 1− 1− fnt (ψn (t, s))

1− fn (0)
,

where
ψn (t, s) = fn(1−t) (0) +

(
1− fn(1−t) (0)

)
s.

It’s obvious that

dK (Wn,W ) = sup
k∈N

∣∣P (Z ([nt]n) = k/Z0 = 1, Zn > 0)− (1− t) tk
∣∣ .

According to Theorem 3 [5] (section 3 of Chapter 1)

dK (Wn,W ) ≤ sup
0≤s≤1

∣∣∣∣φn (t, s)− (1− t) s

1− ts

∣∣∣∣ .
Considering (23) we have

dK (Wn,W ) ≤ sup
0≤s≤1

∣∣∣∣φn (t, s)− (1− t) s

1− ts

∣∣∣∣ ≤ sup
0≤s≤1

∣∣∣∣1− fnt (ψn (t, s))

1− fn (0)
− 1− s

1− ts

∣∣∣∣ ≤
≤ sup

0≤s≤1

∣∣∣∣∣∣1− fnt (ψn (t, s))

1− fn (0)
−

1− fnt

(
fn 1−t

1−s
(0)
)

1− fn (0)

∣∣∣∣∣∣+ sup
0≤s≤1

∣∣∣∣∣1− fn 1−ts
1−s

(0)

1− fn (0)
− 1− s

1− ts

∣∣∣∣∣ =
(24) sup

0≤s≤1

∣∣∣∣∣∣
fnt (ψn (t, s))− fnt

(
fn 1−t

1−s
(0)
)

1− fn (0)

∣∣∣∣∣∣+ sup
0≤s≤1

∣∣∣∣∣1− fn 1−ts
1−s

(0)

1− fn (0)
− 1− s

1− ts

∣∣∣∣∣ .
Applying the formula about the average value and considering that f ′n (1) = 1 and also

monotonicity f
′

n (s), we have∣∣∣fnt (ψn (t, s))− fnt

(
fn(1−t)

1−s
(0)
)∣∣∣ ≤ f ′nt (θ)

∣∣∣ψn (t, s)− fn(1−t)
1−s

(0)
∣∣∣ ≤

(25) ≤
∣∣∣ψn (t, s)− f (1−t)n

1−s
(0)
∣∣∣ .

By Lemma 1.3

ψn (t, s)− f (1−t)n
1−s

(0) = −
(
4K

3σ6
− 2

σ2

)
(1− s) ·

·

{
s ln [n (1− t)]

[n (1− t)]
2 + (1− s)

ln (1− s)

[n (1− t)]
2

}
+ o

(
ln [n (1− t)]

[n (1− t)]
2

)
.

Hence, considering the elementary inequality s (1− s) ≤ 1
4 we get∣∣∣ψn (t, s)− f (1−t)n

1−s
(0)
∣∣∣ ≤ ∣∣∣∣ 4K3σ6

− 2

σ2

∣∣∣∣ (1− s) ·

·

∣∣∣∣∣s ln [n (1− t)]

[n (1− t)]
2 + (1− s)

ln (1− s)

[n (1− t)]
2

∣∣∣∣∣+ o

(∣∣∣∣∣ ln [n (1− t)]

[n (1− t)]
2

∣∣∣∣∣
)

≤

≤ C

∣∣∣∣ 4K3σ6
− 2

σ2

∣∣∣∣ (1− s)
s ln [n (1− t)]

[n (1− t)]
2 ≤ C

σ2

∣∣∣∣ 2K3σ4
− 1

∣∣∣∣ ln [n (1− t)]

[n (1− t)]
2 .

Therefore, considering (1) we have

(26) sup
0≤s≤1

∣∣∣∣∣ψn (t, s)− f (1−t)n
1−s

(0)

1− fn (0)

∣∣∣∣∣ ≤ C

∣∣∣∣ 2K3σ4
− 1

∣∣∣∣ ln [n (1− t)]

n (1− t)
2
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According to Lemma 1.3 and considering the property of generating functions, we have

fnt

(
fn(1−t)

1−s
(0)
)
= fn(t+ 1−t

1−s )
(0) = fn 1−ts

1−s
(0) =

= 1− 2(1−s)
σ2(1−ts)n −

(
4K
3σ6 − 2

σ2

) (1−s)2{ln[n(1−ts)]−ln(1−s)}
[n(1−ts)]2 +

+o
(

ln[n(1−t)]
[n(1−t)]2

)
.

That’s why

sup
0≤s≤1

∣∣∣∣∣∣
1− fnt

(
fn(1−t)

1−s
(0)
)

1− fn (0)
− 1− s

1− ts

∣∣∣∣∣∣ = sup
0≤s≤1

∣∣∣∣∣1− fn(t+ 1−t
1−s )

(0)

1− fn (0)
− 1− s

1− ts

∣∣∣∣∣ =
= sup

0≤s≤1

∣∣∣∣∣1− fn 1−ts
1−s

(0)

1− fn (0)
− 1− s

1− ts

∣∣∣∣∣ =
(27) =

(
2K

3σ4
− 1

)
ln [n (1− t)]

n (1− t)
2 + o

(
ln [n (1− t)]

n (1− t)
2

)
≤ C

(
2K

3σ4
− 1

)
ln [n (1− t)]

n (1− t)
2 .

Now the relations from (24)-(27) lead to the statement of Theorem 1.3. The proof of the
theorem is completed.

Let us consider an important special case when the generating function f (s) is frac-
tionally linear. In this case

f (s) = c+
(1− c)

2
s

1− cs
, 0 ≤ s ≤ 1,

where A (0 < c < 1) is constant. Obviously, that f ′ (1) = 1. As is well known (see, for
example, [4], p. 6), that in the case under consideration

fn (s) =
nc− (nc+ c− 1) s

1− c+ nc− ncs
.

It is easy to verify that in the particular case under consideration we have the estimate

dK (Wt,n,W ) ≤ 12 (1− c)

nc (1− t)
2 ,

which is much better than the general case.
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9. E.A. Peköz and A. Röllin, New rates for exponential approximation and the theorems of Rényi
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