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B. CHIKVINIDZE

REMARK ON RIGHT CONTINUOUS EXPONENTIAL

MARTINGALES

Using ⟨Mc⟩, jump measure µ and its compensator ν we characterize the event where

the stochastic exponential E(M) equals to zero.

1. Introduction. Let us introduce a basic probability space
(
Ω,F , P

)
and a right

continuous filtration (Ft)0≤t<∞ satisfying usual conditions. Let F∞ be the smallest
σ−Algebra containing all Ft for t < ∞ and let M = (Mt)t≥0 be a local martingale on
the stochastic interval [[0;T [[, where T is a stopping time. Denote by △Mt = Mt −Mt−
jumps of M and by E(M) the stochastic exponential of the local martingale M :

Et(M) = exp
{
Mt −

1

2
⟨M c⟩t

} ∏
0<s≤t

(1 +△Ms)e
−△Ms ,

where M c denotes a continuous local martingale part of M . Notice, that M = M c+Md

where Md is a purely discontinuous local martingale part of M , which means that Md

is orthogonal to any continuous local martingale. With this we known that Md
t =∫ t

0

∫∞
−1

xd(µ−ν), where µ(ω, t, x) is the jump measure of M and ν(ω, t, x) is it’s compen-
sator.

Through this paper we will integrate with respect to µ over the set (−1; 1) \ {0} and

we will write it as
∫ T

0

∫ 1

−1
· dµ.

It is well known that Et(M) = 1+
∫ t

0
Es−(M)dMs, so it is clear that for local martingale

M the associated stochastic exponential E(M) is a local martingale. Throughout of
this paper we assume that △Mt ≥ −1 which implies that E(M) is a non-negative local
martingale and therefore a supermartingale. In case when E(M) is a uniformly integrable
martingale on [[0;T ]], we can define using E(M) and the Radon-Nikodym derivative a new
probability measure: dQ = ET (M)dP . It is clear thatQ << P and if P{ET (M) > 0} = 1,
then P and Q will be equivalent probability measures (P ∼ Q). To know whether P ∼ Q
or not, we must study the set {ET (M) = 0}. In case when M = M c it was shown by
Kazamaki [2] in 1994 that {ET (M c) = 0} = {⟨M c⟩T = ∞}. For general M , in 1978 it
was proved by J. Jacod [1] that

{E∞(M) > 0} =
{
⟨M c⟩∞ +

∫ ∞

0

∫ ∞

−1

x2

1 + |x|
dν +

∫ ∞

0

1

Es−(M)
dBs < ∞

}
where Bs is the predictable, non-decreasing process from the Doob-Meyer decomposition
of E(M). In 2019 M. Larsson and J. Ruf [3] proved the set inclusion

{lim
t↑τ

Et(M) = 0} ⊂
{
lim
t↑τ

Mt = −∞
}
∪ {[M ]τ = ∞} ∪ {△Mt = −1, t ∈ [0; τ)}

holds true for any predictable stopping time τ . With this they proved, that if in addition
△M ≥ −1 and limt↑τMt < ∞, then the reverse set inclusion also holds.
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The aim of this paper is to characterize the set {ET (M) = 0} using ⟨M c⟩, µ(ω, t, x) and
ν(ω, t, x), for any stopping time T .

Theorem 1. Let M be a local martingale with △M ≥ −1. Then the following set
equalities hold true P a. s.:

(i)
{
ET (M) = 0

}
=

{
⟨M c⟩T +

∫ T

0

∫ 1

−1

x2

1 + x
dµ+

∫ T

0

∫ +∞

1

x2

1 + x
dν = ∞

}
;

(ii) If E 1
1+△Mσ

1{|△Mσ|≤1} < ∞, for any σ < ∞, then{
ET (M) = 0

}
=

{
⟨M c⟩T +

∫ T

0

∫ +∞

−1

x2

1 + x
dν = ∞

}
;

(iii) If E △Mσ < ∞, for any σ < ∞, then{
ET (M) = 0

}
=

{
⟨M c⟩T +

∫ T

0

∫ +∞

−1

x2

1 + x
dµ = ∞

}
.

Remark 1. In the contrary to the result from Jacod [1], we are not using the additional
increasing process Bt, which is not in terms of M . In their result Larsson and Ruf [3]
used the predictable stopping time τ and they have additional restriction on M to obtain
the set equality. In part (i) of Theorem 1 we have the set equality without any restriction
on M and in part (ii) we have the set equality with predictable characteristics of M ,
but with integrability restriction on jumps of M . With this let us mention that we use
any kind of stopping times T , while Larrson and Ruf [3] used only predictable stopping
times.

Proof of the Theorem 1: If△Ms = −1 for some s ≤ T , then it is obvious that ET (Md) = 0

and
∫ T

0

∫ 1

−1
x2

1+xdµ =
∑

s≤T
(△Ms)

2

1+△Ms
= ∞, so we can prove Theorem 1 when △Ms > −1.

Define local martingales

M1
t =

∫ t

0

∫ 1

−1

xd(µ− ν); M2
t =

∫ t

0

∫ +∞

1

xd(µ− ν).

It is clear that | △ M1
t | ≤ 1, △M2

t ≥ 1 and Md
t = M1

t + M2
t , so we have M = M c +

M1 +M2. It is easy to check that ET (M) = ET (M c)ET (M1)ET (M2), so

{ET (M) = 0} = {ET (M c) = 0} ∪ {ET (M1) = 0} ∪ {ET (M2) = 0}.
It is well known from Kazamaki [2] that {ET (M c) = 0} = {⟨M c⟩T = ∞}, so to prove
part (i) of Theorem 1 it is sufficient to show the set equalities

(1)
{
ET (M1) = 0

}
=

{∫ T

0

∫ 1

−1

x2

1 + x
dµ = ∞

}
,

(2)
{
ET (M2) = 0

}
=

{∫ T

0

∫ +∞

1

x2

1 + x
dν = ∞

}
.

First let us show that
{ ∫ T

0

∫ +∞
−1

x2

1+xdµ = ∞
}
⊂

{
ET (Md) = 0

}
for any local martin-

gale M . An easy calculations give us:

E2
T

(1
2
Md

)
= exp

{
Md

T +

∫ T

0

∫ +∞

−1

[
2 ln(1 +

x

2
)− x

]
dµ =
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ET (Md) exp
{∫ T

0

∫ +∞

−1

ln
(1 + x

2 )
2

1 + x
dµ

}
and from this we obtain:

ET (Md) = E2
T

(1
2
Md

)
exp

{
−
∫ T

0

∫ +∞

−1

ln
(
1 +

1

4
· x2

1 + x

)
dµ

}
.

The supermartingale property of E
(
1
2M

d
)
implies P{ET ( 12M

d) < ∞} = 1, so we obtain

that
{ ∫ T

0

∫ +∞
−1

ln
(
1 + 1

4 · x2

1+x

)
dµ = ∞

}
⊂ {ET (Md) = 0}. Now the set equalities

below are obvious and the first set inclusion follows from the inequality ln(1+
∑

n xn) ≤∑
n ln(1 + xn), where xn ≥ 0:

{∫ T

0

∫ +∞

−1

x2

1 + x
dµ = ∞

}
=

{
1 +

1

4

∫ T

0

∫ +∞

−1

x2

1 + x
dµ = ∞

}
=

{
ln
(
1 +

1

4

∫ T

0

∫ +∞

−1

x2

1 + x
dµ

)
= ∞

}
⊂

{∫ T

0

∫ +∞

−1

ln
(
1 +

1

4
· x2

1 + x

)
dµ = ∞

}
⊂ {ET (Md) = 0}.

So we proved that {
∫ T

0

∫ +∞
−1

x2

1+xdµ = ∞} ⊂ {ET (Md) = 0}, for any local martingale M .
It is clear that from this we can deduce as a particular case

(3)
{∫ T

0

∫ 1

−1

x2

1 + x
dµ = ∞

}
⊂

{
ET (M1) = 0

}
.

Now it is time to prove the reverse set inclusion:

{ET (M1) = 0} ⊂
{∫ T

0

∫ 1

−1

x2

1 + x
dµ = ∞

}
.

ET (M1)E2
T

(
− 1

2
M1

)
= exp

{
M1

T +

∫ T

0

∫ 1

−1

[
ln(1 + x)− x

]
dµ−M1

T+∫ T

0

∫ 1

−1

[
2 ln

(
1− x

2

)
+ x

]
dµ

}
= exp

{∫ T

0

∫ 1

−1

ln
[
(1 + x)

(
1− x

2

)2]
dµ

}
.

From the last equality and the supermartingale property of E(− 1
2M

1) we deduce that

{
ET (M1) = 0

}
⊂

{
−
∫ T

0

∫ 1

−1

ln
[
(1 + x)

(
1− x

2

)2]
dµ = ∞

}
.

Using Lemma 1 from Appendix we obtain − ln(1 + x)
(
1 − x

2

)2 ≤ 2x2

1+x and this gives us
an inclusion:

{ET (M1) = 0} ⊂
{∫ T

0

∫ 1

−1

2x2

1 + x
dµ = ∞

}
=

{∫ T

0

∫ 1

−1

x2

1 + x
dµ = ∞

}
which with (3) implies the equality (1).

Now we prove the set equality {ET (M2) = 0} =
{ ∫ T

0

∫
(1;+∞)

x2

1+xdν = ∞
}
.
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It follows from Jacod [1], that
{ ∫ T

0

∫ +∞
1

x2

1+|x|dν = ∞
}
⊂

{
ET (M2) = 0

}
. But it is clear

that
∫ T

0

∫ +∞
1

x2

1+|x|dν =
∫ T

0

∫ +∞
1

x2

1+xdν, because x ≥ 1. So we have

{∫ T

0

∫ +∞

1

x2

1 + x
dν = ∞

}
⊂

{
ET (M2) = 0

}
.

For the reverse inclusion it is clear that ET (M2) = exp
{
−
∫ T

0

∫ +∞
1

xdν+
∫ T

0

∫ +∞
1

ln(1+

x)dµ
}
and from this we deduce {ET (M2) = 0} ⊂

{ ∫ T

0

∫ +∞
1

xdν = ∞
}
. For x ≥ 1 the

inequality x ≤ 2x2

1+x holds true, which implies that

{∫ T

0

∫ +∞

1

xdν = ∞
}
⊂

{∫ T

0

∫ +∞

1

x2

1 + x
dν = ∞

}
.

So we will have inclusion {ET (M2) = 0} ⊂
{∫ T

0

∫ +∞
1

x2

1+xdν = ∞
}

and finally we get

the set equality (2). So the proof of part (i) is completed.

Now we shall prove part (ii) and part (iii) of Theorem 1. To prove part (ii) we need the
set equality

(4)
{∫ T

0

∫ 1

−1

x2

1 + x
dµ = ∞

}
=

{∫ T

0

∫ 1

−1

x2

1 + x
dν = ∞

}
and for part (iii)

(5)
{∫ T

0

∫ +∞

1

x2

1 + x
dµ = ∞

}
=

{∫ T

0

∫ +∞

1

x2

1 + x
dν = ∞

}
.

Inequality (△Mσ)
2

1+△Mσ
1{|△Mσ|≤1} ≤ 1

1+△Mσ
1{|△Mσ|≤1} and the integrability condition

E
1

1 +△Mσ
1{|△Mσ|≤1} < ∞

from part (ii) gives us possibility to use part 2) of Theorem 2.6.1 from [4] to obtain (4).

Inequality x2

1+x ≤ x for x ≥ 1 and condition E(△Mσ) < ∞ from (iii) will imply the

integrability of
(△M2

σ)
2

1+△M2
σ
. Indeed

E
(△M2

σ)
2

1 +△M2
σ

= E
(△Mσ)

2

1 +△Mσ
1{△Mσ≥1} ≤ E(△Mσ1{△Mσ≥1}) ≤ 1 + E(△Mσ) < ∞.

So we can apply part 2) of Theorem 2.6.1 from [4] and we obtain (5). □

4. Appendix.

Lemma 1. k(x) = 2x2

1+x + ln(1 + x)(1− 1
2x)

2 ≥ 0 for any x ∈ (−1; 1).
Proof.

k′(x) =
4x(1 + x)− 2x2

(1 + x)2
+

(1− 1
2x)

2 − (1 + x)(1− 1
2x)

(1 + x)(1− 1
2x)

2
=

2x2 + 4x

(1 + x)2
− 3x

(1 + x)(2− x)
=

−2x3 − 3x2 + 5x

(1 + x)2(2− x)
=

x(2x+ 5)(1− x)

(1 + x)2(2− x)
.

It is obvious that k′(0) = 0, k′(x) < 0 when x ∈ (−1; 0) and k′(x) > 0 when x ∈ (0; 1).
So x = 0 is a minimum point and because k(0) = 0, we can deduce that k(x) ≥ 0 for
x ∈ (−1; 1). □
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