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V. K. YUSKOVYCH

ON ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF STOCHASTIC

DIFFERENTIAL EQUATIONS IN MULTIDIMENSIONAL SPACE

Consider the multidimensional SDE

dX(t) = a(X(t))dt+ b(X(t))dW (t).

We study the asymptotic behavior of its solution X(t) as t → ∞, namely, we study

sufficient conditions of transience of its solution X(t), stabilization of its multidimen-
sional angle X(t)/|X(t)|, and asymptotic equivalence of solutions of the given SDE

and the following ODE without noise:

dx(t) = a(x(t))dt.

1. Introduction

Usually, there are two modes of behavior of SDE solutions as t → ∞: transience and
recurrence. In this article, we study the transience of solutions.

Consider a one-dimensional SDE of the form

(1) dX(t) = a(X(t))dt+ b(X(t))dW (t).

Gikhman and Skorokhod (see § 16, 17 of Part I in [4]) were the first who started study-
ing its non-random asymptotics, i.e., a function x(t) such that X(t) ∼ x(t), t → ∞,
a.s. Later this problem was studied by Keller, Kersting, and Rösler [7]. Buldygin, In-
dlekofer, Klesov, Stainebach, and Tymoshenko (see [2], [1]) considered some types of
non-autonomous SDEs and studied asymptotic behavior of their solutions; in particu-
lar, they considered the problem of asymptotic equivalence of SDE and ODE solutions.
Pilipenko, Proske, and Pavlyukevich (see [12], [10]) considered SDEs with non-Gaussian
noise.

Unlike the one-dimensional case, the asymptotic behavior of the multidimensional
SDE solution differs even provided its transience. Friedman [3] and Khasminskii [8]
studied conditions of transience and recurrence for systems of linear SDEs. Friedman
also studied the behavior of the polar angle of the two-dimensional SDE solution (see §
12.7 in [3]). Spitzer [14] studied the limit distribution (as t → ∞) of the polar angle of
the Wiener process on the plane. Samoilenko, Stanzhitskii, Novak [13] and Pilipenko,
Proske [11] studied the transience of solutions to multidimensional SDEs.

Consider an n-dimensional (n ≥ 2) autonomous SDE of the form

(2) dX(t) = a(X(t))dt+ b(X(t))dW (t), X(0) = x0 ∈ Rn,

where a : Rn → Rn, b : Rn → Rn×m are locally bounded and W is an m-dimensional
Wiener process

In this article, we study the asymptotic behavior of solutions X(t) of the SDE (2) as
t → ∞. Namely, we search for sufficient conditions such that:

• the solution X(t) is transient, i.e., almost surely

|X(t)| → ∞, t → ∞;

2010 Mathematics Subject Classification. 65C99.
Key words and phrases. multidimensional, stochastic differential equation, SDE, transience, angle

stabilization, asymptotics, equivalence.

53



54 V. K. YUSKOVYCH

• the angle of the solution’s growth stabilizes, i.e., there exists a random variable
Φ∞ (the limit angle) such that the limit

lim
t→∞

X(t)

|X(t)|
=: Φ∞

exists almost surely;
• there exists a non-random function of two variables rφ(t), φ ∈ Rn, t ≥ 0, that
describes the asymptotics of |X(t)|, i.e., almost surely

|X(t)| ∼ rΦ∞(t), t → ∞,

where Φ∞ is the limit angle.

For convenience, denote |X(t)| =: R(t) and X(t)/|X(t)| =: Φ(t). We will call R(t) the
radius process and Φ(t) the angle process.

It is known that if the diffusion is non-degenerate (infx det
(
bTb
)
(x) > 0) then the

solution of a multidimensional (n ≥ 2) SDE starting at x0 ̸= 0 never hits zero with
probability 1. Without loss of generality, we will assume that X(0) = x0 ̸= 0. Applying
the Itô formula to the radius and angle processes, we get

dR(t) = µ(R(t),Φ(t))dt+ σ(R(t),Φ(t))dW (t), R(0) = r0 = |x0| > 0,(3)

dΦ(t) = ν(R(t),Φ(t))dt+ χ(R(t),Φ(t))dW (t), Φ(0) = φ0 =
x0

|x0|
,(4)

where µ : R× Rn → R, σ : R× Rn → Rm, ν : R× Rn → Rn, χ : R× Rn → Rm are some
functions.

Let’s write down formulae for coefficients µ, σ, ν, χ of equations (3)–(4) in terms
of coefficients a, b of the initial SDE (2). For this, define the radial and tangential
components of the vector field a at the point x ̸= 0 by

arad(x) :=
xxT

|x|2
a(x), atan(x) := a(x)− arad(x),

respectively. Similarly, define the radial and tangential components of the matrix field b
at the point x ̸= 0 by

brad(x) :=
xxT

|x|2
b(x), btan(x) := b(x)− brad(x),

respectively. Then

µ(r, φ) = φTarad(rφ) +
|btan(rφ)|2

2r
, σ(r, φ) = φTbrad(rφ),

ν(r, φ) =
atan(rφ)

r
−
(
2(b(rφ)bT(rφ))tan

)
+ |btan(rφ)|2)φ

2r2
,

χ(r, φ) =
btan(rφ)

r
.

Further, we focus on studying the system of SDEs

dR(t) = µ(R(t),Φ(t))dt+ σ(R(t),Φ(t))dW (t), R(0) = r0,(5)

dΦ(t) = ν(R(t),Φ(t))dt+ χ(R(t),Φ(t))dW (t), Φ(0) = φ0,(6)

considering coefficients µ, σ, ν, χ to be arbitrary (not related to the coefficients a, b of the
initial SDE (2)). Nevertheless, we will keep calling the processes R and Φ the radius and
the angle, respectively. Results about R(t) and Φ(t) obtained below will describe the
asymptotic behavior of the solution X(t) to the SDE (2).

Notice that the problems stated previously now can be reformulated in terms of the
radius and the angle processes; namely, we search for sufficient conditions such that the
following hold almost surely:
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• R(t) → ∞, t → ∞;
• ∃ limt→∞ Φ(t) =: Φ∞;
• ∃rφ(t) : R(t) ∼ rΦ∞(t), t → ∞.

This article has the following structure. In Section 2, we prove a general theorem
about the asymptotic equivalence of SDE and ODE solutions in the one-dimensional
non-autonomous case. In Section 3, we state sufficient conditions that guarantee the
transience of the radius. In Section 4, we prove a theorem about angle stabilization. In
Section 5, we prove the main result about radius asymptotics. The Appendix contains
some auxiliary results.

2. Asymptotic Behavior of One-Dimensional SDEs

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, B be a one-dimensional (Ft)t-
adapted Wiener process.

Let’s prove the next lemma about the asymptotics of Itô integrals.

Lemma 2.1. Let b = b(t, ω) be a progressively measurable stochastic process and C > 0,
β > 0 be constants such that

Eb2(t) ≤ C(1 + t2β), t ≥ 0.

Then for any γ > β + 1
2 , almost surely

1

tγ

∫ t

0

b(s)dB(s) → 0, t → ∞.

Proof. Let ε > 0, k ∈ N0. Then using Doob’s martingale inequality, the Itô isometry,
and Fubini’s theorem, we have

P

{
sup

2k≤t≤2k+1

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε

}
≤

≤ P

{
sup

2k≤t≤2k+1

1

(2k)γ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε

}
≤

≤ P

{
sup

0≤t≤2k+1

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε2γk

}
≤

≤ 1

(ε2γk)2
E

(∫ 2k+1

0

b(s)dB(s)

)2

=
1

ε222γk
E
∫ 2k+1

0

b2(s)ds =

=
1

ε222γk

∫ 2k+1

0

Eb2(s)ds ≤ 1

ε222γk

∫ 2k+1

0

C(1 + s2β)ds =

=
1

ε222γk

(
2k+1 +

(2k+1)2β+1

2β + 1

)
=

=
2C

ε2
2(1−2γ)k +

22β+1C

(2β + 1)ε2
2(2β−2γ+1)k.

Hence, for any n ∈ N,

P
{
lim sup
t→∞

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε

}
≤ P

{
sup
t≥2n

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε

}
≤

≤
∞∑

k=n

P

{
sup

2k≤t≤2k+1

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ ≥ ε

}
≤
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≤ 2C

ε2

∞∑
k=n

2(1−2γ)k +
22β+1C

(2β + 1)ε2

∞∑
k=n

2(2β−2γ+1)k.

The last two series converge to 0 as n → ∞ (since 2γ − 2β − 1 > 0 by condition) so the
right-hand side converges to 0 as n → ∞.

Since ε > 0 is arbitrary,

P
{
lim sup
t→∞

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ > 0

}
= 0.

Therefore,

P
{
lim sup
t→∞

1

tγ

∣∣∣∣∫ t

0

b(s)dB(s)

∣∣∣∣ = 0

}
= 1,

that is

P
{

lim
t→∞

1

tγ

∫ t

0

b(s)dB(s) = 0

}
= 1,

and the lemma is proved. □

Let X be a solution of the one-dimensional non-autonomous SDE

(7) dX(t) = a(X(t), t, ω)dt+ b(X(t), t, ω)dB(t), X(0) = x0 ∈ (x1, x2),

where a = a(x, s, ω), b = b(x, s, ω) are such that for any t ≥ 0, their restrictions to
R× [0, t]× Ω are B(R)× B([0, t])×Ft-measurable.

The next theorem generalizes the results of Gikhman and Skorokhod (see § 17 of Part
I in [4]).

Theorem 2.1. Suppose that:

• the coefficient a is bounded and

lim
x→+∞
t→∞

a(x, t) = A a.s.,

where A > 0 is a positive random variable;
• there exist constants β ∈

(
0, 1

2

)
and C > 0 such that

P{∀x ∈ R ∀t ≥ 0 |b(x, t)| ≤ C(1 + |x|β)} = 1;

• X(t) → +∞ a.s.

Then almost surely

X(t) ∼ At, t → ∞.

Remark 2.1. Here, X(t) is a weak solution, not necessarily unique.

Proof. Consider SDE (7) in the integral form:

X(t) = x0 +

∫ t

0

a(X(s), s)ds+

∫ t

0

b(X(s), s)dB(s).

Estimate the expectation of X2(t):

EX2(t) = E
((

x0 +

∫ t

0

a(X(s), s)ds

)
+

∫ t

0

b(X(s), s)dB(s)

)2

≤

≤ 2E
(
x0 +

∫ t

0

a(X(s), s)ds

)2

+ 2E
(∫ t

0

b(X(s), s)dB(s)

)2

.

Since a is bounded, for the first expectation we have the estimate

E
(
x0 +

∫ t

0

a(X(s), s)ds

)2

≤ (C1t+ C2)
2
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for some C1 > 0, C2 > 0. Estimate the second expectation using the Itô isometry and
Jensen’s inequality:

E
(∫ t

0

b(X(s), s)dB(s)

)2

≤ C3t+ C3

∫ t

0

(EX2(s))βds

for some C3 > 0. Hence, we obtain the estimate

EX2(t) ≤ (C4t+ C5)
2 + C6

∫ t

0

(EX2(s))βds

for some C4, C5, C6 > 0, or denoting u(t) := EX2(t),

u(t) ≤ (C4t+ C5)
2 + C6

∫ t

0

uβ(s)ds.

Using a generalization of Grönwall’s inequality (Lemma 6.1 in Appendix), we get

u(t) ≤ C̃
(
(1− β)t+ (C4t+ C5)

2−2β
) 1

1−β

for some C̃ > 0. So

lim sup
t→∞

u(t)

t2
≤ C7

for some C7 > 0. From the last inequality and local boundedness of the function u, it
follows that

u(t) = EX2(t) ≤ C8(t
2 + 1)

for some C8 > 0. Then using Jensen’s inequality,

Eb2(X(t), t) ≤
(
C
(
1 + E|X(t)|β

))2 ≤ 2C2
(
1 +

(
E|X(t)|β

)2) ≤

≤ 2C2
(
1 + (EX2(t))β

)
≤ 2C2

(
1 + (C8(t

2 + 1))β
)
≤ C9(1 + t2β)

for some C9 > 0.
Hence, by Lemma 2.1, almost surely

1

t

∫ t

0

b(X(s), s)dB(s) → 0, t → ∞.

Therefore, almost surely for large t,

X(t)

t
=

x0

t
+

1

t

∫ t

0

a(X(s), s)ds+
1

t

∫ t

0

b(X(s), s)dB(s).

Going to the limit as t → ∞, we get almost surely

lim
t→∞

X(t)

t
= A

and the theorem is proved. □

The next theorem states that the previous one holds if the coefficients have those
properties for large x.

Theorem 2.2. Suppose that:

• the coefficient a = a(x, t) is bounded for x ≥ x∗ > 0, t ≥ 0 and there exists the
limit

lim
x,t→∞

a(x, t) = A a.s.,

where A > 0 is a positive random variable;
• there exist β ∈

(
0, 1

2

)
, C > 0, and x∗ > 0 such that almost surely for any

x ≥ x∗ > 0 and t ≥ 0,
|b(x, t)| ≤ Cxβ ;

• X(t) → +∞ a.s.
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Then almost surely
X(t) ∼ At, t → ∞.

Proof. Construct a twice continuously differentiable function f such that

f(x) =

{
0, x < x∗,

x, x > 2x∗.

Apply Itô’s lemma to the process X̃(t) := f(X(t)):

dX̃(t) = ã(t)dt+ b̃(t)dB(t),

where

ã(t) := a(X(t), t)f ′(X(t)) +
1

2
b2(X(t), t)f ′′(X(t)),

b̃(t) := b(X(t), t)f ′(X(t)).

Considering each of the cases X(t) < x∗, x∗ ≤ X(t) ≤ 2x∗, and X(t) > 2x∗, it is easy
to see that ã is bounded, almost surely

lim
t→∞

ã(t) = lim
t→∞

a(X(t), t) = A

and almost surely
|b̃(t)| ≤ const (1 + X̃β(t)).

It is clear that X(t) → ∞, t → ∞, a.s. iff X̃(t) → ∞, t → ∞, a.s.

Applying the previous theorem to X̃, we obtain X̃(t) ∼ At, t → ∞, a.s., which implies
that X(t) ∼ At, t → ∞, a.s. □

The following theorem lets to find the asymptotics of the solution in the case when
the drift coefficient has power growth.

Theorem 2.3. Let α ∈ (−1, 1). Suppose that:

(A) there exists a positive random variable A > 0 such that almost surely

a(x, t) ∼ Axα, x, t → ∞;

(B) there exist constants K ≥ 0 and x∗ > 0 such that

a(x, t) ≤ Kxα, x > x∗, t ≥ 0;

(C) there exist constants C > 0, β ∈ (0, α+1
2 ), x∗ > 0 such that almost surely for any

x ≥ x∗, t ≥ 0,
|b(x, t)| ≤ Cxβ ;

(D) X(t) → +∞, t → ∞, a.s.

Then almost surely

X(t) ∼ ((1− α)At)
1

1−α .

Remark 2.2. Notice that the asymptotics of X is nothing but the asymptotics of the
following ODE solution x:

dx(t) = Axα(t)dt.

Proof. Construct a twice continuously differentiable function f such that

f(x) =
x1−α

1− α
, x ≥ x∗.

Apply Itô lemma to the process X̃(t) := f(X(t)):

dX̃(t) = ã(t)dt+ b̃(t)dB(t),

where

ã(t) := a(X(t), t)f ′(X(t)) +
1

2
b2(X(t), t)f ′′(X(t)),
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b̃(t) := b(X(t), t)f ′(X(t)).

For large t,

ã(t) =
a(X(t), t)

Xα(t)
− α

2

b2(X(t), t)

Xα+1(t)
,

b̃(t) =
b(X(t), t)

Xα(t)
.

We have almost surely

lim
t→∞

a(X(t), t)

Xα(t)
= lim

t→∞

AXα(t)

Xα(t)
= A

and

lim
t→∞

b2(X(t), t)

Xα+1(t)
≤ lim

t→∞

C2X2β(t)

Xα+1(t)
= C2 lim

t→∞

1

Xα−2β+1(t)
= 0

since α− 2β + 1 > 0 and X(t) → ∞, t → ∞, a.s. by condition. Hence, almost surely

lim
t→∞

ã(t) = A.

For sufficiently large t,

|b̃(t)| = |b(X(t), t)|
Xα(t)

≤ C
Xβ(t)

Xα(t)
= CXβ−α(t) = C

(
(A(1− α)X̃(t))

1
1−α

)β−α

=

= const · (X̃(t))
β−α
1−α =: const · (X̃(t))β̃ .

Hence, we have the following equivalences:

β̃ <
1

2
⇔ β − α

1− α
<

1

2
⇔ 2β − 2α < 1− α ⇔ β <

α+ 1

2
.

It is clear that X(t) → ∞, t → ∞, a.s. iff X̃(t) → ∞, t → ∞, a.s. Applying the

previous theorem to the process X̃, we obtain X̃(t) ∼ At, t → ∞, a.s., i.e., f(X(t)) ∼
At, t → ∞, a.s.

For sufficiently large t,

f−1(t) = ((1− α)t)
1

1−α ,

which is a power function. Applying f−1 to both parts of the last equivalence, we obtain
almost surely

f−1(f(X(t))) ∼ f−1(At), t → ∞,

i.e., almost surely

X(t) ∼ ((1− α)At)
1

1−α , t → ∞.

□

Similarly to the proof of the previous theorem, one can prove the following result.

Theorem 2.4. If conditions (B), (C), and (D) hold then a.s.

((1− α)A−)
1

1−α ≤ lim inf
t→∞

X(t)

t
1

1−α

≤ lim sup
t→∞

X(t)

t
1

1−α

≤ ((1− α)A+)
1

1−α ,

where the random variables A− and A+ are defined as follows:

A− := lim inf
x,t→∞

a(x, t)

xα
, A+ := lim sup

x,t→∞

a(x, t)

xα
.
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3. Transience of Solutions

Consider the system (5)-(6) again:

dR(t) = µ(R(t),Φ(t))dt+ σ(R(t),Φ(t))dW (t), R(0) = r0,

dΦ(t) = ν(R(t),Φ(t))dt+ χ(R(t),Φ(t))dW (t), Φ(0) = φ0,

where coefficients µ, σ, ν, χ are arbitrary (not related to the coefficients a, b of the initial
SDE (2)).

Define the next operators for the radius SDE (3):

Lφ[V ](r) := µ(r, φ)V ′(r) +
1

2
|σ(r, φ)|2V ′′(r), r > 0, φ ∈ Rn, V ∈ C2(0,∞),

where |σ| :=
√
σσT is a norm of the vector σ, C2(0,∞) is the set of all twice continuously

differentiable function on (0,∞).

Theorem 3.1. Suppose that:

(1) for any starting point (r0, φ0), r0 ̸= 0, there exists a unique solution (R,Φ) of
the system (5)-(6), which is a strong Markov process;

(2) µ, σ are continuous, |σ(r, φ)| ≥ σ∗ > 0, r > 0, φ ∈ Rn;
(3) there exist a non-decreasing function V0 and δ > 0 such that V0(0) = −∞ and

∀r ∈ (0, δ) ∀φ ∈ Rn Lφ[V0](r) ≤ 0;

(4) there exist a decreasing function V∞ and a constant ∆ > δ such that |V∞(∞)| <
∞ and

∀r > ∆ ∀φ ∈ Rn Lφ[V∞](r) ≤ 0.

Then almost surely:

(1) R(t) > 0, t ≥ 0;
(2) R(t) → ∞, t → ∞.

Remark 3.1. If coefficients µ, σ, ν, χ are locally Lipschitz and have linear growth at
infinity then it is known that the SDE solution exists, is unique, and is a strong Markov
process (see § 10 of Part I in [4]).

Remark 3.2. Notice that there are no requirements for the behavior of the generator in
the interval r ∈ [δ,∆]. It may be possible to find a common function V in the interval
(0,∞) instead of two functions V0 and V∞ such that V (0) = −∞, V (∞) ∈ R, and

∀r > 0 ∀φ ∈ Rn Lφ[V ](r) ≤ 0.

Proof. Notice that since coefficients µ, σ are continuous, they are bounded on compact
sets, hence, by Corollary 6.1, the process R exits any interval [a, b] ⊂ (0,∞) almost
surely. Define τr := inf{t ≥ 0: R(t) = r}, r ≥ 0.

Step 1. Suppose first that R(0) = r0 ∈ (0, δ). Let ε ∈ (0, r0). Since the solution exits
any interval a.s. (by Corollary 6.1), τε ∧ τδ < ∞ a.s. Then by Lemma 6.3, we have

P{τδ < τε} ≥ V0(r0)− V0(ε)

V0(δ)− V0(ε)
→ 1, ε → 0.

Therefore, τδ < ∞ a.s. and P{τ0 < τδ} = 0. This implies (by virtue of continuity of R)
that P{R(t) > 0, t ≥ 0} = 1.

Step 2. By the strong Markov property, the distribution of the process1 (R(τδ +
t),Φ(τδ + t))r≥0 is the same as the distribution of the process (Rδ(t),Φξ(t)), where
ξ ∼ Φ(τδ), ξ is independent of Φ(τδ). Therefore, without loss of generality, we suppose

now thatR(0) = δ. Let ∆̃ > ∆. Since µ and σ are continuos and |σ| ≥ σ∗ > 0, µ and σ are

1By Rδ we denote the solution of the corresponding SDE with the starting point R(0) = δ. Similarly,
we define Φξ.
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bounded for r ∈ [δ/2, ∆̃] (|µ| ≤ M , |σ| ≤ Σ for some M, Σ > 0). Choose some decreasing

function V such that Lφ[V ](r) ≤ 0 for r ∈ [δ/2, ∆̃] and φ ∈ Rn (e.g., V (r) = e−
2M
Σ2 r).

Since the solution exits any interval a.s. (by Corollary 6.1), τ∆̃ ∧ τδ/2 < ∞ a.s. Then by
Lemma 6.3,

Pδ

{
τ∆̃ < τδ/2

}
≥ V (δ)− V (δ/2)

V (∆̃)− V (δ/2)
=: p > 0,

Pδ

{
τδ/2 < τ∆̃

}
≥ V (∆̃)− V (δ)

V (∆̃)− V (δ/2)
= 1− p < 1.

Using the strong Markov property k times, one can show that the probability of exiting

the interval
[
δ
2 , ∆̃

]
k times from the left end and returning into the interval [δ, ∆̃] is not

greater than (1− p)k → 0, k → ∞. Thus, τ∆̃ < ∞ a.s.
Step 3. By the strong Markov property, the distribution of the process ((R(τ∆̃ +

t),Φ(τ∆̃ + t)))t is the same as the distribution of the process ((R∆̃(t),Φξ(t)))t≥0, where
ξ ∼ Φ(τ) and ξ is independent of Φ(τ). Therefore, without loss of generality, we suppose

now that R(0) = ∆̃. Let L > ∆̃ and ∆∗ ∈ (∆, ∆̃). Since the solution exits any interval
(by Corollary 6.1), τL ∧ τ∆∗ < ∞ a.s. By Lemma 6.3,

P∆̃ {τ∆∗ < τL} ≤ V∞(L)− V∞(∆̃)

V∞(L)− V∞(∆∗)
.

As L → ∞, we obtain

P∆̃

{
inf
t≥0

R(t) ≤ ∆∗
}

≤ V∞(∞)− V∞(∆̃)

V∞(∞)− V∞(∆∗)
.

Then we have the following estimates:

P∆̃

{
lim inf
t→∞

R(t) ≤ ∆∗
}
≤ P∆̃

{
inf
t≥0

R(t) ≤ ∆∗
}

≤ V∞(∞)− V∞(∆̃)

V∞(∞)− V∞(∆∗)
=

= 1− V∞(∆̃)− V∞(∆∗)

V∞(∞)− V∞(∆∗)
=: p∆̃.

Notice that p∆̃ → 0 as ∆̃ → ∞. As ∆̃ → ∞, we obtain

P
{
lim inf
t→∞

R(t) ≤ ∆∗
}
= 0.

As ∆∗ → ∞, we obtain

P
{
lim inf
t→∞

R(t) < +∞
}
= 0 ⇒ P

{
lim inf
t→∞

R(t) = +∞
}
= 1 ⇒

⇒ P
{
lim
t→∞

R(t) = +∞
}
= 1.

□

Example 3.1. Consider the following n-dimensional (n ≥ 2) SDE:

dX(t) = |X(t)|α−1X(t)dt+ dW (t), X(0) = x0 ̸= 0,

where −1 < α < 1, W is an n-dimensional Wiener process.
If for x ∈ Rn\{0} and −1 < α < 1 we denote xα := |x|α−1x, then the previous SDE

can be written in the following form:

dX(t) = Xα(t)dt+ dW (t).

Let’s prove that almost surely:

• ∀t ≥ 0 X(t) ̸= 0;
• |X(t)| → ∞, t → ∞.
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Proof. Since the coefficients of the SDE are locally Lipschitz and have linear growth at
infinity, there exists a unique solution until it hits 0. One can obtain the SDE for the
radius R = |X| of the process X using the general formula given in Section 1:

dR(t) =

(
Rα(t) +

n− 1

2R(t)

)
dt+ dW (1)(t),

where W (1) is some one-dimensional Wiener process.
The scale function for this SDE is

s(r) =

∫ r

1

1

un−1
exp

2(1− uα+1)

α+ 1
du.

Since |s(0)| = ∞ and |s(+∞)| < ∞, classic results imply that the process R never hits
zero and R(t) → ∞, t → ∞, almost surely. This means that the process X never hits
the origin and |X(t)| → ∞, t → ∞, almost surely. □

Example 3.2. Let’s perturb the drift coefficient of the SDE from the previous example:

dX(t) = (Xα(t) + f(X(t)))dt+ dW (t),

where the function f is such that:

• |frad(x)| = o
(

1
|x|

)
, |x| → 0, |frad(x)| = o(|x|α), |x| → ∞;

• |ftan(x)| ≤ C2|x|α−ε for large |x|, where C2 > 0, ε ∈ (0, 1 + α).

Check that the solution of this SDE has the same properties as the one from the previous
example.

Proof. Notice that

|frad(x)| = o(|x|α), |x| → ∞ ⇒ |⟨f(x), x⟩| = o(|x|1+α), |x| → ∞.

The SDE for the radius |X| has the form

d|X(t)| =
(
|X(t)|α +

⟨f(X(t)), X(t)⟩
|X(t)|

+
n− 1

2|X(t)|

)
dt+ dW 1(t).

Use Theorem 3.1 to prove that the solution does not hit zero and goes to infinity.
Consider a Lyapunov function V0(r) := − 1

rn−1 , which is increasing, V0(0) = 0, and a

Lyapunov function V∞(r) := 1
r , which is decreasing, |V∞(+∞)| < ∞. We have:

LV0(r) ≤
n− 1

rn−α
− n− 1

2rn+1
+ o

(
1

rn+1

)
≤ 0

for r → 0,

LV∞(r) ≤ − 1

r2−α
− n− 3

2r3
+ o(rα−2) ≤ 0

for r → ∞. Hence,

P{X(t) ̸= 0, t ≥ 0} = 1, P{|X(t)| → ∞, t → ∞} = 1.

□

4. Stabilization of the Angle

Consider SDE (6) for Φ.

Theorem 4.1. Suppose that:

(1) P{∀t ≥ 0 R(t) > 0} = 1;

(2) lim inft→∞
R(t)
tγ ≥ C∗ for some random variable C∗ > 0 and some non-random

constant γ > 0;

(3) |ν(r, φ)| ≤ µ∗

rδ1
, |χ(r, φ)| ≤ χ∗

rδ2
for all φ ∈ Rn and large r, where ν∗, χ∗ > 0, δ1 >

1
γ , δ2 > 1

2γ .
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Then there exists the limit limt→∞ Φ(t) a.s.

Proof. Rewrite SDE (6) in the integral form:

Φ(t) = φ0 +

∫ t

0

ν(R(s),Φ(s))ds+

∫ t

0

χ(R(s),Φ(s))dW (s).

Then the limit

Φ∞ = φ0 +

∫ ∞

0

ν(R(t),Φ(t))dt+

∫ ∞

0

χ(R(t),Φ(t))dW (t)

exist a.s. if the integrals in the right-hand side are convergent.
To prove convergence of the first and the second integrals, use conditions 2 and 3 of

the theorem:

δ1 >
1

γ
⇒ δ1γ > 1 ⇒

∫ ∞

1

dt

tδ1γ
< ∞ ⇒

∫ ∞

0

|ν(R(t),Φ(t))|dt < ∞ a.s.;

δ2 >
1

2γ
⇒ 2δ2γ > 1 ⇒

∫ ∞

1

dt

t2δ2γ
dt < ∞ ⇒

∫ ∞

0

χ2(R(t),Φ(t))dt < ∞ a.s. ⇒

⇒
∫ ∞

0

χ(R(t),Φ(t))dW (t) is well-defined.

□

Example 4.1. Consider the SDE from Example 3.1. Let’s prove that almost surely:

• |X(t)| ∼ ((1− α)t)
1

1−α , t → ∞;

• ∃ limt→∞
X(t)
|X(t)| .

Proof. Let’s find the asymptotics of the process |X| using Theorem 2.3 being applied
to the SDE for R = |X|. The drift coefficient µ(r) = rα + n−1

2r ∼ rα, r → ∞ (here

A = 1, α = α), the diffusion coefficient σ(1)(r) = 1 ≤ r0 (here C = 1, β = 0) and a.s.
|X(t)| → ∞, t → ∞. Then by Theorem 2.3 almost surely

|X(t)| ∼ ((1− α)t)
1

1−α , t → ∞.

Let’s prove that the angle X
|X| stabilizes using Theorem 4.1. From the general SDE

for the angle (see Section 1) one can obtain the SDE for the angle in our case:

d
X(t)

|X(t)|
= −2Itan(X(t)) + n− 1

2|X(t)|3
X(t)dt+

Itan(X(t))

|X(t)|
dW (t),

where I is a unit n × n matrix and Itan(x) = I − xxT

|x|2 . The first condition of the

theorem is satisfied. The second condition (existence of the lower asymptotics) follows
from existence of the exact asymptotics (here γ = 1

1−α ). Check the third condition (find

estimates for the coefficients):∣∣∣∣−2Itan(x) + n− 1

2|x|3
x

∣∣∣∣ ≤ 2
√
n− 1 + n− 1

2|x|2
,∣∣∣∣Itan(x)|x|

∣∣∣∣ = √
n− 1

|x|
,

i.e., δ1 = 2, δ2 = 1. The third condition of the theorem is satisfied since for such δ1, δ2,
and γ = 1

1−α , {
δ1 > 1

γ ,

δ2 > 1
2γ

⇔ α > −1.

Hence, by Theorem 4.1, there exists a limit limt→∞
X(t)
|X(t)| almost surely. □
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Example 4.2. Consider the SDE from Example 3.2. Check that the solution of this
SDE has the same properties as one from the previous example.

Proof. Let’s find the asymptotics of |X|. Since
⟨f(rφ), rφ⟩

r
≤ C1|rφ|1+α−ε

r
= Crα−ε,

the drift coefficient

µ(r, φ) = rα +
⟨f(rφ), rφ⟩

r
+

n− 1

2r
∼ rα, r → ∞

(here A = 1, α = α), similarly to the previous example, by Theorem 2.3 we have almost
surely

|X(t)| ∼ ((1− α)t)
1

1−α , t → ∞.

Let’s prove that the angle X
|X| stabilizes. From the general SDE for the angle one can

obtain the SDE for the angle in our case:

d
X(t)

|X(t)|
=

(
ftan(X(t))

|X(t)|
− 2Itan(X(t)) + n− 1

2|X(t)|3
X(t)

)
dt+

Itan(X(t))

|X(t)|
dW (t),

Like in the previous example, the first and the second conditions of Theorem 4.1 are
satisfied. Check the third condition (find estimates for the coefficients):∣∣∣∣ftan(x)|x|

− 2Itan(x) + n− 1

2|x|3
x

∣∣∣∣ ≤ C2

|x|1−α+ε
+

2
√
n− 1 + n− 1

2|x|2
≤ C3

|x|1−α+ε

for large |x|, where C3 > 0 (since 1− α+ ε < 1),∣∣∣∣Itan(x)|x|

∣∣∣∣ = √
n− 1

|x|
,

i.e., δ1 = 1− α+ ε, δ2 = 1. The third condition is satisfied, because for such δ1, δ2, and
γ = 1

1−α , {
δ1 > 1

γ ,

δ2 > 1
2γ

⇔

{
ε > 0,

α > −1.

Hence, by Theorem 4.1, there exists the limit limt→∞
X(t)
|X(t)| almost surely.

□

5. Asymptotics of the Radius

Let (R,Φ) be a solution of (5)-(6).
Using the Lévy theorem (see § 7 of Chapter II in [6]), one can find a one-dimensional

Wiener process W (1) and a function σ(1) : R× Rn → R such that

σ(R(t),Φ(t))dW (t) = σ(1)(R(t),Φ(t))dW (1)(t).

Hence, the SDE for the radius process can be written as follows:

(8) dR(t) = µ(R(t),Φ(t))dt+ σ(1)(R(t),Φ(t))dW (1)(t).

Theorem 5.1. Consider SDE (8) for the radius:

dR(t) = µ(R(t),Φ(t))dt+ σ(1)(R(t),Φ(t))dW (1)(t).

Suppose that the following conditions hold:

(1) there exist a continuous bounded function M : Rn → (0,∞) and a constant α ∈
(−1, 1) such that for any φ0 ∈ Rn,

lim
r→∞
φ→φ0

µ(r, φ)

rα
= M(φ0);
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(2) there exist constants C > 0, β ∈ (0, α+1
2 ), r∗ > 0 such that for any r ≥ r∗,

φ ∈ Rn,
|σ(r, φ)| ≤ Crβ ;

(3) R(t) → ∞, t → ∞, a.s.;
(4) ∃Φ∞ := limt→∞ Φ(t) a.s.

Then
R(t) ∼ ((1− α)M(Φ∞)t)

1
1−α , t → ∞.

Proof. Notice that µ(r,Φ(t)) ∼ M(Φ∞)rα, r, t → ∞. Applying Theorem 2.3 to the
process R, we obtain the statement of the theorem. □

Remark 5.1. One can check that Theorem 5.1 holds for Example 4.2 with M(φ) = 1.

6. Appendix. Auxiliary Results

Consider the following generalization of Grönwall’s inequality (see § 1.7 in [9]).

Lemma 6.1. Let u : R+ → R+ be a continuous function satisfying the inequality

u(t) ≤ a(t) + C

∫ t

0

uβ(s)ds,

where C > 0, 0 < β < 1, the function a : R+ → R+ is non-decreasing and continuous.
Then

u(t) ≤ C̃
(
(1− β)t+ a1−β(t)

) 1
1−β , where C̃ := C

1
1−β .

Let X be a solution of the following one-dimensional non-autonomous SDE:

(9) dX(t) = a(X(t), t, ω)dt+ b(X(t), t, ω)dW (t), X(0) = x0 ∈ (x1, x2),

where a = a(x, s, ω), b = b(x, s, ω) are such that for any t ≥ 0, their restrictions to
R × [0, t] × Ω are B(R) × B([0, t]) × Ft-measurable. For this SDE, define a family of
operators

(10) Lt[u](x) := a(x, t)u′(x) + 1
2b

2(x, t)u′′(x), x ∈ [x1, x2], t ≥ 0,

and the exit time
τ := inf{t ≥ 0: X(t) /∈ (x1, x2)}.

The following lemma allows to prove that under some conditions, an SDE (9) solution
exits any interval (x1, x2) after a finite time.

Lemma 6.2. Let the functions a and b be bounded on [x1, x2]. Suppose that there exists
a non-random function u such that

Lt[u](x) ≤ −1, x ∈ [x1, x2], t ≥ 0.

Then2 Ex0τ ≤ 2maxx∈[x1,x2] |u(x)|. As a consequence, almost surely τ < ∞.

The proof of the lemma is standard (e.g., see § 3.7 in [8]).

Corollary 6.1. Let the functions a and b be bounded on [x1, x2] and b > δ > 0 on [x1, x2]
for some δ > 0. Then τ < ∞ almost surely.

Proof. Let ũ(x) = −epx, x ∈ [x1, x2], where p > 0. By condition, |a| ≤ C on [x1, x2] for
some C > 0. Write

Lt[ũ](x) = a(x, t)ũ′(x) +
1

2
b2(x, t)ũ′′(x) = −a(x, t)pepx − 1

2
b2(x, t)p2epx

= pepx
(
−a(x, t)− 1

2
b2(x, t)p

)
≤ pepx

(
C − 1

2
δ2p

)
.

2Notation Ex0 and Px0 emphasize that X(0) = x0.
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Choosing p > 2C
δ2 , we obtain Lt[ũ](x) =: −ε(x) < 0 for some ε(x) > 0, therefore

Lt[ũ](x) < −ε on [x1, x2], where ε := minx∈[x1,x2] ε(x). Then for u(x) := 1
ε ũ(x),

Lt[u](x) ≤ −1 on [x1, x2]. Thus, by Lemma 6.2, τ < ∞ almost surely. □

The next lemma allows to estimate probabilities of exiting through the left ot the right
end of the interval [x1, x2].

Lemma 6.3. Let the conditions of Lemma 6.2 hold. Besides this, suppose that there
exists a decreasing function V such that

Lt[V ](x) ≤ 0, x ∈ [x1, x2].

Then

Px0{X(τ) = x1} ≤ V (x0)− V (x2)

V (x1)− V (x2)
, Px0{X(τ) = x2} ≥ V (x1)− V (x0)

V (x1)− V (x2)
.

Proofs of these lemmas are standard and exploit Itô’s lemma on the interval [0, τ ] (for
the proof ideas, see § 16 of Part I in [4]).
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