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IID TIME SERIES TESTING

Traditional white noise testing, for example the Ljung-Box test, studies only the

autocorrelation function (ACF). Time series can be heteroscedastic and therefore not

i.i.d. but still white noise (that is, with zero ACF). An example of heteroscedasticity
is financial time series: times of high variance (financial crises) can alternate with

times of low variance (calm times). Here, absolute values of time series terms are not

white noise. We could test for white noise separately for original and absolute values,
for example using Ljung-Box tests for both. In this article, we create an omnibus test

which combines these two tests. Moreover, we create a general framework to create
various i.i.d. tests. We apply tests to simulated data, both autoregressive linear and

heteroscedastic.

1. Introduction

1.1. Classic white noise testing. Take a time series (Xn)n∈Z which is weakly sta-
tionary: its autocorrlelation function γ(k) := E[X0Xk] = E[XtXt+k] does not depend
on t ∈ Z. There exist a rich theory of these models with several classes of models:
autoregressions, moving average models, their generalizations ARIMA (autoregressive
integrated moving averages), stochastic volatility, generalized autoregressive conditional
heteroscedastic GARCH, and others. We refer readers to classic textbooks: a com-
prehensive monograph [6] and its more applied version by the same authors, [7]; and a
textbook [15] with emphasis on finance and connections to continuous-time models. See
also exposition of time series in [1, Part V] with connection to linear regression models,
economics, and finance.

The simplest model is the so-called white noise: when

(1) γ(k) = 0, k = 1, 2, . . .

A stronger condition on this time series is being independent identically distributed
(i.i.d.) with finite second moment. Below in (4) and (5), we provide some examples of
white noise which are not i.i.d. sequences. However, if these random variables are jointly
Gaussian, then (1) implies independence.

Given time series data X1, . . . , XN , we can compute an empirical version γ̂(k) of
the ACF: empirical correlation between X1, . . . , XN−k and Xk+1, . . . , XN . Under broad
conditions, this is a consistent and asymptotically normal estimate for the true ACF, [6,
Theorem 7.2.2].

White noise is the building block of other time series models, for example autore-
gression or moving average (where innovations must be white noise), or heteroscedastic
models. In classic regression models, we assume that residuals form an i.i.d. Gaussian
sequence. After fitting a linear regression, we need to test for serial autocorrelation:
essentially, (1) for residuals. We refer the reader to detailed discussion in [1, Chapter 7].

Let us describe several testing methods for white noise. The most classic approach
is to use empirical ACF. Earlier, we mentioned that empirical ACF is a consistent and
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asymptotically normal estimate of the true ACF. In particular, in case of the white noise,
we have the following convergence in distribution, see [7, Example 2.4.2]:

(2) γ̂(k) → 0, N1/2γ̂(k) → N (0, 1), N → ∞, k = 1, 2, . . .

One can test visually by plotting an empirical ACF, as seen in Figure 1 (A). For fixed
values of k, one can test the value of ACF at k using asymptotic normality. Finally, there
exist combined (portmanteau) test for empirical ACF values with lags k = 1, . . . ,K for
fixed K. The most classic example is the Box-Pierce test, see [5]: sum of squares of
empirical ACF values. It follows from (2) that after normalization, this sum converges
weakly to the χ2

k distribution, as N → ∞. This allows us to test the white noise
hypothesis. A more precise modification, the Ljung-Box test, was developed in [4], see
also [15, Section 2.2]. Such autocorrelation tests are good in distinguishing white noise
from the classic linear models, for example AR(1) or MA(1):

(3) Xt − b = a(Xt−1 − b) + Zt, Xt = Zt + aZt−1,

where Zt are i.i.d. with mean zero, and a ∈ (0, 1). Their ACF is different from zero, and
this difference can be easily captured using these empirical ACF tests. This is discussed
in detail in the textbooks [7, 6, 15].

1.2. Heteroscedasticity. We remind the readers again that white noise is a weaker
condition than i.i.d. In particular, a time series can be white noise but not i.i.d. be-
cause it is heteroscedastic. The term heteroscedasticity means time-dependent variance
of time series. For example, a white noise in the strong sense: a sequence of independent
identically distributed random variables with zero mean and finite second moment, is
homoscedastic. This concept of white noise in the strong sense is to be distinguished
from the classic white noise, or white noise in the weak sense, described above.

Homoscedasticity means that high absolute values of past terms do not influence
current terms. This can fail even when the ACF is zero. Indeed, the classic Pearson
correlation tests only for linear dependence. This leaves out quadratic or other forms
of dependence, in particular, dependence upon absolute values. Financial series, in con-
strast, exhibit heteroscedastic behavior. Turbulent periods of crises with high volatility
alternate with calm periods with low volatility. In terms of time series, this corresponds
to high or low |Xk| or, equivalently, X2

k . One example of a white noise sequence which
is not i.i.d. is a stochastic volatility model:

(4) Xt = VtZt, lnVt − v = a(lnVt−1 − v) +Wt,

where a ∈ (0, 1) and Zt, Wt are i.i.d. with mean zero. This sequence has zero auto-
correlation function values. Thus it is white noise in the sense of (1). But there is
autocorrelation for the series |Xt|. Time series lnVt is stationary, so Vt are identically
distributed but dependent. The same is true for |Xt|: identically distributed but corre-
lated. This model was introduced in [14] (for continuous time); see also discussion in [15,
Section 3.12]. Another example is the GARCH(1, 1), introduced in [3]:

(5) Xt = VtZt, V 2
t = a+ bX2

t−1 + cV 2
t−1,

where a, b, c are positive constants, and Z1, Z2, . . . are i.i.d. with mean zero. Unlike (4),
the model (5) has only one innovation white noise sequence. Its volatility term does not
form a separate time series; instead, it depends on previous values Xt−1 of the observed
process X. The model (5) is the classic benchmark for heteroscedastic financial time
series. See [15, Section 3.5] or [7, Section 10.3.5].
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(a) ε(t) (b) |ε(t)|

Figure 1. ACF for original and absolute values of residuals ε(t) for a
regression in the author’s article [13]. Is this enough to conclude that
these values are i.i.d.?

1.3. Main problem: i.i.d. testing. Testing whether a time series data is white noise,
in the sense of zero ACF, as in (1), is solved. A much harder problem is testing whether
a time series data is a sample of independent identically distributed random variables
than just white noise.

Some motivation: in (4) and (5) we do assume the innovations are i.i.d. and not just
white noise. This is in contrast with linear models (3), which work well even under a
weaker assumption of white noise. This is one motivation to test for i.i.d. In addition,
as discussed above, regression residuals are assumed to be i.i.d. Gaussian. However, if
we do not know a priori that their distribution is Gaussian, we need to test for i.i.d.
not just white noise. As mentioned earlier, for Gaussian time series white noise implies
independence. However, it is well-known that distributions in quantitative finance are not
Gaussian: They have tails heavier than Gaussian. Thus it is essential to design testing
for i.i.d. which does not depend on the assumption that the distribution is Gaussian.

1.4. Contributions of this article. A possible solution is a white noise test for the
sequence of absolute values or squares. For example, we can plot the empirical ACF for
X2, or the empirical ACF for |X|. Together with an empirical ACF test for X, this will
serve as a test for white noise in the strong sense. This is discussed, for example, with
regard to GARCH models in [7, Section 10.3.5]. We give another example: We analyzed
financial data using linear regression in [13, Section 3], and tested residuals X for IID:
We plot ACF for residuals and separately ACF for absolute values of these residuals; see
Figure 1 (A), (B) for X and |X|, respectively.

However, combining two tests in one test is not straightforward. We would like to
avoid testing X and |X| separately. The current article is devoted to this question.

Our goal is to make a test for i.i.d. similar to the white noise testing described above.
Classic white noise tests distinguishes i.i.d. from (3), but not from (4) or (5). The
white noise test for X2

t distinguishes i.i.d. from (4) or (5), but it is not clear how well it
distinguishes i.i.d. from (3). In this article, we create a test which separates i.i.d. from
all these alternatives.

We note that we do not know a priori the distribution ofXi. It can be Gaussian, which
is the classic case (and often assumed in the literature). It can be another symmetric
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distribution, for example Laplace. Or it can be a general asymmetric distribution, such
as skew-normal or asymmetric Laplace.

We prove general theoretical results applied to any i.i.d. sequence. This gives us flexi-
ble framework for various statistical tests for i.i.d. We apply these tests to simulated four
alternatives of i.i.d. series: two homoscedastic models, AR(1) and MA(1), as in (3), and
two heteroscedastic models, stochastic volatility from (4) and GARCH(1, 1) from (5).

1.5. Organization of this article. In Section 2, we state and prove our main the-
oretical results. In Section 3, we discuss applications of these results to construction
of statistical testing. In Section 4, we apply these tests to the four alternatives men-
tioned above: autoregression and moving average, as in (3), stochastic volatility (4), and
GARCH (5). We compare performance of our tests with classic Ljung-Box ACF tests for
X and |X|. The Appendix is devoted to technical definitions and lemmas. The Python
code and resulting data for simulations are provided open-access in GitHub repository
asarantsev/IIDtest.

1.6. Notation. We denote by ⇒ weak convergence. The Kronecker matrix product is
denoted by ⊗, and the transpose of A by A′. If random variables X and Y are equal in

distribution, we write X
d
= Y . The Euclidean norm of a vector x is denoted by ∥x∥. The

Kronecker delta is denote by δk. Finally, Ik stands for the k × k-identity matrix.

2. Main Theoretical Results

In this section, we state and prove our results for an i.i.d. sequence. These results
will help us in Section 3 to construct a family of statistical tests for the following null
hypothesis.

Null Hypothesis. Random variables X1, X2, . . . are independent identically dis-
tributed.

Assume X
d
= Xi. For a function f : R → R, let

m(f) := E[f(X)], Q(f) := Var(f(X)), s(f) := [Q(f)]1/2, K(f) := E[f4(X)].

Take the first N terms f(X1), . . . , f(XN ). Compute empirical mean and variance:

m̂(f) :=
1

N

N∑
k=1

f(Xk) and ŝ2(f) :=
1

N

N∑
i=1

(f(Xi)− m̂(f))
2
.

Next, compute empirical autocovariance and autocorrelation for the lag k:

γ̂k(f) :=
1

N − k

N−k∑
i=1

(f(Xi)− m̂(f)) (f(Xi+k)− m̂(f)) and ρ̂k(f) =
γ̂k(f)

ŝ2(f)
.

For two functions f, g : R → R, define the covariance and correlation:

(6) Q(f, g) := Cov(f(X), g(X)), C(f, g) :=
Q(f, g)

s(f)s(g)
.

We have Q(f, g) < ∞ from the existence of fourth moments. Compute empirical cross-
covariance and cross-correlation of f(X1), . . . , f(XN ) and g(X1), . . . , g(XN ) with time
lag k:

(7) γ̂k(f, g) :=
1

N − k

N−k∑
i=1

(f(Xi)−m̂(f))(g(Xi+k)−m̂(g)) and ρ̂k(f, g) :=
γ̂k(f, g)

ŝ(f)ŝ(g)
.

For the case k = 0 (ordinary covariance and correlation of f(X) and g(X), without any
time lag), we skip the subscript k = 0 in (7).
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Assumption 2.1. Take functions f1, . . . , fm : R → R which satisfy K(fi) < ∞.

Theorem 2.1. Under the null hypothesis and Assumption 2.1, the sequence of K vectors

in Rm2

(8) Q̂k :=
[
γ̂k(fi, fj), i, j = 1, . . . ,m

]
, k = 1, . . . ,K.

of empirical auto- and cross-covariances from (7) satisfies the Central Limit Theorem:

(9) N1/2
[
Q̂1, . . . , Q̂K

]
⇒ (Ξ1, . . . ,ΞK), Ξk ∼ Nm2(0,Q) i.i.d.

where the limiting covariance matrix Q is given by

(10) (Q)(ij),(i′j′) := Q(fi, fi′)Q(fj , fj′).

Proof. Assume without loss of generality that m(fi) = 0 for all i. If it is not, we can
simply subtract the mean from each fi(Xk), and it will not change the subsequent proof.
We apply [9, Theorem 1]. Let us translate the notation:

(11) ℓ := k′, α = i′, β = j′.

The multivariate white noise Xt :=
[
f1(Xt) . . . fm(Xt)

]
has mean EXt = 0) and

covariance matrix V := (Q(fi, fj))i,j=1,...,m. Next, we compute limiting mean vector
and covariance matrix. From [9, (2.1)], asymptotic mean of γ̂k(fi, fj) is zero, since
δk = 0 for k = 1, . . . ,K. To compute the covariance matrix, we need the concept of a
cumulant of four random variables from Definition 4.1. From Lemmas 4.1 and 4.2 in the
Appendix, the cumulant of the following random variables is zero:

(12) fi(Xt), fj(Xt+k), fi′(Xt+v), fj′(Xt+k′+v).

It is denoted in [9, (2.2)] by Kiji′j′(0, k, v, k
′+v), allowing for this different notation (11).

Take k ̸= k′. Then in [9, (2.2)], we get δk′−k = δk′+k = 0. Thus the limiting covariance
is 0. For k = k′, the limiting covariance is nonzero, and we shall compute it: In [9, (2.2)]
we get: δk′−k = 1 but δk′+k = 0. Thus the limiting covariance is Q(fi, fi′)Q(fj , fj′).
Since we are interested only in asymptotics, we can remove N − k from the denominator
in [9, (2.2)], and put N1/2 in the left-hand side. □

Theorem 2.2. Under the null hypothesis and Assumption 2.1, the sequence of K vectors

in Rm2

(13) Ĉk :=
[
ρ̂k(fi, fj), i, j = 1, . . . ,m

]
, k = 1, . . . ,K.

of empirical auto- and cross-correlations from (7) satisfies a similar Central Limit The-
orem:

(14) N1/2
[
Ĉ1, . . . , ĈK

]
⇒ (Ξ̃1, . . . , Ξ̃K), Ξ̃k ∼ Nm2(0,C) i.i.d.

with the limiting covariance matrix C given by

(15) (C)(ij),(i′j′) := C(fi, fi′)C(fj , fj′).

Proof. Let us show (14). By the Law of Large Numbers, ŝ(f) → s(f) as N → ∞
in probability. Apply Slutsky’s theorem: [2, Section 5.5]. From (7) and (9), we have
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convergence in law:

N1/2
[
ρ̂k(fi, fj), i, j = 1, . . . ,m, k = 1, . . . ,K

]
⇒

[
ηijk :=

ξijk
s(fi)s(fj)

, i, j = 1, . . . ,m, k = 1, . . . ,K
]
,

[ξijk, i, j = 1, . . . ,m] ∼ Nm2(0,Q), k = 1, . . . ,K.

(16)

From (16), we get: [ηijk] ∼ Nm2(0,C) i.i.d. for k = 1, . . . ,K, with

(C)(ij),(i′j′) :=
Q(ij),(i′j′)

s(fi)s(fj)s(fi′)s(fj′)
=

Q(fi, fi′)Q(fj , fj′)

s(fi)s(fj)s(fi′)s(fj′)

= C(fi, fi′)C(fj , fj′).

In the last line, we used (6). This completes the proof of (14). □

Remark 2.1. In terms of Kronecker matrix product, see [12], we can write the limiting
covariance matrices in (10) and (15) as Q = Q⊗Q, where Q = (Q(fi, fj))i,j=1,...,m is the
covariance matrix of the random vector (f1(X), . . . , fm(X)), and similarly C = C ⊗ C,
where C = (C(fi, fj)) is the correlation matrix of this random vector.

Lemma 2.1. Under the null hypothesis and Assumption 2.1, if correlations are zero:

(17) Q(fi, fj) = Cov(fi(X), fj(X)) = 0 for i, j = 1, . . . ,m, i ̸= j,

then the empirical vectors from (7) have the following weak limit:

(18) N1/2
[
Ĉ1, . . . , ĈK

]
⇒ Nm2K(0, Im2K).

Proof. Immediately follows from Theorem 2.2, since C(fi, fj) = 0 for i ̸= j by (17), and
C(fi, fi) = 1 (correlation of a random variable fi(X) with itself is one). □

This convergence to a vector of i.i.d. standard Gaussians enables us to design statisti-
cal tests, see Section 3. However, if the correlations are nonzero, then we can still have
convergence to this vector. Only we need to multiply the empirical correlation vector
by a certain constant matrix. Take the set P(n) of positive definite symmetric n × n-
matrices. For every A ∈ P(n), we can find an n×n-matrix B (not necessarily symmetric
or positive definite) such that BB′ = A−1. We can find a version of this matrix B
which continuously depends on A. Denote this by B := A−1/2. (In other words, take a
continuous function Φ : P(n) → Rn×n such that Φ(A)Φ′(A) = A−1.) An example is the
Cholesky decomposition. Another example is a symmetric positive definite B.

Lemma 2.2. Under the null hypothesis and Assumption 2.1, the normalized vector of
empirical auto- and cross-covariances satisfies, as N → ∞,

(19) N1/2 · Q−1/2 ⊗Q−1/2
[
Q̂1, . . . , Q̂K

]
⇒ Nm2K(0, Im2K).

Similarly, the vector of empirical auto- and cross-correlations satisfies, as N → ∞,

(20) N1/2 · C−1/2 ⊗ C−1/2
[
Ĉ1, . . . , ĈK

]
⇒ Nm2K(0, Im2K).

Proof. The Kronecker matrix product commutes with ordinary matrix product, and
therefore with matrix inversion; see the monograph [12]. Thus the m2 × m2-matrix
E := Q−1/2 ⊗ Q−1/2 satisfies (EE′)−1 = Q ⊗ Q = Q. From the properties of the
multivariate normal distribution and (9), we conclude (19). Similarly, we get (20). □
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However, sometimes we do not know a priori the limiting covariance matrices Q or C,
since we do not know the covariance and correlation functions Q(fi, fj) and C(fi, fj).
We must estimate all these from the data. Therefore, we need to state a version of
Lemma 2.2 with empirical correlations instead of theoretical ones. Define

Q̂ := (γ̂(fi, fj))i,j=1,...,m and Ĉ := (ρ̂(fi, fj))i,j=1,...,m .

Theorem 2.3. Under the null hypothesis and Assumption 2.1, replace in (19) the lim-

iting covariance matrix Q with its estimate Q̂. Then, as N → ∞,

(21) N1/2Φ(Q̂)⊗ Φ(Q̂)
[
Q̂1, . . . , Q̂K

]
⇒ Nm2K(0, Im2K).

Similarly, replace in (19) the limiting covariance matrix C with estimate Ĉ. As N → ∞,

(22) N1/2Ĉ−1/2 ⊗ Ĉ−1/2
[
Ĉ1, . . . , ĈK

]
⇒ Nm2K(0, Im2K).

Proof. By consistency of the covariance estimates, Q̂ → Q as N → ∞ in probability
(actually, even almost surely). By continuity, Q̂−1/2 → Q−1/2 and therefore Q̂−1/2 ⊗
Q̂−1/2 → Q−1/2⊗Q−1/2. Applying Slutsky’s theorem [2, Section 5.5] for random vectors
to (9), we get:

N1/2Q̂−1/2 ⊗ Q̂−1/2
[
Q̂1, . . . , Q̂K

]
⇒ Q−1/2 ⊗Q−1/2 [Y1, . . . , YK ]

d
= [Z1, . . . , ZK ] .

for i.i.d. Yk ∼ Nm2(0,Q) and i.i.d. Zk ∼ Nm2(0,Q). This completes the proof of (21).
The proof of (22) is similar. □

3. Statistical Tests

Theoretical results from the previous section allow us to design statistical tests similar
to the classic Box-Pierce and Ljung-Box white noise tests.

3.1. The case of uncorrelated functions. Lemma 2.1 has the following applications.

Corollary 3.1. Consider the following function of auto- and cross-correlations:

(23) TN := N

K∑
k=1

∥Ĉk∥2 ≡ N

m∑
i=1

m∑
j=1

K∑
k=1

[ρ̂k(fi, fj)]
2

Under assumptions of Lemma 2.1, it satisfies the following weak convergence result:

(24) TN ⇒ χ2
m2K , N → ∞.

Proof. This follows immediately from Lemma 2.1: The sequence of K vectors Ĉk ∈ Rm2

for k = 1, . . . ,K forms a vector Ĉ from Rm2K with Euclidean norm

∥Ĉ∥2 =

K∑
k=1

∥Ĉk∥2 =

m∑
i=1

m∑
j=1

K∑
k=1

[ρ̂k(fi, fj)]
2
.

From (18), we get: N1/2Ĉ ⇒ Nm2K(0, Im2K). The sum of squares of n i.i.d. random
variables is distributed as the χ2 random variable with n degrees of freedom. Apply this
to n = m2K. Using continuity of the square of the Euclidean norm as a function of its
vector, we conclude (24). □
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3.2. Omnibus Box-Pierce test. Corollary 3.1 allows us to devise the following test:
Fix significance level p (for example, 5%), and take u such that

(25) W ∼ χ2
m2K , has P(W > u) = p.

We reject the null hypothesis with significance level p if TN > u. This would be an
analogue of the Box-Pierce test from [5]. In fact, we get the Box-Pierce test if we take
m = 1 and f1(x) = x in Assumption 2.1.

3.3. Omnibus Ljung-Box test. In the Introduction, we mentioned that there exist
a better (more precise) version of this test, which is called Ljung-Box test, [4].

Corollary 3.2. Under assumptions of Lemma 2.1, fix a constant c > 0 and take

(26) LN := N(N + c)

K∑
k=1

∥Ĉk∥2

N − k
.

Then we have the following weak convergence result, as N → ∞:

(27) LN ⇒ χ2
m2K .

Proof. Obviously, as N → ∞, for each fixed k, we have:

(28) a(N, k) :=

[
N + c

N − k

]1/2
→ 1, N → ∞.

Multiply the kth component Ĉk of the vector Ĉ by a(N, k). Apply Slutsky’s theorem,
[2, Section 5.5], and use (28). Then we get:

(29)
[
a(N, 1)Ĉ1, . . . , a(N, k)ĈK

]
⇒ Nm2K(0, Im2K).

Taking the square of the Euclidean norm on both sides of (29), similarly to the proof of
Corollary 3.1, we get (27). □

Again, similarly to Corollary 3.1, the result of Corollary 3.2 allows us to create a
statistical test: Reject the null hypothesis with significance level p, if LN > u, where u is
taken from (25). The Ljung-Box test from [4] is a particular case of this test, if we take
m = 1, f1(x) = x, and c = 2. We impose the following reasonable assumptions on the
distribution of X.

Assumption 3.1. The distribution of X is symmetric: X
d
= −X.

Assumption 3.2. The distribution of X has finite fourth moment: E[X4] < ∞.

Remark 3.1. Under Assumptions 3.1 and 3.2, we can take f1(x) = x and f2(x) = |x|.
Indeed, then Q(f1, f2) = E[X|X|] = 0. This family of two functions satisfies Assump-
tion 2.1 and is uncorrelated.

However, if only Assumption 3.1 holds, but Assumption 3.2 does not hold, then we
can easily modify these functions and make them bounded: f1(x) = sin(ax) and f2(x) =
cos(ax), or any other two bounded functions, one odd and the other even.
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3.4. The general case. Next, assume we found a sequence of functions satisfying As-
sumption 2.1, but they do not have zero correlation. Then Lemma 2.1 is not applicable.
Instead, we apply Theorem 2.3 and get the following results.

Corollary 3.3. Under the null hypothesis and Assumption 2.1, define the matrix Ĉ :=
Ĉ ⊗ Ĉ. Next, define the following functions:

T̃N := N ·
K∑

k=1

Ĉ′
kĈ

−1Ĉk,

L̃N := N(N + c) ·
K∑

k=1

1

N − k
Ĉ′

kĈ
−1Ĉk.

(30)

These statistics satisfy the following limit theorem:

T̃N ⇒ χ2
m2K ; L̃N ⇒ χ2

m2K , N → ∞.

The same results hold true if we replace in (30) all Ĉk by Q̂k, and all Ĉ by Q̂.

Proof. We make changes in the proofs of Corollaries 3.1 and 3.2. Designate ÊN :=
Φ(Ĉ) ⊗ Φ(Ĉ). Instead of the square norm of the m2-dimensional vector Ĉk, we have

the square norm of the m2-dimensional vector ÊN Ĉk. As discussed in the proof of
Theorem 2.3, ÊN Ê′

N = Ĉ−1. Thus∥∥∥ÊN Ĉk

∥∥∥2 =
[
ÊN Ĉk

]′
·
[
ÊN Ĉk

]
= Ĉ′

kÊN Ê′
N Ĉk = Ĉ′

kĈ−1Ĉk.

□

This corollary allows us to create statistical tests, similarly to the case of uncorrelated
functions f1, . . . , fm. Take a significance level p, find the cutoff u from (25), and reject

the mull hypothesis with significance level p if T̃N > u (analogue of the Box-Pierce test

from [5]), or L̃N > u (analogue of the Ljung-Box test from [4]).

4. Simulation

4.1. Time series models. We applied the omnibus Ljung-Box test with f1(x) = x and
f2(x) = |x| to four models:

• AR(1) (autoregression of order 1);
• MA(1) (moving average of order 1);
• GARCH(1, 1) (generalized conditional heteroscedastic autoregression);
• SV: a stochastic volatility model with log volatility modeled as AR(1), with

innovations independent of the innovations for observed process. Unlike other
three models, it has two independent series of innovations.

We compare our new test with Ljung-Box test (for both original and absolute values),
for 5 lags. These models are not white noise. Thus our tests should reject the null white
noise hypothesis. But existing Ljung-Box tests should reject it too. Which test is better?
We can judge by the p-values. If one test has lower p-values that another test (when the
null hypothesis is false), then the first test is better. We cannot expect our new test to
improve upon the existing Ljung-Box tests, because our test is portmanteau: It combines
white noise testing for original values and for absolute values. However, we still compare
the p-values to see which test performs better in which model.

In each of four models, we consider both Gaussian and Laplace innovations: i.i.d.
(Zt), with sample size N = 100. Each distribution has mean E[Zt] = 0 and variance
Var(Zt) = 1, with densities f(z) := (2π)−1/2 exp(−z2/2) and f(z) = 0.5 exp(−|z|).
Indeed, much of time series theory is (explicity or implicitly) based on the assumption
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that innovations is Gaussian. Thus we chose another symmetric distribution, with tails
heavier than Gaussian.

Note that these distributions for innovations are symmetric and have finite fourth
moment. In other words, they satisfy Assumptions 3.1 and 3.2. The same applies to the
time series (Xt). Therefore, we can use two test functions from Remark 3.1.

In addition, a small a in autoregression and moving average models means that this
time series model is close to the white noise. A large a (close to 1) means that our time
series model is very different from the white noise. The same is true for the stochastic
volatility model (for a from the autoregression for log volatility), and for GARCH (where
the role of a is played by the sum of parameters; see below). We take several values of
parameters a: 0.1, 0.2, 0.3, 0.4, 0.5.

4.2. Results. We provide p-values in the four tables. For AR and MA, in most cases
the Ljung-Box test for original values works better (that is, gives lower p-values) than
the new test. But the Ljung-Box test for absolute values mostly fails to reject the null
hypothesis; thus, it does not work as well as the new test. This seems to be a feature of
linear time series models.

Indeed, deviations from white noise in linear models are manifested via the autocorre-
lation function. For these models, white noise is equivalent to i.i.d. although of course for
general time series models this is not the case. The classic Ljung-Box test deals directly
with this function. Thus we do not need additional testing of autocorrelation functions
for some related time series (such as absolute values) to reject the null hypothesis (i.i.d.)

For GARCH with Gaussian innovations, our results are inconclusive. For GARCH
with Laplace innovations, almost in all cases the new test is better than both Ljung-Box
tests. Finally, for SV with Gaussian innovations, in all cases the new test is better than
both its competitors. And for SV with Laplace innovations, the new test is worse acrosss
the board. Thus the results are inconclusive, we are not sure why.

Remark 4.1. In these tables, indices O, A, N correspond to Ljung-Box for original values,
Ljung-Box for absolute values, and the omnibus Ljung-Box test. Letters G and L stand
for Gaussian and Laplace innovations.

4.3. Further research. Further simulation testing is required to establish whether these
results are statistical illusions. Testing for simulated ARMA(p, q) models would be
very valuable. Same is true for heteroscedastic models: We studied only one particular
stochastic volatility model; there exist many versions. As for GARCH, we studied only
GARCH(p, q) with p = q = 1 all with parameters a, b, c from (5) equal to each other.

Lemma 2.1 and Theorem 2.3 allow us to create other statistical tests for the null
hypothesis. For example, we can take the maximum norm instead of the L2-norm of the
vector Ĉ or other vectors. For the classic ACF, this was done in [8]. More generally, we
can take the Lp-norm for p ∈ [1,∞], with p = ∞ corresponding to the maximum norm.

Appendix

Definition 4.1. The cumulant of four random variables X,Y, Z,W is defined as

E[X ′Y ′Z ′W ′]− E[X ′Y ′] · E[Z ′W ′]− E[X ′W ′] · E[Y ′Z ′]− E[X ′Z ′] · E[Y ′W ′],

where X ′, Y ′, Z ′,W ′ are centered versions of random variables X,Y, Z,W .

Lemma 4.1. Assume we can arrange four random variables X,Y, Z,W into two inde-
pendent bivariate random vectors. Then the cumulant of these random variables is 0.
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a pO,G pA,G pN,G pO,L pA,L pN,L

0.1 0.194 0.385 0.453 0.047 0.057 0.167
0.2 0.045 0.484 0.071 0.003 0.052 0.023
0.3 0.003 0.452 0.129 0.002 0.005 0.000
0.4 0.002 0.413 0.016 0.000 0.002 0.000
0.5 0.000 0.246 0.001 0.000 0.011 0.000

Table 1. Autoregression results: p-values. Fix an a and simulate a
sequence (Xt) with Xt = aXt−1 + Zt, X0 = 0.

a pO,G pA,G pN,G pO,L pA,L pN,L

0.1 0.095 0.382 0.417 0.164 0.292 0.109
0.2 0.013 0.379 0.330 0.018 0.382 0.223
0.3 0.021 0.288 0.017 0.004 0.496 0.109
0.4 0.003 0.303 0.005 0.002 0.067 0.033
0.5 0.001 0.325 0.005 0.000 0.240 0.016

Table 2. Moving average results: p-values. Fix an a and simulate a
sequence (Xt) with Xt = Zt + aZt−1.

a pO,G pA,G pN,G pO,L pA,L pN,L

0.1 0.487 0.535 0.210 0.050 0.071 0.036
0.2 0.342 0.432 0.085 0.088 0.126 0.094
0.3 0.201 0.517 0.022 0.143 0.090 0.235
0.4 0.183 0.216 0.164 0.212 0.074 0.514
0.5 0.369 0.242 0.215 0.298 0.055 0.342

Table 3. Stochastic volatility results: p-values. We apply the tests to
Xt = eVtZt, where Vt = aVt−1 +Wt, with independent Wt ∼ N (0, 1).

a pO,G pA,G pN,G pO,L pA,L pN,L

0.1 0.015 0.103 0.329 0.192 0.155 0.143
0.2 0.093 0.093 0.082 0.282 0.206 0.142
0.3 0.067 0.020 0.110 0.393 0.214 0.093
0.4 0.088 0.067 0.088 0.028 0.143 0.013
0.5 0.063 0.014 0.080 0.216 0.057 0.095

Table 4. Stochastic volatility results: p-values. Here we apply the tests
to Xt = VtZt, where V 2

t = (1 + V 2
t−1 +X2

t−1) · (a/3). Thus we take all
three parameters of GARCH to be equal to each other. Their sum is
equal to the parameter a used for other models.

Proof. Assume, without loss of generality, that (X,Y ) is independent of (Z,W ). Then
the corresponding centered vectors (X ′, Y ′) and (Z ′,W ′) are also independent. Thus

E[X ′Y ′Z ′W ′] = E[X ′Y ′] · E[Z ′W ′],

E[X ′Z ′] = E[X ′] · E[Z ′] = 0 · 0 = 0,

E[X ′W ′] = E[X ′] · E[W ′] = 0 · 0 = 0.
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Combining these observations, we complete the proof. □

Lemma 4.2. Under conditions of Theorem 2.1, for any t, k, k′, v ∈ Z with t, k, k′ ≥ 1, we
can arrange random variables from (12) into two independent bivariate random vectors.

Proof. Since Xu, u = 1, 2, . . . are i.i.d. we need only to show that we can arrange the
four integers a0 := t, a1 := t + k, a2 := t + v, a3 := t + v + k′ using a bijection ρ of
{0, 1, 2, 3} onto itself so that {aρ(0), aρ(1)} ∩ {aρ(2), aρ(3)} = ∅. We consider two cases:
(a) v ̸= k and v ̸= −k′: then {t, t + v} ∩ {t + k, t + v + k′} = ∅; (b) v = k or v = −k′;
then {t, t+ v + k′} ∩ {t+ k, t+ v} = ∅. □
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