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FUNCTIONAL ITERATED LOGARITHM LAW
FOR A WIENER PROCESS

The functional iterated logarithm law for a Wiener process in the Bulinskii form for
great and small times is proved.

1. Introduction. Let w(t) be a d-dimensional Wiener process on the probability
space (Q, F, P), t > 0. Introduce the sequence of random processes
w(nt)
&)= ——~, n=34,.. (1)
T Vinp(n)
where p(n) is an arbitrary sequence.

In [1], A.V. Bulinskii proved a version of the Strassen iterated logarithm law in which
the normalizing function (n) is an arbitrary monotone increasing function. Let us
formulate this result.

Denote, by C([0,1]; E4), the space of all continuous functions x(t) on the interval [0, 1]
with values in the Euclidean space (E4,|-|) and with norm

llz[| = sup [z(t)], (2)
te[0,1]

Let K*([0,1]; E) be the space of functions z(t) € C([0,1]; E%) such that 2(0) = 0 and
z(t) = fot #(s)ds for some function #(-) € La([0,1]; E4). We set

2l = 12]| o 0,119 (3)

Following [1], we define ® as a class of all increasing functions ¢(¢), ¢ > 0, such that
lim¢—, o () = 0o. Now we introduce a functional

00 —ro2 ([
o= ep{TELN ooy (@)
k=1

where [-] denotes the integer part of a number. For every ¢ € ®, we denote
R*(p) =inf{r > 0: J(p,r,c) < oo}, (5)

and R(p) = oo if there exists no r < oo such that J(p,r,¢) < co. Let us remark that if
J(p,r,co) < oo for a certain ¢g > 1, then J(p,r,¢) < oo for every ¢ > 1.

Let Kr = {z(t) € K1, [|]| 2 < R2}.

In [1, Theorem 1], the following result was proved.

Bulinskii theorem. For ¢ € @, the limit set of sequence (1), t € [0,1], coincides
with K, and R = R(y) is defined in (5).
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In [1, Theorem 3], it was proved that R can be defined as R = %, where

o(t)
= h R
Q t—oo V 2Inlnt

This theorem yields the usual functional Strassen iterated logarithm law and allows us to

study the asymptotic behavior of the process &, (t) for normalizing functions ¢(n) such
w(t)

VvV2Inlnt

In the present article, we generalize this result in two directions. First, we consider

sequence (1) on the whole time axis and, second, we prove a local version of the Bulinskii
theorem.

2. Functional iterated logarithm law on the whole time axis.

Let C(]0,00); E?) denote the space of all continuous functions on [0, c0) with values
in B¢ We set

that lim;_ o = o0.

6= {9 e 0([0,00) : EY) : 0(0) = Onﬂ%@ - o}.

On this space, we define the metric

10(t)]

1+t (6)

ll6lle =suwp

Then (O, ||-]|e) is a separable Banach space. Let H'([0, 00); E?) be the space of functions
6 € © such that 6(¢ fo s)ds for some 6 € Ly([0,00); E?). We define

16111 = 11611 Lo ((0.00): 29)- (M)

Lemma. There exists the bijective correspondence between the spaces K'([0,1]; EY)
and H'([0,00); E9). If f € K'([0,1]; R?), then

o) = [ F(57) ppds € 10,000 B ®)

Conversely, if g € H'(]0, 00); R%), then

D!
f®) :/ §()ds € K ([0, 1]; ). (9)
o 1—8"\1—
Furthermore, ||g|| g1 ((0.00);24) = | fll k1 (0,1];E4)-
Proof. Let f € K'([0,1]; E9). It is necessary to prove that, for the function g(z) from
(8),
t
i 01 "

According to the Cauchy—Buniakowski inequality,

244ﬁﬂ$

This yields (10). It is easy to verify the equality of norms. Lemma is proved.

In what follows, we will use the Schilder theorem [2, Theorem 1.3.27] on large devia-
tions of a Wiener process with small variance. For convenience, we present its formula-
tion. Define

1 2 2 S 2
—as| <l [ s = e

0, if ¢ ¢ H'([0,00); EY),

I(3) =
D7 Ll it v e 000k B,
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Schilder theorem. Let W,(-) be the measure corresponding to a process ew(t) on
the space © with a Borel o-algebra B. Then
a) for any closed set A € B,

lim €W (A) < —inf{I(y); ¢ € A}; (11)

e—0
b)for any open set B € B,
lim W (B) > —inf{I(¢);¢ € B}. (12)

e—0

The functional I(¢) is called the action functional for a family W¢(-). For any a < oo,
the set {¢ : I(¢)) < a} is closed in the space (0, B).
Introduce a class of functions L :

Lr=A{0(t) € H" : ||0]| 51 (j0,00):59) < R}, (13)

where R = R(yp) is defined in (5).
Theorem 1. For ¢ € ® with probability 1, the set of limit points of sequence (1) is
Lr, where R is defined in (5).
Proof. We prove the theorem in three standard steps. Let us denote n; = [c

Z/C(t) = fnk (t)
Step 1). We need to prove that, for every R? < oo, every ¢ > 1, and every § > 0,
there exists a positive integer kg such that, for every k > ko,

p(zi, Lg) < 6. (14)
We set N5 = {9 : p(¢, Lg) > 0}. Then there exists 1 > 0 such that

‘]

)

2

R
inf T > .
wlélNa (w) -2 i

As the set Ny is closed, relation (11) yields
R2
pleven) zon{ e )

By the definition of the number R, we have ), P{zk € N5} < 00. By applying the

Borel-Cantelli lemma, we get (14). Step 1) is proved.

Step 2). For R?(p) < 0o, we need to prove that every limit point of the sequence &, (t)
is an element of Lg. If n = ny, thos follows from step 1). Let now n € [ng, ngy1]. Denote
¥(n) = y/np(n). Since the function 1 (n) is nondecreasing, we can write

1 _ Qnk + ﬂnk
Y(n)  Pw)  Y(rgr)’

where ap > 0, Buk > 0 and ang + Bk = 1. Set Zpk(t) = @k 2k (t) + Bukzk+1(t). We note
that, for large k, the functions Z,x € {f : p(f, Lr) < d}. This follows from the fact that
if the functions z(t),y(t) € Lg and o, 8 > 0, a + 8 = 1, then ax(t) + fy(t) € Lr. The
assertion of step 2) will be proved if we prove the following estimate: for every ¢ > 0,
there exist a number ¢ > 1 and a positive integer kg such that, for every k > ko,

(15)

1 -
sup——  sup  [&u(t) — Zu(t)| <0 (16)
t>0 1 t neng,nk41)

with probability 1. From (15), we have

w(ng=t) n \Y(ng)
R e ey

ng

n(t) = = QnkZk (n%t) + ﬁnkzkﬂ(

n
t) .
NEk41
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Hence,
n
-3 < _ - _
60(6) = 2O < [2a(0) = 21 (1-t)| + [aaa () = 21 (11| (17)
Then
n
sup [a(t) = 2ot < sup fan(t) - zu(s)] (18)
n€[ng,nkt1] ng s€[t,ct]
Similarly,
sup  |2k41(t) — 2k+1< t)’ < sup |zpga(t) — ze41(s)]- (19)
neEng,ngy1) k41 se[L,t]
For an arbitrary fixed ¢, we introduce the sets Ls and Mj:
Ls = t)eO:s S —f()]| >y,
s={s cOimup s sw I7(5) - (0] 2 6
Ms = t) € © :su su s)—f(t)] >0
5=/ €0 mmp =y swp 1)~ F(0)] 2 6}
From (17)—(19), we get
1
P{ sup —— sup & (t) — Zar(t)] > (5} < P{ap € L3} + P{ags1 € Mg} (20)

>0 L+1 ne[ng,ney1]

The sets Ls and M;s are closed in © for every ¢ < oco. We prove this assertion, for
example, only for the set Ls. Let f,(t) € Ls and lim, o ||fn — fllo = 0. Then the
inequalities

6 < sup sup [ fn(s) = fu(t)] < sup sup | fn(s) — f(s)|+
>0 L+ 1 seft e >0 1+ 1 seft e

+ su su s)— f(t)| +su su n(t) — fn(t)] <
sup g sup 1) = fO] +sup g sup 1£a0) = £u(0)

|fn(s) — f(s)] 1
< su su 1+ s)———— 4+sup—— su s)— f(t)|+
tzlg +tse[t,lzt]( ) 1+s t210)1+tse[t,lzt]|f() fe)l
+[fn = flle < cllfn — flle + sup sup [f(s) = f(O] + |[fn — fllo
t>0 1 tse[t,ct]

yield

sup [f(s) = f(t)].

0 < (1+o)lfn— flle +su
(L+)fn — flle tzglthse[t,ct]

Passing to the limit in the last inequality as n — oo, we obtain f € Ls.
Applying (11), we have

Plow € Ly} < exp{—¢*(u) inf (7)) (21)
Since . )
sup [£() = 0 = sup | [ fwdu] < (e~ e ()
sEt,ct] s€ft,ct] ' Jt
we get ,
O <oup s sup [f(s) — FOI < SLa(h)

4 >0 (1+1) s€[t,ct]

for f EL%. If we choose c =1+ 21%22, then

inf I(f) > R?Q

22
f€Ls ( )
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Relations (21) and (22) and the definition of R? yield
2

ZP{zkEL%}§ZeXp{—<p2(nk)R7}<oo. (23)
k k

In an analogous way, we can prove for the same c that
2

ZP{zk+1 EM%}§Zexp{—<p2(nk)%} < 0. (24)
e e

From (20), (23), (24) and the Borel-Cantelli lemma, we get (16). Thus, step 2) is proved.

Step 3). In order to complete the proof of Theorem 1, we need to prove that if R? < oo,
then every g € L, is a limit point of z; for r < R. That is, there exists a sequence ny
such that, with probability 1,

Jimp(&n,9) = 0. (25)

Applying the It6 formula to the Wiener process w(t) and to the function f(s,z) =

——(z,a) s € [0, ti—"n]? n > 0, a is an arbitrary vector from E<¢, we have

tn

HTn<w(tj_—nn>,a) = At% ﬁ(w(s)ﬂ)d‘s—i—/om nT_LS (dw(s),a).

Whence we get

e ¢ t =
0 n—35 n t+n o (n—9)?

t+n in I un
() L[ ()
n t+n n Jo v+n
_tn_
The random process 1, (t) = [ -~ dw(s) is a process with independent increments,

because it is defined on nonintersecting intervals by independent increments of the Wiener
process. By the property of stochastic integrals, we have

(26)

E exp {iA(nn(t) — nn(s))} = exp{ - A—Q/tzln Lpdu} = exp{ - %Q(t - 5)}

Hence, the process n,(t) is also a Wiener process for any n. From (26), we obtain

i (1) = \7}%%) = (t+ 1)710(“”%) t L@?) d (27)

- s.
Vip(n)  Jo Vngp(n)

Let a function g € £,. Define a function f(¢) by (9). By virtue of the lemma, f € K,. Tt
follows from (8) that the function g(t) admits the representation

g(t):(t—i—l)f(t_'%) —/Otf<sj_1>ds. (28)

From (27) and (28), we get

M(t) —gt)=({t+1) o) 1 ds.
Whence
i) — 9] _ [w(nel)
i S [V D) o e e 0 - 1)
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Thus,

||77/n _g||® < 2||§n - f||7
and

{llen = £l <3} < {117 — gllo < 20} (29)
As has been stated above, the law of the process 7, (t) is the same as that of the process
w(t). Therefore,

P{lliin - glle < 28} = P{|I6n — gllo < 20} (30)
Consider the events
A = {[lén,. — fIl <6}, Be = {lliin. — glle <26}, Cr = {[|én, — glle < 20}

By the Bulinskii theorem, there exists a sequence ny such that, for the processes &, (s)
for s € [0,1] and every - neighborhood of the function f :

P{&n, € (f)s 1o} =1, (31)
where i.0. means ”infinitely often”. Equality (31) yields

PN Ua}=tm r{Ua}=r

m=11l=m

By virtue of (29), Ay C By. Hence,

P() U= g r{ ()= {00 =1

m=11l=m

For this reason, the events By take place infinitely often, and
klim P(By) = 1.

(From this and (30), we get

Pl Ua=m p{Ua)z sm plon) = im pls) =1 @)

m=1l=m

It follows from (32) that, with probability 1, the events Cj take place infinitely often.
Equality (25) and Theorem 1 are proved.

3. Small-time functional iterated logarithm law.

We will prove a result similar to Theorem 1 for the process

€[0,00), n > 3. (33)

To this end, we make use a method from [3]. On the space O, we define a time inversion
transformation 7" by the formula
0, t=0,
TO)(t) = 1
(T0)) t9(¥), t>0.

In [3], it is noted that the transformation T is bijective on ©. Furthermore, T is an
isometry from © onto © and from H' onto H':
0lle = lITOlle, 101l = [[T6]|a- (34)

Theorem 2. For ¢ € ¥, the set of limit points of sequence (33) is L with probability
1, where R is defined in (5).
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Proof. We denote
0, t=0,
w(t) = (Tw)(t) = 1
() = (Tw)(t) tud). t>0.
It is known that w(t) is also a Wiener process. For ¢ > 0,
St 11
amt) _, wliy) (35)
Vnp(n) L o(n)

n

From (35), we get

1 w(nt) 1
sup —— | —=——~ — (T'f)(t)|=sup —— |w, (t) — f(t 36
up g | s — (T B)|= sup 7 ()~ £(0) (36)
Suppose that there exists a subsequence nj such that
Jimwn, — fllo = 0. (37)
From (36), we have
. 1 ’LI)(’I’th)
lim sup ——|——~ — (Tf)(t)|=0. 38
Jim sup 2| TR — (T )0 (39)

According to Theorem 1, we conclude that (T'f)(t) € Lg. Then relations (34) imply that
f(t) € Lr. Thus, each limit point of the sequence wy, (t) is an element of Lz. Conversely,
let a function f(t) € Lg. Then, by (34), the function (Tf)(t) € Lg and, by virtue of
Theorem 1, there exists a subsequence ny such that

1

lim sup ——
nj —00 tZIO) 1 + t

’LZJ(’I’th) _
Tro(ng) (T1)(t)

This relation and (36) yield (37). Theorem 2 is proved.

=0.
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