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GAUSSIAN NOISE RELATED TO GENERALISED EHRENFEST

MODEL

In this article we consider the generalization of Ehrenfest model, where at each mo-
ment of time not 1 but some k of n particles go from one box to another. We describe

this process by a sequence of Bernoulli random vectors. We define related Bernoulli

noise on a set of continuous functions for different times, and prove that it converges
to Ornstein-Uhlenbeck sequence of Gaussian white noises when number of particles

tends to infinity.

1. Generalization of Ehrenfest model

Ehrenfest model is the well-known Markov model from statistical mechanics. It was
created in 1907 by Paul and Tatjana Ehrenfest to explain the second law of thermody-
namics (see [1], pp. 311–314). In this model n particles are distributed between two boxes
A and B. At the moments of time m = 0, 1, ... a randomly chosen particle is changing
its box to another. The process can be described in two ways. Firstly, with all possible
2n states corresponding to relatively placed n particles and secondly, by the number of
particles in box A. In the first way the model can be described by a random walk on
hypercube, which have uniform stationary distribution. Authors of this model studied
it in the second way. Let xn be a number of particles in box A. xn has n + 1 possible
states: 0, 1, ..., n with probabilities of transition

P (i, i+ 1) =
n− i

n
P (i, i− 1) =

i

n
P (i, j) = 0 otherwise (i = 0, 1, ..., n)

It is well-known that xn has stationary binomial distribution, which can be gotten by
projection of uniform stationary distribution on hypercube (see [2], p.397).

In this article we propose the generalization of Ehrenfest model, where not 1, but some
k particles simultaneously change their boxes, where 1 ≤ k ≤ n− 1. This model will be
studied in two ways: as a random walk on hypercube and as a sequence of number of
particles in box A, the same as in Ehrenfest model. Finally, we consider the Bernoulli
noise related to our proposed model on C([0, 1]) for different times and study its limit
when the number of particles goes to infinity. When the number of particles tends to
infinity and k

n → α, where 1 ≥ α ≥ 0, the proposed sequence of Bernoulli noises converges
to Ornstein-Uhlenbeck sequence of Gaussian white noises.

Let us describe the locations of particles by a sequence of ±1 xm
i . Then we can write

the state of the system as x⃗m
n , where m ≥ 0 is time, n is the number of particles. For

two states i⃗ and j⃗ when P (⃗i, j⃗) > 0 let us write i⃗ ∼ j⃗ and say that i⃗ is a neighbor of j⃗.
Then notice, that x⃗m

n is a Markov chain with transition matrix

P (⃗i, j⃗) =

{
1

(nk)
if i⃗ ∼ j⃗

0 otherwise

We say that two states i⃗ and j⃗ are connected if there exists an r > 0 such that P r (⃗i, j⃗) > 0.
Further, the transitions between states we will call moves.
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Lemma 1. Any two states which differ only by 2 components are connected.

Proof. It is enough to prove that for every state x⃗m
n there exist a sequence of moves that

change signs only of 2 components xm
i and xm

j . At first we will change sign of xm
i and

other k − 1 numbers in x⃗m
n . Then we will change the sign of xm

j and k − 1 components
from previous step. This completes the proof. □

Definition 1. State x⃗m
n is called even(odd) if the number of 1 in this state is even(odd).

Theorem 1. a) If k is odd, then any two states are connected. b) If k is even, then any
two even(odd) states are connected.

Proof. a) Let xm
i1
, xm

i2
, ..., xm

ik+1
be k + 1 distinct components of x⃗m

n . At first move we
change signs of xm

i2
, ..., xm

ik+1
. Then at every move s of we change signs of xm

i1
and xm

is
.

So, at move k + 1 we will only change the sign of xm
i1
, because k is odd. Hence, any two

states are connected.
b) Let’s prove that in this case the parity of the state is invariant. Let N and N

′
be

the number of 1 in states x⃗m
n and x⃗m+1

n respectively. Suppose b and a be the number of

1 and −1 that were changed respectively. Then N
′
= N + a − b = N + k − 2b, as k is

even then N an N
′
have the same parity. Including Lemma 1 we get the final result. □

Next we will find the stationary distribution of this chain by using

Lemma 2. Consider the system with properties: 1) Any two of N states are connected.
2) For every state i is possible to move to another d states with pij =

1
d for some d ∈ N.

Then the stationary distribution is unique and equal to π⃗ = ( 1
N , 1

N , ..., 1
N ) [3]

Theorem 2. Suppose π⃗ is a stationary distribution of the sequence x⃗m
n . a) If k is odd

then π⃗ = ( 1
2n ,

1
2n , ...,

1
2n ). b) If k is even then πi =

α
2n−1 and πi =

1−α
2n−1 , if the state i is

even or odd respectively, where 1 ≥ α ≥ 0.

Proof. a) Notice, that by Theorem 1 in this case we can apply Lemma 2 with N = 2n,
d =

(
n
k

)
.

b) Let α be the invariant probability that the state x⃗0
n is even. Then 1 − α is the

probability that the state x⃗0
n is odd. By the Theorem 1 we can apply Lemma 2 to the

sets of even and odd states with N = 2n−1, d =
(
n
k

)
. □

Let Xm
n be a number of particles in box A at the moment m. By projection of

stationary distribution of x⃗m
n on the set of possible states of Xm

n we get

Theorem 3. a) If k is odd, then there is a unique stationary distribution of the sequence
Xm

n , given by

πi =

(
n
i

)
2n

b) If k is even, then all stationary distributions of the sequence Xm
n are given by

πi =


α(ni)
2n−1 , i is even
(1−α)(ni)

2n−1 , i is odd

where 1 ≥ α ≥ 0.

2. Bernoulli noise and its convergence

Let f be a continuous function on [0, 1]. For a vector u⃗ = (u1, u2, ..., un) define product

(f, u⃗) =

n∑
k=1

f(
k

n
)
uk√
n

Let ϵ⃗ be a Bernoulli random vector.
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Definition 2. The set of random variables

ϵ̃ = {(f, ϵ⃗) | f ∈ C([0, 1])}

is called Bernoulli noise on C([0, 1]).

Bernoulli noises were studied in detail in [4]. A lot of results can be found there, such
as chaos representation property, Clark formula and other.

Let {x⃗m
n } be a sequence of the states of generalised Ehrenfest model for parameter k

with initial uniform stationary distribution.

Definition 3. The set of random variables

x̃n = {
m∑
j=0

(f, x⃗j
n) | f ∈ C([0, 1])}

is called Bernoulli noise related to generalised Ehrenfest model on C([0, 1]).

We will consider the limit of the sequence of obtained Bernoulli noises when the
number of particles and the number of transitions of particles per moment of time tend
to infinity.

If k is fixed then for large enough n the difference between products become negligible,
so, by CLT, the sequence of Bernolli noises converges to some white noise (which will be
accurately proved later in case α = 0). Let k be a function of n and k

n → α, n → ∞,
where 1 ≥ α ≥ 0.

Lemma 3. Suppose ϵ⃗n = (ϵ1, ϵ2, ..., ϵn) ∈ {−1, 1}n and ai ∈ R i = 1, 2, ..., n. Then

E
(
cos

( n∑
k=1

ϵkak
))

=

n∏
k=1

cos(ak)

Proof. We will prove Lemma by method of mathematical induction. For n = 1 Lemma
is obviously true. Suppose it is still true for n = m. Let’s prove it for n = m+ 1.∑

ϵ⃗m+1

cos
(m+1∑

k=1

ϵkak

)
=

∑
ϵ⃗m

(
cos

( m∑
k=1

ϵkak + am+1

)
+cos

( m∑
k=1

ϵkak − am+1

))
∑
ϵ⃗m+1

cos
(m+1∑

k=1

ϵkak

)
= 2 cos(am+1)

∑
ϵ⃗m

cos
( m∑
k=1

ϵkak

)
= 2m+1

m+1∏
k=1

cos(ak)

□

Theorem 4.

Sn =
m∑
j=1

(f, x⃗j
n)

d−→ N
(
0,
(
m+ 1 + 2

∑
m≥s>p≥0

(1− 2α)s−p
)∫ 1

0

f2(x)dx
)
, n → ∞

Proof. We will use characteristic functions. Let ϕSn
(t) be a characteristic function of Sn:

ϕSn
(t) = E(eiSnt)

As the distribution of Sn is symmetric, then E(sin(Snt)) = 0, so

ϕSn(t) = E
(
cos(Snt)

)
Suppose

Yk = {y⃗ ∈ {−1, 1}n : exactly k components are equal to − 1},
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then for every x⃗j
n there exists (y⃗1, y⃗2, ..., y⃗j) ∈ Y m

k such that xj
r = x0

ry
1
ry

2
r ...y

j
r for r =

1, 2, ..., n. Suppose N =
(
n
k

)m
, then

E
(
cos(Snt)

)
=

1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

E
(
cos

( n∑
r=1

x0
r

f( rn )√
n

t

m∑
j=0

j∏
q=1

yqr
))

,

where
∏j

q=1 y
q
r = 1 for j = 0.

Notice, that we can apply Lemma 3 using x⃗0
n as ϵ⃗

ϕSn(t) =
1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

n∏
r=1

cos
(f( rn )√

n
t

m∑
j=0

j∏
q=1

yqr

)
=

1

N

N∑
i=1

πi
n

For large enough n the values inside cosines are nearly 0, so we can take logarithm

ln(πi
n) =

n∑
r=1

ln
(
cos

(f( rn )√
n

t

m∑
j=0

j∏
q=1

yqr
))

Using Maclaurin’s expansion of ln(x) we get

ln(πi
n) =

n∑
r=1

−1

2

(f( rn )√
n

t

m∑
j=0

j∏
q=1

yqr

)2

+O(
1

n
), n → ∞

lim
n→∞

ϕSn(t) = lim
n→∞

1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

exp
(
−1

2
t2

n∑
r=1

f2( rn )

n

( m∑
j=0

j∏
q=1

yqr
)2)

(1)

lim
n→∞

ϕSn
(t) = lim

n→∞

1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

exp
(
−1

2
t2

n∑
r=1

f2( rn )

n

(
m+1+2

∑
0≤p<s≤m

s∏
q=p+1

yqr
))

We will find the limit as n → ∞ using squeeze theorem. We will find the lower bound
using the AM–GM inequality
(2)

lim
n→∞

ϕSn
(t) ≥ lim

n→∞
exp

(
−1

2
t2

n∑
r=1

f2( rn )

n

(
m+1+2

∑
0≤p<s≤m

1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

s∏
q=p+1

yqr
))

Further,

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

s∏
q=p+1

yqr =

(
n

k

)m−s+p ∑
(y⃗p+1,y⃗p+2,...,y⃗s)∈Y s−p

k

s∏
q=p+1

yqr =

=

(
n

k

)m−s+p

(
∑
y⃗∈Yk

yr)
s−p = N(1− 2

k

n
)s−p

Substituting this in (2) we get

lim
n→∞

ϕSn(t) ≥ exp
(
−1

2
t2(m+ 1 + 2

∑
m≥s>p≥0

(1− 2α)s−p)

∫ 1

0

f2(x)dx
)
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To find the upper bound let’s rewrite (1) as

(3)

lim
n→∞

ϕSn
(t) = exp

(
−1

2
t2(m+ 1)

∫ 1

0

f2(x)dx
)
×

× lim
n→∞

1

N

∑
(y⃗1,y⃗2,...,y⃗m)∈Y m

k

exp
(
−t2

n∑
r=1

f2( rn )

n

∑
0≤p<s≤m

s∏
q=p+1

yqr

)
=

= exp
(
−1

2
t2(m+ 1)

∫ 1

0

f2(x)dx
)
×

× lim
n→∞

1(
n
k

)m−1

∑
(y⃗1,y⃗2,...,y⃗m−1)∈Y m−1

k

exp
(
−t2

n∑
r=1

f2( rn )

n

∑
0≤p<s≤m−1

s∏
q=p+1

yqr

)
×

× 1(
n
k

) ∑
y⃗m∈Yk

exp
( n∑
r=1

(
−t2

f2( rn )

n

m−1∑
p=0

m−1∏
q=p+1

yqr
)
ymr

)
By Maclourin’s inequality the last term in (3) is less than

(4) exp
( n∑
r=1

−t2
f2( rn )

n

m−1∑
p=0

m−1∏
q=p+1

yqr

)( 1

n

n∑
r=1

exp
(
2t2

f2( rn )

n

m−1∑
p=0

m−1∏
q=p+1

yqr
))k

For any C > 1 and large enough n, (4) is less than

C exp
(
−(1− 2α)t2

n∑
r=1

f2( rn )

n

m−1∑
p=0

m−1∏
q=p+1

yqr

)
=

= C exp
(
−(1− 2α)t2

n∑
r=1

f2( rn )

n

m−2∑
p=0

m−1∏
q=p+1

yqr − (1− 2α)t2
n∑

r=1

f2( rn )

n

)
Hence, for any C > 1 and large enough n, the upper bound becomes

C exp
(
−1

2
t2(m+ 1 + 2(1− 2α))

∫ 1

0

f2(x)dx
)
×

× lim
n→∞

1(
n
k

)m−2

∑
(y⃗1,y⃗2,...,y⃗m−1)∈Y m−2

k

exp
(
−t2

n∑
r=1

f2( rn )

n

∑
0≤p<s≤m−2

s∏
q=p+1

yqr

)
×

× 1(
n
k

) ∑
y⃗m−1∈Yk

exp
( n∑
r=1

(
−(1 + (1− 2α))t2

f2( rn )

n

m−2∑
p=0

m−2∏
q=p+1

yqr
)
ym−1
r

)
By induction, it follows that for any C > 1 and large enough n

lim
n→∞

ϕSn
(t) ≤ C exp

(
−1

2
t2
(
m+ 1 + 2

m∑
j=1

(m− j + 1)(1− 2α)j
)∫ 1

0

f2(x)dx
)
=

= C exp
(
−1

2
t2
(
m+ 1 + 2

∑
m≥s>p≥0

(1− 2α)s−p
)∫ 1

0

f2(x)dx
)

Since C > 1 is arbitrary, this finishes the proof. □

Theorem 4 shows, that the sequence of Bernoulli noise related to generalised Ehrenfest
model converges to Gaussian white noise, as the number of particles tends to infinity.

Using the similar proof we can get more general resut
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Theorem 5. Let λj ∈ R for j = 0, 1, ..., n, then:

Sn =

m∑
j=0

λj(f, x⃗
j
n)

d−→ N
(
0,
( m∑
j=0

λ2
j +2

∑
m≥s>p≥0

λsλp(1−2α)s−p
)∫ 1

0

f2(x)dx
)
, n → ∞

Consequence.

cov
(
(f, x⃗s

n), (f, x⃗
p
n)
)
→ (1− 2α)|s−p|

∫ 1

0

f2(x)dx, n → ∞

Theorem 6. Suppose ξ0 ∼ N(0, 1
1−α2 ) , {ηn} is a sequence of standart normal indepen-

dent random variables independent from ξ0 and ξn = αξn−1 + ηn, n ≥ 1, 1 > α > 0.

Then ξn ∼ N(0, 1
1−α2 ) and cov(ξs, ξp) =

α|s−p|

1−α2

Proof. Proof is standard. □

As Theorem 4 shows that the sequence of Bernoulli noises related to generalised Ehren-
fest model converges to a sequence of Gaussian white noises, it’s natural to assume corre-
lation between products (f, x⃗j

n). Theorem 6 shows that correlation between white noises
produced as limits of (f, x⃗j

n) satisfies autoregressive model of order 1.
In conclusion, the author thanks his supervisor, A. A. Dorogovtsev, for useful com-

ments.
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