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YA.M. KHUSANBAEV AND KH.A. TOSHKULOV

LIMIT THEOREMS FOR CONDITIONAL DISTRIBUTIONS OF

CRITICAL GALTON-WATSON BRANCHING PROCESSES WITHOUT

FINITE VARIANCE

In this paper we consider critical Galton-Watson branching processes Zk, k ≥ 0 in

the case when the number of direct offspring of one particle has infinite variance.

Limit theorems for conditional distributions of Zk are proved.

1. Introduction and notations

Let {ξi,j , i, j ∈ N} be a set of independent, identically distributed and taking non-
negative integer values random variables with a generating function F (s) = Esξij , 0 ≤
s ≤ 1. Let Z0, Zk, k ∈ N be a sequence of random variables defined by recurrent relations

(1) Z0 = 1, Zn =

Zn−1∑
j=1

ξnj , n ∈ N.

Process (1) is called the Galton-Watson branching process starting from one particle.
The Galton-Watson branching process (1) is called subcritical, critical, and supercrit-

ical if F ′ (1−) < 1, F ′ (1−) = 1 or 1 < F ′ (1−) < ∞ respectively. The main definitions
and properties of Galton-Watson branching processes can be found in [1].

Further we will consider only the critical case, i.e., the case of F ′ (1−) = 1.
Introduce the notation for the iteration of the function F (s):

F0 (s) = s, F1 (s) = F (s) , Fn (s) = F (Fn−1 (s)) , n ∈ N.
It is easy to see that Fn (s) = EsZn .

Introduce the random variable T = min (k : Zk = 0) which is the degeneration moment
of the branching process. Since the critical Galton-Watson branching process degenerates
with probability 1, the probability P (T <∞) = 1.

The study of the asymptotics of the conditional distributions of the random variable
Zn under various conditions on the trajectory of the process, apparently, began with
the work of A.M. Yaglom [2], in which it was proved that for the case of F ′ (1−) =
1, F ′′′ (1−) < ∞, the conditional distribution of (1− Fn (0))Zn under the condition
Zn > 0 weakly converges to the exponential law. In [10], it was shown that for Yaglom’s
result to be valid, it suffices that F ′ (1−) = 1, F ′′ (1−) <∞.

In [9], Harris noted that in the case of F ′ (1−) = 1, F ′′′ (1−) < ∞, the conditional
distribution of the random variable (1− Fk (0))Zk under the condition Zk+m > 0, when
passing to the limit, first as m → ∞, and then, as k → ∞, weakly converges to the
distribution function

G (x) = 1− e−x − xe−x, x ≥ 0.

The case of F ′ (1−) = 1, F ′′′ (1−) < ∞ was also considered in [6], where the weak
convergence of the conditional finite-dimensional distributions of the random process
(1− Fn (0))Z[nt], 0 ≤ t ≤ 1 was proved under the conditions Z0 = O (n) , Zn > 0 to the
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corresponding distributions of the diffusion process, here the sign [a] denotes the integer
part of the number a. Limit theorems of the Yaglom type were also considered in [11]. In
[8], Slack proved an analog of Yaglom’s theorem for Galton-Watson branching processes
in which the number of offspring of one particle has infinite variance. In [3], Pakes studied
the asymptotics of the distribution of the total number of particles Z0 + Z1 + ... + Zn

under the condition Zn+m > 0. In [4], the asymptotics of the Laplace transform of a
random variable (1− Fn (0))Zn at m→ ∞ and then at n→ ∞ was found (Theorem 4)
under the condition Zn+m > 0 in the case when the number of offspring of one particle
has an infinite variance. In [6], E. Seneta, using the result of G. Szekeres [5], proved that
for critical branching processes (without any moment conditions, except for F ′ (1−) = 1),
the conditional distribution P (Zn = j/T = n+ k), where k ∈ N is a fixed number, has a

limit of uj (k), and
∞∑
j=1

uj (k) = 1. In [8], Slack reproved the same result without applying

the result of G. Szekeres.
This work is devoted to the study of the conditional distribution Zk under the condi-

tion k < T ≤ k+m for the cases when: (a) m is fixed and k → ∞, (b) m→ ∞ and then
k → ∞, and (c) k = [nt], m = [(1− t)n], t ∈ [0, 1], n→ ∞ in the case when the number
of offspring of one particle has an infinite variance. It turns out that the imposition of
condition (2) for the generating function of the number of offspring of one particle makes
it possible to clarify Seneta’s theorem [6]. It also turns out that in the case (a), the limit
distribution of P (Zk = j/k < T ≤ k +m) (without normalizing the value Zk) depends
on the iterations of the generating function F (s); in other cases, to find the limit, it is
necessary to normalize the value Zk, and limit does not depend on F (s).

2. Statement of the main results

Let Zk, k ≥ 0 be the critical Galton-Watson branching process determined recurrently
from the relations (1). Introduce the following condition: the generation function F (s)
has the form

(2) F (s) = s+ (1− s)
1+α

L (1− s) , 0 ≤ s ≤ 1,

where α ∈ (0, 1] is a fixed number, L (x) is a slowly varying function at zero.
It is known [8] that a random variable with generating function (2) can have an infinite

second moment.
The following theorems take place.

Theorem 2.1. Assume that representation (2) holds. Then there is a measure µ(j), j ≥
1 such that for any fixed k ∈ N and for all j ∈ N,

P (Zn = j/T = n+ k) → µ (j)
[
F j
k (0)− F j

k−1 (0)
]

as n→ ∞, the measure µ (j) , j ≥ 1 is determined from the relation

lim
n→∞

L
1
α (1− Fn (0)) (αn)

1+ 1
α Pn (i, j) = iµ (j) ,

where Pn (i, j) = P (Zn = j/Z0 = i) .

Corollary 2.1. Assume that representation (2) holds. Then for any fixed k ∈ N,

Φk,n (s) =

∞∑
j=1

sjP (Zn = j/T = n+ k) → U (sFk (0))− U (sFk−1 (0)) , 0 ≤ s ≤ 1

as n→ ∞, where the function U (s) is the generating function of the measure µ (j) , j ≥ 1

from the theorem 2.1: U (s) =
∞∑
j=1

µ (j) sj.
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Theorem 2.2. Let the generating function F (s) have the form of (2). Then for all
j ∈ N and for any fixed number m ∈ N,

P (Zn = j/n < T ≤ n+m) → 1

m
µ (j)F j

m (0)

as n→ ∞, where the measure µ (j) , j ≥ 1 is from Theorem 2.1.

Corollary 2.2. Let the generating function F (s) have the form of (2). Then for any
fixed number m ∈ N,

∞∑
j=1

sjP (Zn = j/n < T ≤ n+m) → 1

m
U (sFm (0)) , 0 ≤ s < 1

as n→ ∞, where the function U (s) is the generating function of the measure µ (j) , j ≥ 1
from Theorem 2.1.

Theorem 2.3. Let the generating function F (s) have the form of (2). Then for any
λ ≥ 0 and all t ∈ (0, 1),

lim
n→∞

E
(
e−λ(1−Fn(0))Z[nt]

/
Z[nt] > 0, Zn = 0

)
= ψt (λ) ,

where

ψt (λ) =
1

1− t
1
α

1− λt
1
α

1 +
1

λ (1− t)
1
α

 ·

1 + tλα

1 +
1

λ (1− t)
1
α

α− 1
α

 .

Corollary 2.3. If F ′′ (1−) <∞, then

lim
n→∞

E
(
e−λ(1−Fn(0))Z[nt]

/
Z[nt] > 0, Zn = 0

)
=

1

1 + t (1− t)λ

Corollary 2.4. If F ′′ (1−) <∞, then

P
(
(1− Fn (0))Z[nt] < x

/
Z[nt] > 0, Zn = 0

)
→ 1− e

− x
t(1−t) , x ≥ 0.

3. Auxiliary result

In what follows, when proving the main results, we need the following results.

Theorem 3.1. Let the generating function F (s) have the form of (2). Then

E
(
e−λ(1−Fn(0))Zn

/
Zn > 0

)
→ 1− λ (1 + λα)

− 1
α as n→ ∞.

Lemma 3.1. Let the generating function F (s) have the form of (2), both an, bn be
sequences of positive numbers tending to zero as n → ∞, for which there are positive
constants K1, K2 such that for sufficiently large n,

0 < K1 <
an
bn

< K2 <∞.

Then
L (an)

L (bn)
→ 1 as n→ ∞.

Lemma 3.2. Let the generating function F (s) have the form of (2). Then

(1− Fn (0))
α
L (1− Fn (0)) ∼

1

αn
, n→ ∞.

Lemma 3.3. Let the generating function F (s) have the form of (2). Then

Fn (0)− Fn−1 (0) ∼ (nα)
−
(
1+

1
α

)
L− 1

α (1− Fn (0)) as n→ ∞.
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Lemma 3.4. Let the generating function F (s) have the form of (2). Then for any
i, j ∈ N, there exists a limit

lim
n→∞

L
1
α (1− Fn (0)) (αn)

1+
1
α Pn (i, j) = iµ (j) ,

where the measure µ (j) , j ∈ N is such that∑
µ (i)P1 (i, j) = µ (j) , j ≥ 1,

∞∑
i=1

µ (i) pi0 = 1.

Moreover,

µ (1) + µ (2) + ...+ µ (n) ∼ nα

α (α+ 1)L
(
1
n

) .
Here Pn (i, j) = P (Zn = j/Z0 = i) , p0 = P (Z1 = 0) , Γ(x) is the gamma function.

The results, contained in Theorem 3.1 and Lemmas 3.1-3.4, are obtained in [8].

Lemma 3.5. Let the generating function F (s) have the form of (2). Then for any fixed
number k ∈ N,

L (1− Fn+k (0))

L (1− Fn (0))
→ 1 as n→ ∞.

Lemma 3.6. Let the generating function F (s) have the form of (2). Then for any fixed
positive integer number k,

Fn+k (0)− Fn+k−1 (0)

Fn (0)− Fn−1 (0)
→ 1 as n→ ∞.

Theorem 3.2. Let the generating function F (s) have the form of (2). Then

E
(
e−λ(1−Fn(0))Z[nt]

/
Zn > 0

)
→ φα (t, λ) = 1

t
1
α

{
1− λt

1
α [1 + tλα]

− 1
α

}
−

− 1

t
1
α

1− λt
1
α

(
1 + 1

λ(1−t)
1
α

)
×

[
1 + tλα

(
1 + 1

λ(1−t)
1
α

)α]− 1
α

 .

Theorem 3.2 is given in [12].

Proof of Lemma 3.5. It is clear that

(3)
L (1− Fn+k (0))

L (1− Fn (0))
=

k−1∏
i=0

L (1− Fn+i+1 (0))

L (1− Fn+i (0))
.

Taking into account the property of generating functions and (2), we have

(4)
1− Fn+i+1 (0)

1− Fn+i (0)
=

1− F (Fn+i (0))

1− Fn+i (0)
= 1− (1− Fn+i (0))

α
L (1− Fn+i (0)) → 1

as n→ ∞. Then for any ε > 0, there is a number N such that

1− ε <
1− Fn+i+1 (0)

1− Fn+i (0)
< 1 + ε

for all n ≥ N. We choose the value of ε so that 1− ε > 0. Then according to Lemma 3.1,

(5)
L (1− Fn+i+1 (0))

L (1− Fn+i (0))
→ 1 as n→ ∞.

The assertion of Lemma 3.5 follows from the last ratio and from (3). □
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Proof of Lemma 3.6. Since

Fn+k (0)− Fn+k−1 (0)

Fn (0)− Fn−1 (0)
=

k−1∏
i=0

Fn+i+1 (0)− Fn+i (0)

Fn+i (0)− Fn+i−1 (0)
,

the assertion Lemma 3.6 immediately follows from Lemma 3.3 and the relation (5). □

4. Proof of the main results

Proof of Theorem 2.1. Given that the sequence Zk, k ≥ 0 is a homogeneous Markov
chain, as well as the relation

(6) {T = n+ k} = {Zn+k−1 > 0, Zn+k = 0} = {Zn+k = 0} \ {Zn+k−1 = 0} ,

we have
P (Zn = j/T = n+ k) =

= P (Zn=j/Z0=1)[P (Zn+k=0/Zn=j)−P (Zn+k−1=0/Zn=j)]
Fn+k(0)−Fn+k−1(0)

=

(7) =
Pn (1, j)

[
F j
k (0)− F j

k−1 (0)
]

Fn+k (0)− Fn+k−1 (0)
.

Now, from the last relation, applying Lemma 3.3 and Lemma 3.4, we have

P (Zn = j/T = n+ k) ∼ µ (j)
[
F j
k (0)− F j

k−1 (0)
]
×

×
(
1 + k

n

)1+ 1
α ×

[
L(1−Fn+k(0))
L(1−Fn(0))

] 1
α

.

We conclude from this and Lemma 3.5 that

P (Zn = j/T = n+ k) ∼ µ (j)
[
F j
k (0)− F j

k−1 (0)
]

as n→ ∞, Q.E.D. □

The proof of Corollary 2.1 immediately follows from Theorem 2.1 and from the con-
tinuity theorem for generating functions.

Proof of Theorem 2.2. Taking into account (3), we have

P (Zn = j/n < T ≤ n+m) = 1
m∑

k=1

P (T=n+k)
×

m∑
k=1

P (Zn = j, T = n+ k) =

= 1
m∑

k=1

[Fn+k(0)−Fn+k−1(0)]
×

m∑
k=1

P (Zn = j/T = n+ k) [Fn+k (0)− Fn+k−1 (0)] .

Taking this into account and Lemma 3.6, applying Theorem 2.1, we have

P (Zn = j/n < T ≤ n+m) ∼ 1

m
µ (j)

m∑
k=1

[
F j
k (0)− F j

k−1 (0)
]
=

1

m
µ (j)F j

m (0)

as n→ ∞, Q.E.D. □

The proof of Corollary 2.2 immediately follows from Theorem 2.2 and from the con-
tinuity theorem for generating functions.
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Proof of Theorem 2.3. We have

E
(
e−λ(1−Fn(0))Z[nt]/Z[nt] > 0, Zn = 0

)
=

Fn

(
e
−λ(1−F[nt](0))

1−Fn(0)
1−F[nt](0)

Z[nt]

)
− Fn(0)

1− F[nt](0)
×

×
1− F[nt](0)

Fn(0)− F[nt](0)
− E

(
e−λ(1−Fn(0))Z[nt]/Zn > 0

)
× 1− Fn(0)

Fn(0)− F[nt](0)
=

=
Fn

(
e−λ(1−F[nt](0))t

1
α Z[nt]

)
− Fn(0)

1− F[nt](0)
×

1− F[nt](0)

Fn(0)− F[nt](0)
−

−E
(
e−λ(1−Fn(0))Z[nt]/Zn > 0

)
× 1− Fn(0)

Fn(0)− F[nt](0)
+

(8) +

Fn

(
e
−λ(1−F[nt](0))

1−Fn(0)
1−F[nt](0)

Z[nt]

)
− Fn

(
e−λ(1−F[nt](0))t

1
α Z[nt]

)
1− F[nt](0)

×
1− F[nt](0)

Fn(0)− F[nt](0)
.

By virtue of (4), for sufficiently large i,

1− Fi+1 (0)

1− Fi (0)
> 1− 2

αi
.

Then for sufficiently large n,

1− Fn (0)

1− F[nt] (0)
=

n∏
i=[nt]

1− Fi+1 (0)

1− Fi (0)
>

n∏
i=[nt]

(
1− 2

αi

)
∼

(9) ∼
(
1− 2

αnt

)n(1−t)

∼ e−
2(1−t)

αt .

Because Fi (0) < Fi+1 (0), it is obvious that

1− Fn (0)

1− F[nt] (0)
=

n∏
i=[nt]

1− Fi+1 (0)

1− Fi (0)
< 1.

This and (9) imply that for sufficiently large n,

e−
2(1−t)

αt < 1−Fn(0)
1−F[nt](0)

< 1.

Therefore, by virtue of Lemma 3.1,

(10)
L (1− Fn (0))

L
(
1− F[nt] (0)

) → 1 as n→ ∞.

Now, applying Lemma 3.2 and taking into account (10), we have

(11)
1− Fn (0)

1− F[nt] (0)
∼ t

1
α

[
L
(
1− F[nt] (0)

)
L (1− Fn (0))

] 1
α

→ t
1
α as n→ ∞.

By virtue of Lemma 3.2 and relation (11), we have

1− F[nt] (0)

Fn (0)− F[nt] (0)
=

1− F[nt] (0)

1− F[nt] (0)− [1− Fn (0)]
=

(12) =

(
1− 1− Fn (0)

1− F[nt] (0)

)−1

∼ 1

1− t
1
α

as n→ ∞.
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and

(13)
1− Fn(0)

Fn(0)− F[nt](0)
∼ t

1
α

1− t
1
α

as n→ ∞.

Applying the mean value theorem and the inequality

|ex − ey| ≤ |x− y| , Re x, y ≤ 0,

given that EZk = 1 for any k, as well as the increase of the function F ′
n (s) with respect

to s, we have∣∣∣∣Fn

(
e
−λ(1−F[nt](0)) 1−Fn(0)

1−F[nt](0)
Z[nt]

)
− Fn

(
e−λ(1−F[nt](0))t1/αZ[nt]

)∣∣∣∣ ≤
(14) ≤ λ

(
1− F[nt] (0)

) ∣∣∣∣ 1− Fn (0)

1− F[nt] (0)
− t1/α

∣∣∣∣
Now from (8), (11)-(14), and Theorem 3.1, Theorem 3.2, we find

E
(
e−λ(1−Fn(0))Z[nt]

/
Z[nt] > 0, Zn = 0

)
→ 1

1−t
1
α

{
1− λt

1
α (1 + λαt)

− 1
α

}
−

− t
1
α

1−t
1
α

φα (t, λ) = ψt (λ)

.

as n→ ∞, which completes the proof of Theorem 2.3. □

Proof of Corollary 2.3 and Corollary 2.4. It is clear that if F ′′ (1−) < ∞, then α = 1
in representation (2). Therefore, Corollary 2.3 immediately follows from Theorem 2.3
in the case of α = 1. Corollary 2.4 follows from Corollary 2.3 and from the continuity
theorem for generating functions. □
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