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M. EL JAMALI

GENERALIZED BSDES FOR TIME INHOMOGENEOUS LÉVY

PROCESSES UNDER NON-DETERMINISTIC LIPSCHITZ

COEFFICIENT

In this paper, we study the generalized backward stochastic differential equations

driven by inhomogeneous Lévy processes (GBSDELs in short). We establish the

existence and uniqueness of solution by using Picard’s iteration setting under non-
deterministic Lipschitz and monotone condition.

1. Introduction

It is well known that the general linear case of backward stochastic differential equa-
tions in the Brownian framework has been introduced by Bismut [3]. Nonetheless, the
first study presenting a systematic treatment of non-linear BSDEs is the seminal paper of
Pardoux and Peng [9]. Later, Pardoux and Zhang [11] introduced a new class of BSDE’s,
which involves the integral with respect to a continuous increasing process. Precisely,
given a data (ξ, f, g) of the progressively measurable processes f and g, and the square
integrable random variable ξ, they proved the existence and uniqueness of an adapted
process (Y,Z) solution of the following equation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys)dCs −
∫ T

t

ZsdBs,

where (Ct)t≤T is a continuous real valued increasing process. These equations also pro-
vide a probabilistic formula for the viscosity solution of a system of partial differential
equations (PDEs in short) with a non-linear Neumann boundary condition by introduc-
ing a class of generalized BSDEs. Following this way, El Otmani [5] extends this class
of equations of [11] to generalized BSDE driven by a homogeneous Lévy process un-
der Lipschitz generator. Later there have been several extensions namely [1, 6]. Note
that, their motivation consists in providing the link between generalized BSDE driven
by a homogeneous Lévy process and a class of partial differential integral equations with
Neumann boundary condition.

In another context, El Karoui and Huang [7] considered the so-called non-deterministic
Lipschitz condition, where the generator is Lipschitz continuous in (y, z) but with con-
stants which are actually random processes themselves. Many works have discussed this
subject as well as [2, 12].

The main motivation of our work is that the assumptions on the driver that we consider
here are much involved in partial differential equations. We propose a model aimed at
extending the usage of model [11] (see p.551) with non-deterministic coefficients:

Xx
t = x+

∫ t

0

bs(X
x
s )ds+

∫ t

0

σs(X
x
s )dBs +

∫ t

0

▽φ(Xx
s )dK

x
s , t ∈ [0, T ].(1)
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where φ ∈ C2
b (Rd) and (Xx

t ,K
x
t )t≤T is a pair of progressively measurable continuous

processes such that Kx is increasing process. Since the parameters bt and σt are sup-
posed neither deterministic nor bounded, we cannot apply the existing results of BSDEs
under Lipschitz generator. Consequently, we are going to enhance the conditions on the
generator by considering the non-deterministic Lipschitz condition. Furthermore, we go
a step further towards generality and consider the time-inhomogeneous Lévy processes.
They are usually as easy to handle as models driven by Lévy processes but allow for
additional flexibility.

Motivated by the above contributions, we mainly prove, in this paper, the existence
and uniqueness of solutions of generalized backward stochastic differential equations
driven by the non-homogeneous Lévy process. By applying the Picard’s iteration, we
are going to construct the unique solution of generalized BSDEL where the coefficients
f is non-deterministic Lipschitz and the coefficient g satisfies the monotone condition.

This paper is structured as follows: In Section 2 the notations and several results
which are significant for our analysis are introduced. In section 3, we will prove our
main result which is the existence and uniqueness of a solution to generalized BSDELs
in the non-homogeneous case under non-deterministic Lipschitz coefficient. Section 4 is
devoted to proving a priori estimates for the considered class of generalized BSDELs.

2. Preliminaries

Let (Ω,F ,P) be a completed probability space on which a real-valued inhomogeneous
Lévy process (Xt)t∈[0,T ] with càdlàg paths is defined. Let F = (Ft)t≥0 be the right-
continuous filtration generated by X: (Ft = σ{Xs; s ≤ t}) and assume that F0 contains
all P-null sets of F . The non-homogenous Lévy process X is characterized by:

E
(
expiuXt

)
= exp

∫ t

0

(
iubs −

cs
2
u2 +

∫
R
eiux − 1− iuxI{|x|≤1}Fs(dx)

)
ds.

Here bs ∈ R, cs ∈ R∗
+ and Fs is a measure on R that integrates (1 ∧ |x|2) and satisfies

Fs({0}) = 0. Furthermore, we assume that

(i) The drift term bs ∈ R, the volatility coefficients cs > 0 and the Lévy measure Fs

satisfy ∫ T

0

(
|bs|+ |cs|+

∫
R
(1 ∧ |x|2)Fs(dx)

)
ds <∞.

(ii) There are two constants M, ε > 0 such that∫ T

0

∫
|x|>1

euxFs(dx)ds <∞, ∀u ∈ [−(1 + ε)M, (1 + ε)M ].

In the sequel, we denote by Xt− = lims↗tXs and ∆Xt = Xt − Xt−. We define the
power jumps of the Lévy process X by

X
(1)
t = Xt and X

(i)
t =

∑
0<s≤t

(∆Xs)
i, i ≥ 2.

Let us put the Teugels martingales Y
(i)
t = X

(i)
t −E[X(i)

t ] for all i ≥ 1. We associate with
the non-homogeneous Lévy process (Xt)0≤t≤T the family of processes (H(i))i≥1 defined

by H
(i)
t =

∑i
j=1 αijY

(j)
t . The coefficients αij correspond to the orthonormalization of

the polynomials 1, x, x2 etc. with respect to the measure π([0, t], dx) =
∫ t

0
csδ0(dx)ds+∫ t

0

∫
R x

2Fs(dx)ds. Specifically, the polynomials qn defined by qn(x) =
∑n

k=1 αnkx
k−1 are

orthonormal with respect to the measure π, i.e.∫
R
qn(x)qm(x)π(dx) = 0 if n ̸= m.
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Note that the martingales H(i) are strongly orthogonal and its predictable quadratic
variation process is

d⟨H(i), H(j)⟩t = |ϑ(i)t ||ϑ(j)t |δijdt,
where (ϑt)t≤T is a deterministic continuous function.

Now, let β > 0, γ ≥ 0 and (at)t≤T be a non-negative Ft-adapted process. We define the

increasing process At :=
∫ t

0
a2sds and denote by (Ct)t≤T the one-dimensional continuous,

increasing, Ft-progressively measurable process satisfying C0 = 0. Next, we introduce
the following spaces:

• L2
β,γ is the space of R-valued and FT -measurable random variables ξ such that

∥ξ∥2L2
β,γ

= E
[
eβAT+γCT |ξ|2

]
< +∞.

• S2
β,γ , S

2,a
β,γ and S2,c

β,γ : the spaces of R-valued and Ft-adapted continuous processes

(Yt)t≤T such that

∥Y ∥2S2
β,γ

= E
[

sup
0≤t≤T

eβAt+γCt |Yt|2
]
< +∞;

∥Y ∥2S2,a
β,γ

= E

[∫ T

0

eβAt+γCt |atYt|2dt

]
< +∞;

∥Y ∥2S2,c
β,γ

= E

[∫ T

0

eβAt+γCt |Yt|2dCt

]
< +∞.

• H2
β,γ is the space of ℓ2-valued and Ft-progressively measurable processes (Zt)t≤T

such that

∥Z∥2H2
β,γ

= E
∫ T

0

eβAt+γCt∥Ztϑt∥2ℓ2dt =
∞∑
k=1

E
∫ T

0

eβAt+γCt |Z(k)
t ϑ

(k)
t |2dt < +∞.

• M2
β,γ := S2,a

β,γ ∩ S2,c
β,γ .

• B2
β,γ := S2

β,γ ∩ S2,a
β,γ ∩ S2,c

β,γ ×H2
β,γ and B2

β := B2
β,0.

Let’s get back to our main problem. The parameters b and σ are not bounded in
general since they are stochastic. Consequently, the main objective of this paper is to
complete the above works and to study the following generalized BSDEL associated with
partial differential equation (1) when the noise is given by the non-homogeneous Lévy
process:

(2) Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys)dCs −
∞∑
k=1

∫ T

t

ZsdH
(k)
s , t ∈ [0, T ].

A solution of generalized BSDEL is a pair of Ft–progressively measurable processes
(Y,Z) ∈ B2

β and satisfies (2) such that the data ξ, f, g and C satisfies the following
assumptions:

(A.1) The terminal value ξ ∈ L2
β,γ .

(A.2) The maps f : Ω× [0, T ]× R× ℓ2 → R and g : Ω× [0, T ]× R → R are such that
(1) For all (y, z) ∈ R× ℓ2, f(., y, z) is F–progressively measurable and

E
∫ T

0

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds < +∞.

(2) There exists Ft-adapted processes (pt)t≤T and (qt)t≤T with values in R+

such that For all t ∈ [0, T ], y, y′ ∈ R and z, z′ ∈ ℓ2

|f(t, y, z)− f(t, y′, z′)| ≤ pt|y − y′|+ qt∥(z − z′)ϑ∥ℓ2 .
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(3) For all t ∈ [0, T ], the function y → g(t, y) is continuous a.s. Furthermore,
for all y ∈ R, g(., y) is F–progressively measurable and there exists θ < 0
and κ > 0 such that, for all t ∈ [0, T ] and y, y′ ∈ R

(y − y′)(g(t, y)− g(t, y′)) ≤ θ|y − y′|2 and |g(t, y)| ≤ ψ(t) + κ|y|,

where the adapted process (ψ(t))t≤T with values in [1,+∞[ such that

E
∫ T

0

eβAt+γCt |ψ(t)|2dCt < +∞.

(4) There exists ϵ > 0 such that a2t = pt + q2t ≥ ϵ, ∀ t ∈ [0, T ].

3. Existence and uniqueness result of generalized BSDEL

Let us begin with the following uniqueness result for generalized BSDEL (2) under
the previous assumptions:

Proposition 3.1. Under the assumptions (A.1) and (A.2), the generalized BSDEL (2)
has at most one solution.

Proof. Let (Y, Z) and (Y ′, Z ′) be two solutions of generalized BSDEL (2). We apply
Itô’s formula to eβAt |Yt − Y ′

t |2 for t ∈ [0, T ] to obtain

E
[
eβAt |Yt − Y ′

t |2
]
+ βE

∫ T

t

eβAs |Ys − Y ′
s |2dAs + E

∫ T

t

eβAs∥(Zs − Z ′
s)ϑs∥2ℓ2ds

= 2E
∫ T

t

eβAs(Ys − Y ′
s ) (f(s, Ys, Zs)− f(s, Y ′

s , Z
′
s)) ds

+ 2E
∫ T

t

eβAs(Ys − Y ′
s ) (g(s, Ys)− g(s, Y ′

s )) dCs

≤ 2E
∫ T

t

eβAsps|Ys − Y ′
s |2ds+ 2E

∫ T

t

eβAsqs|Ys − Y ′
s |∥(Zs − Z ′

s)ϑs∥ℓ2ds

+ 2θE
∫ T

t

eβAs |Ys − Y ′
s |2dCs

≤ 2E
∫ T

t

eβAs |Ys − Y ′
s |2dAs +

1

2
E
∫ T

t

eβAs∥(Zs − Z ′
s)ϑs∥2ℓ2ds.

For β > 2, we conclude that Y = Y ′ and Z = Z ′. □

Let us state the main result of this paper:

Theorem 3.1. Under the assumptions (A.1) and (A.2), the generalized BSDEL (2) has
a unique solution.

We now prove the existence result under an additional assumption. We suppose that
g is κ-Lipschitz, i.e. for all t ∈ [0, T ] and (y, y′) ∈ R2:

(H.1) |g(t, y)− g(t, y′)| ≤ κ|y − y′|.

Theorem 3.2. Under the assumptions (A.1), (A.2) and (H.1), there exists at most one
progressively measurable process (Y, Z) solution of the generalized BSDEL (2).

Proof. We first consider the special case when the generator does not depend on (y, z),
i.e.

Yt = ξ +

∫ T

t

f(s)ds+

∫ T

t

g(s)dCs −
∞∑
k=1

∫ T

t

Z(k)
s dH(k)

s , t ∈ [0, T ].
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Using Schwartz inequality one has

E

[
ξ +

∫ T

0

f(s)ds+

∫ T

0

g(s)dCs

]2

≤ 3

{
E
[
|ξ|2

]
+

1

β
E

[∫ T

0

eβAs

∣∣∣∣f(s)as

∣∣∣∣2 ds
]
+

1

γ
E

[∫ T

0

eγCs |g(s)|2dCs

]}
< +∞.

The martingale representation theorem for time-inhomogeneous Lévy processes (see El
Jamali and El Otmani [8]) implies that there exists a unique predictable process Z,

verifying E
∫ T

0
|Zs|2ds < +∞, such that

ξ +

∫ T

0

f(s)ds+

∫ T

0

g(s)dCs = E

[
ξ +

∫ T

0

f(s)ds+

∫ T

0

g(s)dCs

]
+

∞∑
k=1

∫ T

0

Z(k)
s dH(k)

s .

Let Yt = E
[
ξ +

∫ T

t
f(s)ds+

∫ T

t
g(s)dCs/Ft

]
. Then the process (Y,Z) verifies the gen-

eralized BSDEL (2) which coefficients are dependent only on time. On the other hand,
we can show that

eβAt |Yt|2 = eβAtE

[
ξ +

∫ T

t

f(s)ds+

∫ T

t

g(s)dCs

∣∣Ft

]2

≤ 3E

eβAT |ξ|2 + eβAt

∣∣∣∣∣
∫ T

t

ase
− βAs

2 e
βAs
2
f(s)

as
ds

∣∣∣∣∣
2

+eβAt

∣∣∣∣∣
∫ T

t

e
βAs+γCs

2 e−
βAs+γCs

2 g(s)dCs

∣∣∣∣∣
2 ∣∣Ft


≤ 3E

[
eβAT |ξ|2 + eβAt

∫ T

t

a2se
−βAsds

∫ T

t

eβAs

∣∣∣∣f(s)as

∣∣∣∣2 ds
+

∫ T

t

eβ(At−As)−γCsdCs

∫ T

t

eβAs+γCs |g(s)|2dCs

∣∣Ft

]

≤ 3E

[
eβAT |ξ|2 + eβAt

∫ T

t

e−βAsdAs

∫ T

t

eβAs

∣∣∣∣f(s)as

∣∣∣∣2 ds
+

∫ T

t

e−γCsdCs

∫ T

t

eβAs+γCs |g(s)|2dCs

∣∣Ft

]

≤ 3E

[
eβAT |ξ|2 + 1

β

∫ T

0

eβAs

∣∣∣∣f(s)as

∣∣∣∣2 ds+ 1

γ

∫ T

0

eβAs+γCs |g(s)|2dCs

∣∣Ft

]
.

By Doob’s maximal quadratic inequality, we deduce that E
[
sup0≤t≤T e

βAt |Yt|2
]
< +∞.

Moreover, using Itô’s formula to eβAt |Yt|2, we have

βE
∫ T

0

eβAs |Ys|2dAs + E
∫ T

0

eβAs∥Zsϑs∥2ℓ2ds

≤ E
[
eβAT |ξ|2

]
+ 2E

∫ T

0

eβAs |Ys||f(s)|ds+ 2E
∫ T

0

eβAs |Ys||g(s)|dCs

+ 2E sup
0≤t≤T

∣∣∣∣∣
∞∑
k=1

∫ T

t

eβAsYsZ
(k)
s dH(k)

s

∣∣∣∣∣
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≤ E
[
eβAT |ξ|2

]
+ (β − 1)E

∫ T

0

eβAs |Ys|2dAs +
1

β − 1
E
∫ T

0

eβAs

∣∣∣∣f(s)as

∣∣∣∣2 ds
+

1

γ
E
∫ T

0

eβAs+γCs |g(s)|2dCs + 2(1 + c2)E
[

sup
0≤t≤T

eβAt |Yt|2
]

+
1

2
E
∫ T

0

eβAs∥Zsϑs∥2ℓ2ds.

We conclude that the pair (Y,Z) is a solution of generalized BSDEL (2) which coefficients
are dependent only on time.

Now, we define the sequence (Y n, Zn) as follows: (Y 0, Z0) = (0, 0) and (Y n+1, Zn+1)
is the unique solution of the generalized BSDEL

Y n+1
t = ξ +

∫ T

t

f(s, Y n
s , Z

n
s )ds+

∫ T

t

g(s, Y n
s )dCs −

∞∑
k=1

∫ T

t

Z(k),n+1
s dH(k)

s , t ∈ [0, T ].

We shall prove that (Y n, Zn) is a Cauchy sequence in the Banach space B2
β,γ with the

norm

∥(Y,Z)∥2B2
β,γ

:= ∥Y ∥2M2
β,γ

+ ∥Z∥2H2
β,γ
.

Note that for β > 3 and γ > 1 + 2κ2, we can show that

sup
n≥0

∥(Y n, Zn)∥2B2
β,γ

≤ cβ,γ

{
E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

0

eβAt+γCt

∣∣∣∣f(t, 0, 0)at

∣∣∣∣2 dt
+E

∫ T

0

eβAt+γCt |ψ(t)|2dCt

}
.

For n ≥ m ≥ 1, let us put ηn,m = ηn−ηm for η = Y,Z. We apply Itô’s formula to obtain

βE
∫ T

0

eβAs+γCs |Y n+1,m+1
s |2dAs + γE

∫ T

0

eβAs+γCs |Y n+1,m+1
s |2dCs

+ E
∫ T

0

eβAs+γCs∥Zn+1,m+1
s ϑs∥2ℓ2ds

≤ 2E
∫ T

0

eβAs+γCs
∣∣Y n+1,m+1

s

∣∣ |f(s, Y n
s , Z

n
s )− f(s, Y m

s , Zm
s )| ds

+ 2E
∫ T

0

eβAs+γCs
∣∣Y n+1,m+1

s

∣∣ |g(s, Y n
s )− g(s, Y m

s )| dCs

≤ (β − 1)E
∫ T

0

eβAs+γCs |Y n+1,m+1
s |2dAs

+
1

β − 1
E
∫ T

0

eβAs+γCs
(
|Y n,m

s |2dAs + ∥Zn,m
s ϑs∥2ℓ2ds

)
+ (γ − 1)E

∫ T

0

eβAs+γCs |Y n+1,m+1
s |2dCs +

κ2

γ − 1
E
∫ T

t

eβAs+γCs |Y n,m
s |2dCs.

Choosing β > 2 and γ > 1 + κ2 then κ̄ = max{1/(β − 1);κ2/(γ − 1)} ∈]0; 1[. We deduce
that

∥(Y n,m, Zn,m)∥2B2
β,γ

≤ κ̄m+1∥(Y n−m, Zn−m)∥2B2
β,γ

−→
n,m→+∞

0.

Which implies that (Y n, Zn) is a Cauchy sequence and converges to (Y,Z) ∈ B2
β,γ satis-

fying (2). □
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Proof of Theorem 3.1. Let gn(t, y) = (ρn ∗ g(t, .))(y) with ρn : R −→ R+ is a sequence of
smooth functions which approximates the Dirac measure at 0 and satisfies

∫
R ρn(x)dx = 1

and supn≥0

∫
R |x|ρn(x)dx < +∞.

Remark that gn is uniformly Lipschitz in y :

|gn(t, y)− gn(t, y)| = |(ρn ∗ g(t, .))(y)− (ρn ∗ g(t, .))(y′)|

≤
∫
R
ρn(x) |g(t, y − x)− g(t, y′ − x)| dx

≤ κ|y − y′|
∫
R
ρn(x)dx = κ|y − y′|.

Moreover, it satisfies (A.2)(3). Indeed

(y − y′)[gn(t, y)− gn(t, y)] = (y − y′)[(ρn ∗ g(t, .))(y)− (ρn ∗ g(t, .))(y′)]

≤
∫
R
ρn(x)((y − x)− (y′ − x))(g(t, y − x)− g(t, y′ − x))dx

≤ θ|y − y′|2
∫
R
ρn(x)dx = θ|y − y′|2,

and

|gn(t, y)| = |(ρn ∗ g(t, .))(y)| ≤
∫
R
ρn(x)|g(t, y − x)|dx

≤ ψ(t)

∫
R
ρn(x)dx+ κ

∫
R
ρn(x)|y − x|dx

≤ (ψ(t) + κ|y|)
∫
R
ρn(x)dx+ κ

∫
R
|x|ρn(x)dx = ψ(t) + κ|y|.

Hence, there exists a unique solution (yn, zn) of the generalized BSDEL

ynt = ξ +

∫ T

t

f(s, yns , z
n
s )ds+

∫ T

t

gn(s, y
n
s )dCs −

∞∑
k=1

∫ T

t

z(k),ns dH(k)
s .

Applying Itô’s formula and taking an expectation on both sides, we obtain that

E
[
eβAt+γCt |ynt |2

]
+ βE

∫ T

t

eβAs+γCs |yns |2dAs

+ γE
∫ T

t

eβAs+γCs |yns |2dCs + E
∫ T

t

eβAs+γCs∥zns ϑs∥2ℓ2ds

= E
[
eβAT+γCT |ξ|2

]
+ 2E

∫ T

t

eβAs+γCsyns f(s, y
n
s , z

n
s )ds

+ 2E
∫ T

t

eβAs+γCsyns gn(s, y
n
s )dCs

≤ E
[
eβAT+γCT |ξ|2

]
+ 2E

∫ T

t

eβAs+γCsyns f(s, 0, 0)ds

+ 2E
∫ T

t

eβAs+γCsps|yns |2ds+ 2E
∫ T

t

eβAs+γCsqs|yns |∥zns ϑs∥ℓ2ds

+ 2θE
∫ T

t

eβAs+γCs |yns |2dCs + 2E
∫ T

t

eβAs+γCsyns gn(s, 0)dCs

≤ E
[
eβAT+γCT |ξ|2

]
+ 3E

∫ T

t

eβAs+γCs |yns |2dAs
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+
1

2
E
∫ T

t

eβAs+γCs∥zns ϑs∥2ℓ2ds+ E
∫ T

t

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+
γ

2
E
∫ T

t

eβAs+γCs |yns |2dCs +
2

γ
E
∫ T

t

eβAs+γCs |ψ(s)|2dCs.

Which implies that

E
[
eβAt+γCt |ynt |2

]
+ (β − 3)E

∫ T

t

eβAs+γCs |yns |2dAs

+
γ

2
E
∫ T

t

eβAs+γCs |yns |2dCs +
1

2
E
∫ T

t

eβAs+γCs∥zns ϑs∥2ℓ2ds

≤ E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

t

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds+ 2

γ
E
∫ T

t

eβAs+γCs |ψ(s)|2dCs.

Therefore, Burkholder-Davis-Gundy’s inequality leads to

sup
n≥0

{
E
[

sup
0≤t≤T

eβAt+γCt |ynt |2
]
+ E

∫ T

0

eβAs+γCs |yns |2dAs + E
∫ T

0

eβAs+γCs |yns |2dCs

+ E
∫ T

0

eβAs+γCs∥zns ϑs∥2ℓ2ds

}

≤ c

{
E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

0

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+ E

∫ T

0

eβAs+γCs |ψ(s)|2dCs

}
.

Defining Un
t = f(t, ynt , z

n
t ) and Vn

t = gn(t, y
n
t ). We deduce from the above and our

assumptions that

sup
n≥0

E

[∫ T

0

|Un
t |2dt+

∫ T

0

|Vn
t |2dCt

]
≤ 3

β
E
∫ T

t

eβAs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+ 2E

∫ T

t

eβAs+γCs |ψ(s)|2dCs + sup
n≥0

E

[
3

β
E
∫ T

t

eβAs |yns |2dAs

+
3

β
E
∫ T

t

eβAs∥zns ϑs∥2ℓ2ds+ 2κ2
∫ T

0

eβAs+γCs |yns |2dCs

]
< +∞.

The sequences (yn)n≥0, (z
n)n≥0, (Un)n≥0 et (Vn)n≥0 are bounded. By Bolzano-Weier-

strass theorem (Bartle and Sherbet [4], Theorem 3.4.2, p.78), we can extract a convergent
subsequence such that

(ynk , znk ,Unk ,Vnk) −−−−−→
k→+∞

(Y,Z,U ,V).

It is then easy to deduce that

Yt = ξ +

∫ T

t

Usds+

∫ T

t

VsdCs −
∞∑
k=1

∫ T

t

Z(k)
s dH(k)

s .

Now, to reach our goal, it remains to show that Ut = f(t, Yt, Zt) and Vt = g(t, Yt). Let
(Pt)t≤T , (Qt)t≤T and (Xt)t≤T be three progressively measurable processes such that

E

[∫ T

0

eβAt(|Pt|2 + ∥Qtϑt∥2ℓ2)dt

]
< +∞ and E

[∫ T

0

eβAt |Xt|2dCt

]
< +∞.
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In view of the non-deterministic Lipschitz condition of f and the monotonicity condition
of g, we have

f(t, ynt , z
n
t )− f(t,Pt,Qt)− pt|ynt − Pt| − qt∥(znt −Qt)ϑt∥ℓ2

≤ |f(t, ynt , znt )− f(t,Pt,Qt)| − pt|ynt − Pt| − qt∥(znt −Qt)ϑt∥ℓ2 ≤ 0,

and (ynt −Xt)(gn(t, y
n
t )− gn(t,Xt)) ≤ θ|ynt −Xt|2 ≤ 0. Therefore

E

[∫ T

0

eβAt |ynt − Pt|(f(t, ynt , znt )− f(t,Pt,Qt)− pt|ynt − Pt| − qt∥(znt −Qt)ϑt∥ℓ2dt

]

+ E

[∫ T

0

eβAt(ynt −Xt)(gn(t, y
n
t )− gn(t,Xt))dCt

]
≤ 0.

Note that E
[∫ T

0
eβAt |gn(t,Xt)− g(t,Xt)|2dCt

]
−−−−−→
n→+∞

0, we get

(3) lim sup
n→+∞

E

[∫ T

0

eβAt |ynt − Pt|(f(t, ynt , znt )− f(t,Pt,Qt)− pt|ynt − Pt|

− qt∥(znt −Qt)ϑt∥ℓ2)dt] + E

[∫ T

0

eβAt(ynt −Xt)(gn(t, y
n
t )− g(t,Xt))dCt

]
≤ 0.

On the other hand, Itô’s formula implies that

|yn0 |2 = eβAT |ξ|2 − β

∫ T

0

eβAt |ynt |2dAt + 2

∫ T

0

eβAtynt f(t, y
n
t , z

n
t )dt

+ 2

∫ T

0

eβAtynt gn(t, y
n
t )dCt −

∫ T

0

eβAt∥znt ϑt∥2ℓ2dt− 2

∞∑
k=1

∫ T

0

eβAtynt z
(k),n
t dH

(k)
t .

Using the fact that yn0 −−−−−→
n→+∞

Y0 in R, and that the mapping Z −→ E
∫ T

0
eβAt∥Ztϑt∥2ℓ2dt

is convex and continuous in H2
β,0, hence

lim inf
n→+∞

2E

[∫ T

0

eβAtynt

(
f(t, ynt , z

n
t )−

β

2
a2ty

n
t

)
dt

]
+ 2E

[∫ T

0

eβAtynt gn(t, y
n
t )dCt

]

≥ |Y0|2 − E
[
eβAT |ξ2|

]
+ E

[∫ T

0

eβAt∥Ztϑt∥2ℓ2dt

]

= 2E

[∫ T

0

eβAtYt

(
Ut −

β

2
a2tYt

)
dt

]
+ 2E

[∫ T

0

eβAtYtVtdCt

]
.(4)

Combining (3) together with (4) yields

E

[∫ T

0

eβAt |Yt − Pt|(Ut − f(t,Pt,Qt)− pt|Yt − Pt| − qt∥(Zt −Qt)ϑt∥ℓ2)dt

+

∫ T

0

eβAt(Yt −Xt)(Vt − g(t,Xt))dCt

]
≤ 0.

We choose Pt = Yt−ε(Ut−f(t, Yt, Zt)), Qt = Zt and Xt = Yt−ε(Vt−g(t, Yt)) for ε > 0,
then divide by ε and let ε→ 0, the following holds

E

[∫ T

0

eβAt |Ut − f(t, Yt, Zt)|2dt+
∫ T

0

eβAt |Vt − g(t, Yt)|2dCt

]
≤ 0.
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Which leads to the conclusion of this section, i.e. (Y, Z) is the solution of generalized
BSDEL (2). The proof of theorem (3.1) is now complete. □

4. A priori estimates

In this part, we state the priori estimates on the bounds of the solution (Y, Z) with
respect to the data (ξ, f, g, C).

Proposition 4.1. Assuming that (A.1)− (A.2) hold. Let (Y,Z) be a solution of gener-
alized BSDEL with data (ξ, f, g, C), then there exists a constant c depending on β > 3
and γ > 0 such that

∥Y ∥2S2
β,γ

+ ∥Y ∥2S2,a
β,γ

+ ∥Y ∥2S2,c
β,γ

+ ∥Z∥2H2
β,γ

≤ cβ,γ

{
E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

0

eβAt+γCt

∣∣∣∣f(t, 0, 0)at

∣∣∣∣2 dt
+ E

∫ T

0

eβAt+γCt |ψ(t)|2dCt

}
.

Proof. Applying Itô’s formula (Protter [10], Theorem 33, p.81) to eβAt+γCt |Yt|2 yields
that

eβAt+γCt |Yt|2 + β

∫ T

t

eβAs+γCs |Ys|2dAs

+ γ

∫ T

t

eβAs+γCs |Ys|2dCs +

∫ T

t

eβAs+γCs∥Zsϑs∥2ℓ2ds

= eβAT+γCT |ξ|2 + 2

∫ T

t

eβAs+γCsYsf(s, Ys, Zs)ds

+ 2

∫ T

t

eβAs+γCsYsg(s, Ys)dCs − 2

∞∑
k=1

∫ T

t

eβAs+γCsYsZ
(k)
s dH(k)

s .

On the one hand, using the assumption (A.2)(2) and (A.2)(3−4) respectively, we obtain

2Ysf(s, Ys, Zs) ≤ 2|Ys||f(s, 0, 0)|+ 2ps|Ys|2 + 2qs|Ys|∥Zsϑs∥ℓ2

≤ 3a2s|Ys|2 +
∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 + 1

2
∥Zsϑs∥2ℓ2 ;

2Ysg(s, Ys) ≤ 2θ|Ys|2 + 2|Ys||g(s, 0)| ≤
γ

2
|Ys|2 +

2

γ
|ψ(s)|2.

Consequently, we deduce that

(5) eβAt+γCt |Yt|2 + (β − 3)

∫ T

t

eβAs+γCs |Ys|2dAs

+
γ

2

∫ T

t

eβAs+γCs |Ys|2dCs +
1

2

∫ T

t

eβAs+γCs∥Zsϑs∥2ℓ2ds

≤ eβAT+γCT |ξ|2 +
∫ T

0

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+

2

γ

∫ T

0

eβAs+γCs |ψ(s)|2dCs − 2

∞∑
k=1

∫ T

t

eβAs+γCsYsZ
(k)
s dH(k)

s .

Thus, taking an expectation in above both sides, yields
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(6) E
∫ T

0

eβAs+γCs |Ys|2dAs + E
∫ T

0

eβAs+γCs |Ys|2dCs + E
∫ T

0

eβAs+γCs∥Zsϑs∥2ℓ2ds

≤ cβ,γ

{
E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

0

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+ E

∫ T

0

eβAs+γCs |ψ(s)|2dCs

}
.

To reach our purpose, we take the supremum over t ∈ [0, T ] in (5), we get that

E
[

sup
0≤t≤T

eβAt+γCt |Yt|2
]
≤ E

[
eβAT+γCT |ξ|2

]
+ E

∫ T

t

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+

2

γ
E
∫ T

t

eβAs+γCs |ψ(s)|2dCs + 2E sup
0≤t≤T

∣∣∣∣∣
∞∑
k=1

∫ t

0

eβAs+γCsYsZ
(k)
s dH(k)

s

∣∣∣∣∣ .
From Burkholder-Davis-Gundy’s inequality, there exists a positive universal constant c
such that

2E sup
0≤t≤T

∣∣∣∣∣
∞∑
k=1

∫ t

0

eβAs+γCsYsZ
(k)
s dH(k)

s

∣∣∣∣∣ ≤ 2cE

[∫ T

0

e2βAs+2γCs |Ys|2∥Zsϑs∥2ℓ2ds

] 1
2

≤ 1

2
E
[

sup
0≤t≤T

eβAt+γCt |Yt|2
]
+ 2c2E

∫ T

0

eβAs+γCs∥Zsϑs∥2ℓ2ds.

Henceforth, we have

(7) E
[

sup
0≤t≤T

eβAt+γCt |Yt|2
]

≤ cβ,γ

{
EeβAT+γCT |ξ|2 + E

∫ T

0

eβAt+γCt

∣∣∣∣f(t, 0, 0)at

∣∣∣∣2 dt
+ E

∫ T

0

eβAt+γCt |ψ(t)|2dCt

}
.

Finally, the desired result is obtained by (6) and (7) :

E
[

sup
0≤t≤T

eβAt+γCt |Yt|2
]
+ E

∫ T

0

eβAs+γCs |Ys|2dAs

+ E
∫ T

0

eβAs+γCs |Ys|2dCs + E
∫ T

0

eβAs+γCs∥Zsϑs∥2ℓ2ds

≤ cβ,γ

{
E
[
eβAT+γCT |ξ|2

]
+ E

∫ T

0

eβAs+γCs

∣∣∣∣f(s, 0, 0)as

∣∣∣∣2 ds
+ E

∫ T

0

eβAs+γCs |ψ(s)|2dCs

}
.

□
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