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OLEKSANDR D. BORYSENKO AND OLGA V. BORYSENKO

LIMIT BEHAVIOR OF AUTONOMOUS RANDOM
OSCILLATING SYSTEM OF THIRD ORDER

The asymptotic behavior of the general type third order autonomous
oscillating system under the action of small non-linear random per-
turbations of ”white” and ”Poisson” types is investigated.

1. INTRODUCTION

The averaging method proposed by N.M.Krylov, N.N.Bogolyubov and
Yu.A.Mytropolskij ([1], [2]) is one of the main tool in studying of the deter-
ministic oscillating systems under the action of small non-linear perturba-
tions. The case of small random ”white noise” type disturbances in oscillat-
ing systems of second order is considered in papers of Yu.A.Mytropolskij,
V.G.Kolomiets ([3]). The autonomous and non-autonomous oscillating sys-
tems of second order under the action of ”white noise” and Poisson type
noise perturbations are studied in the papers of O.V.Borysenko ([4], [5]).
Particular case of the third order oscillating systems are investigated in arti-
cles of O.D.Borysenko, O.V.Borysenko ([6]), O.D.Borysenko, O.V.Borysen-
ko and I.G.Malyshev ([7], [8]).

This paper deals with investigation of the behaviour, as ¢ — 0, of
the general type third order autonomous oscillating system described by
stochastic differential equation

2" (t) + ax” (t) + 0?2/ (t) + ab’x(t) =
=" fila(t), 2 (1), 2" (1) + fel(a(t), 2 (1), 2" (1))

with non-random initial conditions x(0) = xg, 2'(0) = x5, 2" (0) = x5, where
e > 0 is a small parameter, f.(z,z’,2") is a random function such that

(1)

/0 Fo(w(s), 2 (s), " (s)) ds = & /0 Falw(s), 2 (5), 2 (5)) duw(s)+
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= t [ (619,55, 2) s, ),

k; > 0,i=1,2,3; f;;i = 1,2,3 are non-random functions; w(t) is a stan-
dard Wiener process; v(dt, dy) = v(dt, dy) —I1(dy)dt, Ev(dt,dy) = T1(dy)dt,
v(dt,dy) is the Poisson measure independent on w(t); I1(A) is a finite mea-
sure on Borel sets A € R, a > 0,b > 0.
We will consider the equation (1) as the system of stochastic differential
equations
dz(t) = 2/(t)dt,
do'(t) = 2"(t)dt,
da"(t) = [—aa"(t) — b*a'(t) — ab’x(t)+
R (a(0) 2 (1) 27 ()i + o)
+ ™ fy(a(t), ' (t), 2" (1)) dw(t)+
w2 [ lalt), o (), (0), (. do),

R
z(0) = zo, 2/(0) = xy, 2"(0) = .

In what follows we will use the constant X > 0 for the notation of different
constants, which are not depend on ¢.

2. AUXILIARY RESULT

From Borysenko O. and Malyshev I. [9], using the obvious modifications
we obtain following results

Lemma. Let for each x € R there exists

lim ~ / ey de = Fo)

T—o0 A

uniformly with respect to A, the function f(x) is bounded, continuous, func-
tion f(t,z) is bounded and continuous in x uniformly with respect to (t, x) in
any region t € [0,00), |z| < K, and stochastic processes £(t) € R, n(t) € R
are continuous, then

i [ (20060 66)) ds = [ Fetonas

almost surely for all arbitrary t € [0,T].



LIMIT BEHAVIOR 21

Remark. Let f(¢,x,z) is bounded and uniformly continuous in z with
respect to t € [0,00) and z € R in every compact set |z| < K,z € R% Let
I1(-) be a finite measure on the o-algebra of Borel sets in R and let

lim ~ /M Ft 2, 2) dt = F(z, 2),

T—o0 A

uniformly with respect to A for each x € RY 2z € R, where f(z,2) is
bounded, uniformly continuous in x with respect to z € R in every compact
set |z| < K. Then for any continuous processes £(t) € R? and n(t) € R we
have

i [ (20660 6660.2) @y = [ [ Feto) 2 mcazpas.

3. MAIN RESULT
Let us consider the following representation of processes x(t), 2'(t), 2 (t):
z(t) = C(t) exp{—at} + Ay (t) cos(bt) + A (t) sin(bt),

2/ (t) = —aC(t) exp{—at} — bA,(t) sin(bt) + bAs(t) cos(bt),
2" (t) = a*C(t) exp{—at} — b*A;(t) cos(bt) — b*Ay(t) sin(bt),
N(t) = C(t) exp{—at}.

Then Ba(t) 0
x(t) + 2" (¢
N ==
in bt i in(bt
A (t) = cosacos(bt + a)z(t) — Sn;) Z'(t) — T sn;g i a)x”(t),
bt i bt
Ay(t) = cosasin(bt + o)z (t) + COZ 2 (t) + e COZQ( i a)x”(t),

where a = arctg (b/a). We can apply Ito formula [10] to stochastic process
£(t) = (N(t), Ai(t), A3(t)) and obtain for the process £(t) the system of
stochastic differential equations

k1

a? 4+ b2

dN(t) = {—aN(t) + FLt N(2), A (t), As(t)) | dt+

ko

+ fa(t, N(t), AL (t), Ao(t))dw(t)+

a? + b2

ghs . i
+m/Rfs(t,N(t),Al(t),Az(t),z)u(dt,dz),
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sin asin(bt + )

dAl (t) = - b2 [Ekl fl (tv N(t)a Al (t)a AQ(t))dt+ (3)
+ek2 fo (£, N (1), Ay (t), Ag(t))dw(t)+

+#Lﬁmmmm®AﬂMW%W%

dAy(t) =SB Congt +a) €51 i (1, N (), AL (1), Ao(t))dt+

k2 fo(t, N(t), Ay(t), Ax(t))dw(t)+

+#Lﬁmmmm®AﬂMW%W%

b?xo + 4,(0) = a’zo — x azy + (a® + b*)x) + ab®xq
a+0 T a2 b(a2 + b2) ’

where ﬁ(t, N, Ay, Ay) = fi(N + Ajcosbt + Aysinbt, —aN — bA;sinbt +
bAy cosbt,a>N — b*Ajcosbt — b Agsinbt), i = 1,2, f3(t, N, Ay, A, 2) =
f3(N + Aj cosbt + Ay sin bt, —aN —bA; sin bt +bA, cos bt, a> N — b*A; cos bt —
b’ Ay sin bt, 2).
Theorem. LetII(R) < oo, t € [0, 1], K = min(kq, 2ks, 2k3). Let us suppose,
that functions f;,i = 1,—3 bounded and satisfy Lipschitz condition on x,z’, x".
If given below matriz 52( Ay, As) is non-negative definite, then

1. For ky = 2ky = 2k3 the stochastic process £.(t) = &£(t/e¥) weakly
converges, as € — 0, to the stochastic process £(t) = (0, Ay (t), Ax(t)), where

A(t) = (fll(t),flg(t)) is the solution to the system of stochastic differential
equations

N(0) =

A5(0) =

dA(t) = a(A(t))dt + a(A(t))dw(t), A(0) = (A:(0), A(0)), (4)
where a(A) = (W (A, A2),a® (A, Ay)),

1 R
54(1)(141,/12) = —m/f1(¢,A1,A2)(aSin¢+bCOS¢) di,
0

2T
O o) = g [ B A dnacos = bsin ) du,
0

1

o 3
(A1, Ay) = {B(A1, Ay) } {QﬂbQ 2 1) / f(, A1, A2)B ¢)d¢} ;

M=

0

B(¢) = (Blj(w)azaj = 1a2)7 Bll(w) = (aSin¢ + bCOS¢)2,
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Bia(¢) = Bo1(¥) = —(asinty + beos ) (acosp — bsing),
Baa(v) = (acosth — bsin))?, fi(1h, Ay, A) = fi(1h,0, Ay, Ag), i = 1,2,
f3(¢7A17A27Z) = f3(¢707A17A27Z)7

fA(waAluA2):f22(¢7A17A2)+/RJE32<w7AlvA27Z>H(dZ>7

w(t) = (wi(t),i = 1,2), wi(t),i = 1,2 — independent one-dimensional
Wiener processes. .

2. If k < ky then in the averaging equation (4) we must put fi = 0; if
k < 2k, then in the averaging equation (4) we must put fo = 0; if k < 2k
then in the averaging equation (4) we must put f3 = 0.

Proof. Let us make a change of variable ¢t — t/&* in equation (3) and obtain
for the process &.(t) = (N-(t), Af(t), A5(t)) = (N(t/e"), Ai(t/e"), As(t/€"))
the system of stochastic differential equations

k1—k

dN.(t) = {—;%Ns(t) +

mﬁ(t/&:’“,Ne(t),Ai(t),A;(t)) di+

ka—k/2 _

S fat/, NL(t), AS(1), A5 (1)) duw.(£)+

a? + b2

e /~t EONL(t), AS (1), AS(b), 2).(dt, d
+m Rf3( /57 6( )7 1( )7 2( )7Z>V€( 7Z>7

+

_sina sin(bt/e* + a)

dAS(t) = b2 [k fi (/€8 NL(t), AS(t), AS(t))dt+  (5)
k2R ) (1R NL(1), AS(t), AS(t))dw.(t)+
+ehs /R f3(t/e® NL(t), AS(t), A5(t), 2)b.(dt, dz)),
dA5(t) = SOV + Q) i p 4k (1), A3 (1), A5(1))+

b2
k22 (88, NL (1), AS (1), A5 (t))duw. (1) +

e /R Falt/<, No(t), A5(1), A5(t), 2)(dt, d2)),

where w,(t) = e*/?w(t/e"), v.(t, A) = v(t/ek, A)—TI(A)t/e*, here A is Borel
set in R. For any € > 0 the process w.(t) is the Wiener process and 7. (t, A)
is the centered Poisson measure independent on w.(t).

Since we have relationship N.(t) = exp{—at/e*}C(t/e*) and process
C.(t) = O(t/") satisfies the stochastic equation

Y exp{as/e*}
a? + b2

C:(t) = C(0) + ekl_k/o fi(s/ek No(s), AS(s), A5(s)) ds+
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_|_€k:2—k/2/ % fals/e¥ N.(s), A5(s), A5(s)) dw.(s)+

o [ [ elas/?y s N
te // Fals/<F, No(s), A2(s), A5(s), 2) Pu(dt, d=),

a? + b2
b2xo+zl
where C(0) = —7732%, we can obtain estimate

E|N( )|2 < K[ —2at/e" +e (1 2at/€ )(t82(k1_k) +€2k2—k+€2k3_k>].

Therefore lim. o E[N.(¢)|* = 0 and it is sufficient to study the behaviour,
as € — 0, of solution to the system of stochastic differential equations

sin asin(bt /¥ + o) _h

dAS(t) = — 7 €575 fu(t/eF, AS(t), A3(t))dt+
k2 RI2 f ()R AS(t), A5(L))dw. (t)+
—l—€k3/fg(t/sk,Ai(t),Ag(t),z)ﬁa(dt, dz)), (6)
a5(t) = OIS D a0k a0, a5+

k2 RI2 f ()R AS(t), A5(L))dw. (t)+
+ehs / Fs(t)e* AS(t), A5(t), 2)D.(dt, dz)),
R

with initial conditions A5(0) = A;(0), A5(0) = A2(0).
Let us denote A.(t) = (Aj(t), A5(t)). Using conditions on coefficients of
equation (6) and properties of stochastic integrals we obtain estimates

E||A (1) < K[1 4 22010 g (k= 4 2hamhy)

E||A.(t) — A-(s)|]? < K[|t — 5225170 4|t — s|(e22F 4 e2he=h)],
Similarly for the process (.(t) = ((f(t),(5(t)), where

i) = —ehr [ IRAIOIE L) ok 45, 456

_ekg/t/sinasin(bj/ek—1—CV)]ES(S/gk’Ai(S),AS(s),z)ﬁa(ds’dz)]’
o Jr

Gi(t) = h" /0 o0 coslbo/& 40 f (e, s (s), Ag()eo.(5)+

+€k3/0 /Rsmacos(ll));/s +a) (3/5 Aa( ) Ag(s),z)ﬁg(ds,dz)]
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we derive estimates
BI|C(8)|* < Kt(e™ 7 4e7F) Bl (H)—C(9)| P < K|t—s|(e*2 7 e*s7h).

Therefore for stochastic process n.(t) = (A:(t),(.(t)) conditions of weak
compactness [11] are fulfilled

limlim sup P{|n.(t) —n.(s)| > §} = 0 for any 6 > 0, t,s € [0, 77,
h|0 e—0 [t—s|<h

lim lim sup P{|n.(t)| > N} =0,

N—ooe=04ci0,1)
and for any sequence ¢, — 0,n = 1,2,... there exists a subsequence
Em = Enm) — 0,m = 1,2,..., probability space, stochastic processes

A, (t) = (A7 (1), A (1)), G, (1), A(t) = (Au(t), Ax(t)), C(t) defined on this

space, such that A, (t) — A(t),(.,. (t) — ((t) in probability, as &, — 0,
and finite-dimensional distributions of A, (¢), (., (t) are coincide with finite-
dimensional distributions of A, (t),(.,. (). Since we interesting in limit
behaviour of distributions, we can consider processes A., (t), and (. (t)

instead of A, (t),(., (t). From (6) we obtain equation

t

A, (t) = A(0) + / ey (5, Auy () ds + G (1), Ao = (A4(0), A5(0)), (7)

0
where a.(t, A) = (ol (t, A1, As), ol (¢, Ay, As)),

. sinasin(bt/eF + a) 4
a(t, Ay, Ay) = —ek1=k (52/ ) fi(t/ek, Ay Ay),

. sinacos(bt/ek + a) -
k1—k (b2/ >f1(t/5k,A1,A2)-

It should be noted that process (.(t) is the vector-valued square integrable
martingale with matrix characteristic

OéQ) (ta A17 A?) =

t

(0,0 = [ o105, 45(5) A5(6))o 5, AS(), A5(5) s+

0

t
b [ 96 450, 45009, 2195 A5) A(5). &) (), .7 = 1.2
R
0

where

ko_kjaSin asin(bs/e" + a)
b2

oM (s, Ay, Ag) = —¢ fals/e", Ay, Ay),
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 kpgpsinacos(bs/e* 4 a)

022)(871417142) =€ bg f2(8/5k7A17A2>7
sin acsin(bs/ef + a) 4

’751)(8,141,142,2) = —€k3 (bg/ )fg(S/Ek,Al,AQ,Z),
sin a cos(bs/eF + a) 4

’}/22)(5,141,142,2) = €k3 (b2/ )f3(s/€kaAlaA2az)-

For processes A.(t) and (.(t) following estimates hold
EllA.(t) = A(s)l|" < K [Pt = s|* + Ell¢.() = ()] . (8)

Bll¢=(t) = C(s)lI* < K [(e™7F 4+ &™)t — s+
—|—€4k3_3k/2|t . S|3/2 + €4k3_k|t . SH ’ (9)
E[[A.(t) = A () < K, E[l¢.(t) = ()| < K. (10)
Since A., (t) — A(t),(.,, (t) — ((t) in probability, as &,, — 0, then, using
(10), from (8) and (9) we obtain estimates
EIJA() = A@s)|[* < K (|t —s|* + [t = s[*),  EIIC(t) = C(s)l|" < Ot — 5],

Therefore processes A(t) and ((t) satisfy the Kolmogorov’s continuity con-
dition [12].

Let us consider the case k; = 2ky = 2ks. Under these conditions we
have for i,5 = 1,2

t

1 . .
liH(l)z/OééZ)(S,Al,Ag)dS = O_C(Z)(Al,AQ),
0
1 t
liII(l] - |:O'§i)(8,Al,AQ)O'éj)(S,Al,AQ)—F (11)
0
1 . . _
+€_k/’}/éz)(s,Al,AQ,Z)’}/é])(S,Al,AQ,Z>H(dZ) dS:BZ‘j(Al,A2>,

R

where functions a® (A, Ay) and B(A;, Ay) = {Bij(Al_, Ay), i,j = 1,2} are
defined in the condition of theorem. Since processes A(t), ((t) are continu-
ous, then from Lemma and relationships (7), (11) it follows

t

Alt) ZA(O)+/54(A1(5),A2(8))d8+4(t)7 A(0) = (A1(0), A2(0)), (12)

0
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where ((t) is continuous vector-valued martingale with matrix characteristic

t

<C_(Z), E(J)>(t) = /Bij(A1(8>,A2(S>>dS, Z,j = 1, 2

0
Hence [13] there exists Wiener process w(t) = (w;(t),7 = 1, 2), such that

t

C_(t):/5(A1(s),A2(s))dw(s), (A1, As) = {B(Ay, AV (13)

0

Relationships (12), (13) mean that process A(t) satisfies equation (4). Un-
der conditions of theorem the equation (4) has unique solution. There-
fore process A(t) does not depend on choosing of sub-sequence &,, — 0,
and finite-dimensional distributions of process A, (t) converge to finite-
dimensional distributions of process A(t). Since processes A., (t) and A(t)
are Markov processes then using the conditions for weak convergence of
Markov processes [12] we finish the proof of statement 1 of theorem.

Let us consider the case k < k;. Then coefficients a” (t, A1, Ag), i =1,2
of equation (7) tend to zero, as e — 0. Repeating with obvious modifications
the proof of statement 1) of theorem we obtain proof of statement 2).

In the case k < 2ky in (11) we have ol (t, Ay, Ag)aéj)(t, Ay, Ay) =
O(e?*27F) j, j =1,2. Then we finish the proof in this case as above. In the
same way we consider the case k < 2ks.
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