OLEKSANDR D. BORYSENKO AND OLGA V. BORYSENKO

LIMIT BEHAVIOR OF AUTONOMOUS RANDOM OSCILLATING SYSTEM OF THIRD ORDER

The asymptotic behavior of the general type third order autonomous oscillating system under the action of small non-linear random perturbations of "white" and "Poisson" types is investigated.

1. Introduction

The averaging method proposed by N.M.Krylov, N.N.Bogolyubov and Yu.A.Mytropolskij ([1], [2]) is one of the main tool in studying of the deterministic oscillating systems under the action of small non-linear perturbations. The case of small random "white noise" type disturbances in oscillating systems of second order is considered in papers of Yu.A.Mytropolskij, V.G.Kolomiets ([3]). The autonomous and non-autonomous oscillating systems of second order under the action of "white noise" and Poisson type noise perturbations are studied in the papers of O.V.Borysenko ([4], [5]). Particular case of the third order oscillating systems are investigated in articles of O.D.Borysenko, O.V.Borysenko ([6]), O.D.Borysenko, O.V.Borysenko and I.G.Malyshev ([7], [8]).

This paper deals with investigation of the behaviour, as $\varepsilon \to 0$, of the general type third order autonomous oscillating system described by stochastic differential equation

$$x'''(t) + ax''(t) + b^{2}x'(t) + ab^{2}x(t) =$$

$$= \varepsilon^{k_{1}} f_{1}(x(t), x'(t), x''(t)) + f_{\varepsilon}(x(t), x'(t), x''(t))$$
(1)

with non-random initial conditions $x(0) = x_0, x'(0) = x'_0, x''(0) = x''_0$, where $\varepsilon > 0$ is a small parameter, $f_{\varepsilon}(x, x', x'')$ is a random function such that

$$\int_0^t f_{\varepsilon}(x(s), x'(s), x''(s)) \, ds = \varepsilon^{k_2} \int_0^t f_2(x(s), x'(s), x''(s)) \, dw(s) + \varepsilon^{k_2} \int_0^t f_2(x(s), x'(s), x''(s)) \, dw(s) + \varepsilon^{k_2} \int_0^t f_2(x(s), x'(s), x''(s)) \, ds = \varepsilon^{k_2} \int_0^t f_2(x(s), x'(s), x''(s)) \, dw(s) + \varepsilon^{k_2} \int_0^t f_2(x(s), x'(s), x''(s)) \, dw(s) + \varepsilon^{k_2} \int_0^t f_2(x(s), x''(s), x''(s)) \, dx$$

²⁰⁰⁰ Mathematics Subject Classifications. 60H10

Key words and phrases. Asymptotic behavior, third order autonomous oscillating system, small non-linear random perturbations

$$+\varepsilon^{k_3}\int_0^t\int_{\mathbb{R}}f_3(x(s),x'(s),x''(s),z)\,\tilde{\nu}(ds,dz),$$

 $k_i > 0, i = 1, 2, 3; \ f_i, i = 1, 2, 3$ are non-random functions; w(t) is a standard Wiener process; $\tilde{\nu}(dt, dy) = \nu(dt, dy) - \Pi(dy)dt, E\nu(dt, dy) = \Pi(dy)dt, \nu(dt, dy)$ is the Poisson measure independent on w(t); $\Pi(A)$ is a finite measure on Borel sets $A \in \mathbb{R}$, a > 0, b > 0.

We will consider the equation (1) as the system of stochastic differential equations

$$dx(t) = x'(t)dt,$$

$$dx'(t) = x''(t)dt,$$

$$dx''(t) = [-ax''(t) - b^{2}x'(t) - ab^{2}x(t) + \\
+ \varepsilon^{k_{1}} f_{1}(x(t), x'(t), x''(t))]dt + \\
+ \varepsilon^{k_{2}} f_{2}(x(t), x'(t), x''(t))dw(t) + \\
+ \varepsilon^{k_{3}} \int_{R} f_{3}(x(t), x'(t), x''(t), z)\tilde{\nu}(dt, dz),$$

$$x(0) = x_{0}, \ x'(0) = x'_{0}, \ x''(0) = x''_{0}.$$
(2)

In what follows we will use the constant K > 0 for the notation of different constants, which are not depend on ε .

2. Auxiliary result

From Borysenko O. and Malyshev I. [9], using the obvious modifications we obtain following results

Lemma. Let for each $x \in \mathbb{R}^d$ there exists

$$\lim_{T \to \infty} \frac{1}{T} \int_{A}^{T+A} f(t, x) dt = \bar{f}(x)$$

uniformly with respect to A, the function $\bar{f}(x)$ is bounded, continuous, function f(t,x) is bounded and continuous in x uniformly with respect to (t,x) in any region $t \in [0,\infty), |x| \leq K$, and stochastic processes $\xi(t) \in \mathbb{R}^d$, $\eta(t) \in \mathbb{R}$ are continuous, then

$$\lim_{\varepsilon \to 0} \int_0^t f\left(\frac{s}{\varepsilon} + \eta(s), \xi(s)\right) ds = \int_0^t \bar{f}(\xi(s)) ds$$

almost surely for all arbitrary $t \in [0, T]$.

Remark. Let f(t, x, z) is bounded and uniformly continuous in x with respect to $t \in [0, \infty)$ and $z \in \mathbb{R}$ in every compact set $|x| \leq K, x \in \mathbb{R}^d$. Let $\Pi(\cdot)$ be a finite measure on the σ -algebra of Borel sets in \mathbb{R} and let

$$\lim_{T \to \infty} \frac{1}{T} \int_{A}^{T+A} f(t, x, z) dt = \bar{f}(x, z),$$

uniformly with respect to A for each $x \in \mathbb{R}^d, z \in \mathbb{R}$, where $\bar{f}(x,z)$ is bounded, uniformly continuous in x with respect to $z \in \mathbb{R}$ in every compact set $|x| \leq K$. Then for any continuous processes $\xi(t) \in \mathbb{R}^d$ and $\eta(t) \in \mathbb{R}$ we have

$$\lim_{\varepsilon \to 0} \int_0^t \int_{\mathbf{R}} f\left(\frac{s}{\varepsilon} + \eta(s), \xi(s), z\right) \, \Pi(dz) ds = \int_0^t \int_{\mathbf{R}} \bar{f}(\xi(s), z) \, \Pi(dz) ds.$$

3. Main result

Let us consider the following representation of processes x(t), x'(t), x''(t):

$$x(t) = C(t) \exp\{-at\} + A_1(t) \cos(bt) + A_2(t) \sin(bt),$$

$$x'(t) = -aC(t) \exp\{-at\} - bA_1(t) \sin(bt) + bA_2(t) \cos(bt),$$

$$x''(t) = a^2C(t) \exp\{-at\} - b^2A_1(t) \cos(bt) - b^2A_2(t) \sin(bt),$$

$$N(t) = C(t) \exp\{-at\}.$$

Then

$$N(t) = \frac{b^2 x(t) + x''(t)}{a^2 + b^2},$$

$$A_1(t) = \cos \alpha \cos(bt + \alpha)x(t) - \frac{\sin bt}{b}x'(t) - \frac{\sin \alpha \sin(bt + \alpha)}{b^2}x''(t),$$

$$A_2(t) = \cos \alpha \sin(bt + \alpha)x(t) + \frac{\cos bt}{b}x'(t) + \frac{\sin \alpha \cos(bt + \alpha)}{b^2}x''(t),$$

where $\alpha = \operatorname{arctg}(b/a)$. We can apply Ito formula [10] to stochastic process $\xi(t) = (N(t), A_1(t), A_2(t))$ and obtain for the process $\xi(t)$ the system of stochastic differential equations

$$dN(t) = \left[-aN(t) + \frac{\varepsilon^{k_1}}{a^2 + b^2} \tilde{f}_1(t, N(t), A_1(t), A_2(t)) \right] dt +$$

$$+ \frac{\varepsilon^{k_2}}{a^2 + b^2} \tilde{f}_2(t, N(t), A_1(t), A_2(t)) dw(t) +$$

$$+ \frac{\varepsilon^{k_3}}{a^2 + b^2} \int_{\mathbb{R}} \tilde{f}_3(t, N(t), A_1(t), A_2(t), z) \tilde{\nu}(dt, dz),$$

$$dA_{1}(t) = -\frac{\sin \alpha \sin(bt + \alpha)}{b^{2}} [\varepsilon^{k_{1}} \tilde{f}_{1}(t, N(t), A_{1}(t), A_{2}(t))dt + (3)$$

$$+ \varepsilon^{k_{2}} \tilde{f}_{2}(t, N(t), A_{1}(t), A_{2}(t))dw(t) +$$

$$+ \varepsilon^{k_{3}} \int_{\mathbb{R}} \tilde{f}_{3}(t, N(t), A_{1}(t), A_{2}(t), z)\tilde{\nu}(dt, dz)],$$

$$dA_{2}(t) = \frac{\sin \alpha \cos(bt + \alpha)}{b^{2}} [\varepsilon^{k_{1}} \tilde{f}_{1}(t, N(t), A_{1}(t), A_{2}(t))dt +$$

$$+ \varepsilon^{k_{2}} \tilde{f}_{2}(t, N(t), A_{1}(t), A_{2}(t))dw(t) +$$

$$+ \varepsilon^{k_{3}} \int_{\mathbb{R}} \tilde{f}_{3}(t, N(t), A_{1}(t), A_{2}(t), z)\tilde{\nu}(dt, dz)],$$

$$N(0) = \frac{b^{2}x_{0} + x_{0}''}{a^{2} + b^{2}}, A_{1}(0) = \frac{a^{2}x_{0} - x_{0}''}{a^{2} + b^{2}}, A_{2}(0) = \frac{ax_{0}'' + (a^{2} + b^{2})x_{0}' + ab^{2}x_{0}}{b(a^{2} + b^{2})},$$

where $\tilde{f}_i(t, N, A_1, A_2) = f_i(N + A_1 \cos bt + A_2 \sin bt, -aN - bA_1 \sin bt + bA_2 \cos bt, a^2N - b^2A_1 \cos bt - b^2A_2 \sin bt), i = 1, 2, \tilde{f}_3(t, N, A_1, A_2, z) = f_3(N + A_1 \cos bt + A_2 \sin bt, -aN - bA_1 \sin bt + bA_2 \cos bt, a^2N - b^2A_1 \cos bt - b^2A_2 \sin bt, z).$

Theorem. Let $\Pi(R) < \infty$, $t \in [0, t_0]$, $k = \min(k_1, 2k_2, 2k_3)$. Let us suppose, that functions f_i , $i = \overline{1,3}$ bounded and satisfy Lipschitz condition on x, x', x''. If given below matrix $\overline{\sigma}^2(A_1, A_2)$ is non-negative definite, then

1. For $k_1 = 2k_2 = 2k_3$ the stochastic process $\xi_{\varepsilon}(t) = \xi(t/\varepsilon^k)$ weakly converges, as $\varepsilon \to 0$, to the stochastic process $\bar{\xi}(t) = (0, \bar{A}_1(t), \bar{A}_2(t))$, where $\bar{A}(t) = (\bar{A}_1(t), \bar{A}_2(t))$ is the solution to the system of stochastic differential equations

$$d\bar{A}(t) = \bar{\alpha}(\bar{A}(t))dt + \bar{\sigma}(\bar{A}(t))d\bar{w}(t), \ \bar{A}(0) = (A_1(0), A_2(0)), \tag{4}$$

where $\bar{\alpha}(\bar{A}) = (\bar{\alpha}^{(1)}(A_1, A_2), \bar{\alpha}^{(2)}(A_1, A_2)),$

$$\bar{\alpha}^{(1)}(A_1, A_2) = -\frac{1}{2\pi b(a^2 + b^2)} \int_0^{2\pi} \hat{f}_1(\psi, A_1, A_2)(a\sin\psi + b\cos\psi) d\psi,$$

$$\bar{\alpha}^{(2)}(A_1, A_2) = \frac{1}{2\pi b(a^2 + b^2)} \int_0^{2\pi} \hat{f}_1(\psi, A_1, A_2) (a\cos\psi - b\sin\psi) \, d\psi,$$

$$\bar{\sigma}(A_1, A_2) = \left\{ \bar{B}(A_1, A_2) \right\}^{\frac{1}{2}} = \left\{ \frac{1}{2\pi b^2 (a^2 + b^2)^2} \int_0^{2\pi} \hat{f}(\psi, A_1, A_2) B(\psi) d\psi \right\}^{\frac{1}{2}},$$

$$B(\psi) = (B_{ij}(\psi), i, j = 1, 2), \quad B_{11}(\psi) = (a \sin \psi + b \cos \psi)^2,$$

$$B_{12}(\psi) = B_{21}(\psi) = -(a\sin\psi + b\cos\psi)(a\cos\psi - b\sin\psi),$$

$$B_{22}(\psi) = (a\cos\psi - b\sin\psi)^2, \, \hat{f}_i(\psi, A_1, A_2) = \tilde{f}_i(\psi, 0, A_1, A_2), \, i = 1, 2,$$

$$\hat{f}_3(\psi, A_1, A_2, z) = \tilde{f}_3(\psi, 0, A_1, A_2, z),$$

$$\hat{f}(\psi, A_1, A_2) = \hat{f}_2^2(\psi, A_1, A_2) + \int_R \hat{f}_3^2(\psi, A_1, A_2, z) \, \Pi(dz),$$

 $\bar{w}(t) = (w_i(t), i = 1, 2), \ w_i(t), i = 1, 2 - independent one-dimensional Wiener processes.$

2. If $k < k_1$ then in the averaging equation (4) we must put $\tilde{f}_1 \equiv 0$; if $k < 2k_2$ then in the averaging equation (4) we must put $\tilde{f}_2 \equiv 0$; if $k < 2k_3$ then in the averaging equation (4) we must put $\tilde{f}_3 \equiv 0$.

Proof. Let us make a change of variable $t \to t/\varepsilon^k$ in equation (3) and obtain for the process $\xi_{\varepsilon}(t) = (N_{\varepsilon}(t), A_1^{\varepsilon}(t), A_2^{\varepsilon}(t)) = (N(t/\varepsilon^k), A_1(t/\varepsilon^k), A_2(t/\varepsilon^k))$ the system of stochastic differential equations

$$dN_{\varepsilon}(t) = \left[-\frac{a}{\varepsilon^{k}} N_{\varepsilon}(t) + \frac{\varepsilon^{k_{1}-k}}{a^{2} + b^{2}} \tilde{f}_{1}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) \right] dt +$$

$$+ \frac{\varepsilon^{k_{2}-k/2}}{a^{2} + b^{2}} \tilde{f}_{2}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) dw_{\varepsilon}(t) +$$

$$+ \frac{\varepsilon^{k_{3}}}{a^{2} + b^{2}} \int_{\mathcal{R}} \tilde{f}_{3}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z) \tilde{\nu}_{\varepsilon}(dt, dz),$$

$$dA_{1}^{\varepsilon}(t) = -\frac{\sin \alpha \sin(bt/\varepsilon^{k} + \alpha)}{b^{2}} \left[\varepsilon^{k_{1}-k} \tilde{f}_{1}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) dw_{\varepsilon}(t) +$$

$$+ \varepsilon^{k_{2}-k/2} \tilde{f}_{2}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) dw_{\varepsilon}(t) +$$

$$+ \varepsilon^{k_{3}} \int_{\mathcal{R}} \tilde{f}_{3}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z) \tilde{\nu}_{\varepsilon}(dt, dz) \right],$$

$$dA_{2}^{\varepsilon}(t) = \frac{\sin \alpha \cos(bt/\varepsilon^{k} + \alpha)}{b^{2}} \left[\varepsilon^{k_{1}-k} \tilde{f}_{1}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) +$$

$$+ \varepsilon^{k_{2}-k/2} \tilde{f}_{2}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) dw_{\varepsilon}(t) +$$

$$+ \varepsilon^{k_{3}} \int_{\mathcal{R}} \tilde{f}_{3}(t/\varepsilon^{k}, N_{\varepsilon}(t), A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z) \tilde{\nu}_{\varepsilon}(dt, dz) \right],$$

where $w_{\varepsilon}(t) = \varepsilon^{k/2} w(t/\varepsilon^k)$, $\tilde{\nu}_{\varepsilon}(t, A) = \nu(t/\varepsilon^k, A) - \Pi(A)t/\varepsilon^k$, here A is Borel set in R. For any $\varepsilon > 0$ the process $w_{\varepsilon}(t)$ is the Wiener process and $\tilde{\nu}_{\varepsilon}(t, A)$ is the centered Poisson measure independent on $w_{\varepsilon}(t)$.

Since we have relationship $N_{\varepsilon}(t) = \exp\{-at/\varepsilon^k\}C(t/\varepsilon^k)$ and process $C_{\varepsilon}(t) = C(t/\varepsilon^k)$ satisfies the stochastic equation

$$C_{\varepsilon}(t) = C(0) + \varepsilon^{k_1 - k} \int_0^t \frac{\exp\{as/\varepsilon^k\}}{a^2 + b^2} \tilde{f}_1(s/\varepsilon^k, N_{\varepsilon}(s), A_1^{\varepsilon}(s), A_2^{\varepsilon}(s)) \, ds +$$

$$+\varepsilon^{k_2-k/2} \int_0^t \frac{\exp\{as/\varepsilon^k\}}{a^2+b^2} \tilde{f}_2(s/\varepsilon^k, N_{\varepsilon}(s), A_1^{\varepsilon}(s), A_2^{\varepsilon}(s)) dw_{\varepsilon}(s) +$$

$$+\varepsilon^{k_3} \int_0^t \int_{\mathcal{R}} \frac{\exp\{as/\varepsilon^k\}}{a^2+b^2} \tilde{f}_3(s/\varepsilon^k, N_{\varepsilon}(s), A_1^{\varepsilon}(s), A_2^{\varepsilon}(s), z) \, \tilde{\nu}_{\varepsilon}(dt, dz),$$

where $C(0) = \frac{b^2 x_0 + x_0''}{a^2 + b^2}$, we can obtain estimate

$$E|N_{\varepsilon}(t)|^{2} \leq K[e^{-2at/\varepsilon^{k}} + \varepsilon^{k}(1 - e^{-2at/\varepsilon^{k}})(t\varepsilon^{2(k_{1}-k)} + \varepsilon^{2k_{2}-k} + \varepsilon^{2k_{3}-k})].$$

Therefore $\lim_{\varepsilon\to 0} E|N_{\varepsilon}(t)|^2 = 0$ and it is sufficient to study the behaviour, as $\varepsilon\to 0$, of solution to the system of stochastic differential equations

$$dA_{1}^{\varepsilon}(t) = -\frac{\sin\alpha\sin(bt/\varepsilon^{k} + \alpha)}{b^{2}} [\varepsilon^{k_{1}-k}\hat{f}_{1}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t))dt + \\ + \varepsilon^{k_{2}-k/2}\hat{f}_{2}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t))dw_{\varepsilon}(t) + \\ + \varepsilon^{k_{3}} \int_{\mathbf{R}} \hat{f}_{3}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z)\tilde{\nu}_{\varepsilon}(dt, dz)],$$

$$dA_{2}^{\varepsilon}(t) = \frac{\sin\alpha\cos(bt/\varepsilon^{k} + \alpha)}{b^{2}} [\varepsilon^{k_{1}-k}\hat{f}_{1}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t)) + \\ + \varepsilon^{k_{2}-k/2}\hat{f}_{2}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t))dw_{\varepsilon}(t) + \\ + \varepsilon^{k_{3}} \int_{\mathbf{R}} \hat{f}_{3}(t/\varepsilon^{k}, A_{1}^{\varepsilon}(t), A_{2}^{\varepsilon}(t), z)\tilde{\nu}_{\varepsilon}(dt, dz)],$$

$$(6)$$

with initial conditions $A_1^{\varepsilon}(0) = A_1(0), A_2^{\varepsilon}(0) = A_2(0).$

Let us denote $A_{\varepsilon}(t) = (A_1^{\varepsilon}(t), A_2^{\varepsilon}(t))$. Using conditions on coefficients of equation (6) and properties of stochastic integrals we obtain estimates

$$E||A_{\varepsilon}(t)||^{2} \leq K[1 + t^{2}\varepsilon^{2(k_{1}-k)} + t(\varepsilon^{2k_{2}-k} + \varepsilon^{2k_{3}-k})],$$

$$E||A_{\varepsilon}(t) - A_{\varepsilon}(s)||^{2} \leq K[|t - s|^{2}\varepsilon^{2(k_{1}-k)} + |t - s|(\varepsilon^{2k_{2}-k} + \varepsilon^{2k_{3}-k})].$$

Similarly for the process $\zeta_{\varepsilon}(t) = (\zeta_1^{\varepsilon}(t), \zeta_2^{\varepsilon}(t))$, where

$$\begin{split} &\zeta_1^\varepsilon(t) = -\varepsilon^{k_2-k/2} \int_0^t \frac{\sin\alpha\sin(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_2(s/\varepsilon^k, A_1^\varepsilon(s), A_2^\varepsilon(s)) dw_\varepsilon(s) - \\ &-\varepsilon^{k_3} \int_0^t \int_{\mathbf{R}} \frac{\sin\alpha\sin(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_3(s/\varepsilon^k, A_1^\varepsilon(s), A_2^\varepsilon(s), z) \tilde{\nu}_\varepsilon(ds, dz)], \\ &\zeta_2^\varepsilon(t) = \varepsilon^{k_2-k/2} \int_0^t \frac{\sin\alpha\cos(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_2(s/\varepsilon^k, A_1^\varepsilon(s), A_2^\varepsilon(s)) dw_\varepsilon(s) + \\ &+\varepsilon^{k_3} \int_0^t \int_{\mathbf{R}} \frac{\sin\alpha\cos(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_3(s/\varepsilon^k, A_1^\varepsilon(s), A_2^\varepsilon(s), z) \tilde{\nu}_\varepsilon(ds, dz)] \end{split}$$

we derive estimates

$$|E||\zeta_{\varepsilon}(t)||^2 \le Kt(\varepsilon^{2k_2-k}+\varepsilon^{2k_3-k}), |E||\zeta_{\varepsilon}(t)-\zeta_{\varepsilon}(s)||^2 \le K|t-s|(\varepsilon^{2k_2-k}+\varepsilon^{2k_3-k}).$$

Therefore for stochastic process $\eta_{\varepsilon}(t) = (A_{\varepsilon}(t), \zeta_{\varepsilon}(t))$ conditions of weak compactness [11] are fulfilled

$$\lim_{h\downarrow 0} \overline{\lim_{\varepsilon\to 0}} \sup_{|t-s|< h} P\{|\eta_{\varepsilon}(t) - \eta_{\varepsilon}(s)| > \delta\} = 0 \text{ for any } \delta > 0, \ t, s \in [0, T],$$

$$\lim_{N \to \infty} \overline{\lim}_{\varepsilon \to 0} \sup_{t \in [0,T]} P\{ |\eta_{\varepsilon}(t)| > N \} = 0,$$

and for any sequence $\varepsilon_n \to 0, n = 1, 2, \ldots$ there exists a subsequence $\varepsilon_m = \varepsilon_{n(m)} \to 0, m = 1, 2, \ldots$, probability space, stochastic processes $\bar{A}_{\varepsilon_m}(t) = (\bar{A}_1^{\varepsilon_m}(t), \bar{A}_2^{\varepsilon_m}(t)), \bar{\zeta}_{\varepsilon_m}(t), \bar{A}(t) = (\bar{A}_1(t), \bar{A}_2(t)), \bar{\zeta}(t)$ defined on this space, such that $\bar{A}_{\varepsilon_m}(t) \to \bar{A}(t), \bar{\zeta}_{\varepsilon_m}(t) \to \bar{\zeta}(t)$ in probability, as $\varepsilon_m \to 0$, and finite-dimensional distributions of $\bar{A}_{\varepsilon_m}(t), \bar{\zeta}_{\varepsilon_m}(t)$ are coincide with finite-dimensional distributions of $A_{\varepsilon_m}(t), \zeta_{\varepsilon_m}(t)$. Since we interesting in limit behaviour of distributions, we can consider processes $A_{\varepsilon_m}(t)$, and $\zeta_{\varepsilon_m}(t)$ instead of $\bar{A}_{\varepsilon_m}(t), \bar{\zeta}_{\varepsilon_m}(t)$. From (6) we obtain equation

$$A_{\varepsilon_m}(t) = A(0) + \int_0^t \alpha_{\varepsilon_m}(s, A_{\varepsilon_m}(s)) ds + \zeta_{\varepsilon_m}(t), \quad A_0 = (A_1(0), A_2(0)), \quad (7)$$

where $\alpha_{\varepsilon}(t, A) = (\alpha_{\varepsilon}^{(1)}(t, A_1, A_2), \alpha_{\varepsilon}^{(2)}(t, A_1, A_2)),$

$$\alpha_{\varepsilon}^{(1)}(t, A_1, A_2) = -\varepsilon^{k_1 - k} \frac{\sin \alpha \sin(bt/\varepsilon^k + \alpha)}{h^2} \hat{f}_1(t/\varepsilon^k, A_1, A_2),$$

$$\alpha_{\varepsilon}^{(2)}(t, A_1, A_2) = \varepsilon^{k_1 - k} \frac{\sin \alpha \cos(bt/\varepsilon^k + \alpha)}{h^2} \hat{f}_1(t/\varepsilon^k, A_1, A_2).$$

It should be noted that process $\zeta_{\varepsilon}(t)$ is the vector-valued square integrable martingale with matrix characteristic

$$\langle \zeta_{\varepsilon}^{(i)}, \zeta_{\varepsilon}^{(j)} \rangle(t) = \int_{0}^{t} \sigma_{\varepsilon}^{(i)}(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s)) \sigma_{\varepsilon}^{(j)}(s, A_{1}^{\varepsilon}(s), A_{2}^{\varepsilon}(s)) ds +$$

$$+\frac{1}{\varepsilon^k}\int\limits_0^t\int_{\mathcal{R}}\gamma_\varepsilon^{(i)}(s,A_1^\varepsilon(s),A_2^\varepsilon(s),z)\gamma_\varepsilon^{(j)}(s,A_1^\varepsilon(s),A_2^\varepsilon(s),z)\,\Pi(dz)ds,\ i,j=1,2,$$

where

$$\sigma_{\varepsilon}^{(1)}(s, A_1, A_2) = -\varepsilon^{k_2 - k/2} \frac{\sin \alpha \sin(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_2(s/\varepsilon^k, A_1, A_2),$$

$$\sigma_{\varepsilon}^{(2)}(s, A_1, A_2) = \varepsilon^{k_2 - k/2} \frac{\sin \alpha \cos(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_2(s/\varepsilon^k, A_1, A_2),$$

$$\gamma_{\varepsilon}^{(1)}(s, A_1, A_2, z) = -\varepsilon^{k_3} \frac{\sin \alpha \sin(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_3(s/\varepsilon^k, A_1, A_2, z),$$

$$\gamma_{\varepsilon}^{(2)}(s, A_1, A_2, z) = \varepsilon^{k_3} \frac{\sin \alpha \cos(bs/\varepsilon^k + \alpha)}{b^2} \hat{f}_3(s/\varepsilon^k, A_1, A_2, z).$$

For processes $A_{\varepsilon}(t)$ and $\zeta_{\varepsilon}(t)$ following estimates hold

$$E||A_{\varepsilon}(t) - A_{\varepsilon}(s)||^{4} \le K \left[\varepsilon^{4(k_{1}-k)}|t - s|^{4} + E||\zeta_{\varepsilon}(t) - \zeta_{\varepsilon}(s)||^{4}\right], \quad (8)$$

$$E||\zeta_{\varepsilon}(t) - \zeta_{\varepsilon}(s)||^{4} \le K \left[(\varepsilon^{4k_{2}-2k} + \varepsilon^{4k_{3}-2k})|t - s|^{2} + \varepsilon^{4k_{3}-3k/2}|t - s|^{3/2} + \varepsilon^{4k_{3}-k}|t - s| \right], \tag{9}$$

$$E||A_{\varepsilon}(t) - A_{\varepsilon}(s)||^{8} \le K, \quad E||\zeta_{\varepsilon}(t) - \zeta_{\varepsilon}(s)||^{8} \le K.$$
 (10)

Since $A_{\varepsilon_m}(t) \to \bar{A}(t)$, $\zeta_{\varepsilon_m}(t) \to \bar{\zeta}(t)$ in probability, as $\varepsilon_m \to 0$, then, using (10), from (8) and (9) we obtain estimates

$$E[|\bar{A}(t) - \bar{A}(s)|]^4 \le K(|t - s|^4 + |t - s|^2), \quad E[|\bar{\zeta}(t) - \bar{\zeta}(s)|]^4 \le C|t - s|^2.$$

Therefore processes $\bar{A}(t)$ and $\bar{\zeta}(t)$ satisfy the Kolmogorov's continuity condition [12].

Let us consider the case $k_1 = 2k_2 = 2k_3$. Under these conditions we have for i, j = 1, 2

$$\lim_{\varepsilon \to 0} \frac{1}{t} \int_{0}^{t} \alpha_{\varepsilon}^{(i)}(s, A_1, A_2) ds = \bar{\alpha}^{(i)}(A_1, A_2),$$

$$\lim_{\varepsilon \to 0} \frac{1}{t} \int_{0}^{t} \left[\sigma_{\varepsilon}^{(i)}(s, A_1, A_2) \sigma_{\varepsilon}^{(j)}(s, A_1, A_2) + \right]$$

$$(11)$$

$$+\frac{1}{\varepsilon^k}\int\limits_R \gamma^{(i)}_\varepsilon(s,A_1,A_2,z)\gamma^{(j)}_\varepsilon(s,A_1,A_2,z)\Pi(dz)\Bigg]\,ds=\bar{B}_{ij}(A_1,A_2),$$

where functions $\bar{\alpha}^{(i)}(A_1, A_2)$ and $\bar{B}(A_1, A_2) = \{\bar{B}_{ij}(A_1, A_2), i, j = 1, 2\}$ are defined in the condition of theorem. Since processes $\bar{A}(t), \bar{\zeta}(t)$ are continuous, then from Lemma and relationships (7), (11) it follows

$$\bar{A}(t) = A(0) + \int_{0}^{t} \bar{\alpha}(\bar{A}_{1}(s), \bar{A}_{2}(s))ds + \bar{\zeta}(t), \quad A(0) = (A_{1}(0), A_{2}(0)), \quad (12)$$

where $\bar{\zeta}(t)$ is continuous vector-valued martingale with matrix characteristic

$$\langle \bar{\zeta}^{(i)}, \bar{\zeta}^{(j)} \rangle (t) = \int_{0}^{t} \bar{B}_{ij}(\bar{A}_{1}(s), \bar{A}_{2}(s)) ds, \quad i, j = 1, 2.$$

Hence [13] there exists Wiener process $\bar{w}(t) = (w_i(t), i = 1, 2)$, such that

$$\bar{\zeta}(t) = \int_{0}^{t} \bar{\sigma}(\bar{A}_{1}(s), \bar{A}_{2}(s)) \, d\bar{w}(s), \ \bar{\sigma}(A_{1}, A_{2}) = \left\{\bar{B}(A_{1}, A_{2})\right\}^{1/2}. \tag{13}$$

Relationships (12), (13) mean that process $\bar{A}(t)$ satisfies equation (4). Under conditions of theorem the equation (4) has unique solution. Therefore process $\bar{A}(t)$ does not depend on choosing of sub-sequence $\varepsilon_m \to 0$, and finite-dimensional distributions of process $A_{\varepsilon_m}(t)$ converge to finite-dimensional distributions of process $\bar{A}(t)$. Since processes $A_{\varepsilon_m}(t)$ and $\bar{A}(t)$ are Markov processes then using the conditions for weak convergence of Markov processes [12] we finish the proof of statement 1 of theorem.

Let us consider the case $k < k_1$. Then coefficients $\alpha_{\varepsilon}^{(i)}(t, A_1, A_2)$, i = 1, 2 of equation (7) tend to zero, as $\varepsilon \to 0$. Repeating with obvious modifications the proof of statement 1) of theorem we obtain proof of statement 2).

In the case $k < 2k_2$ in (11) we have $\sigma_{\varepsilon}^{(i)}(t, A_1, A_2)\sigma_{\varepsilon}^{(j)}(t, A_1, A_2) = O(\varepsilon^{2k_2-k})$, i, j = 1, 2. Then we finish the proof in this case as above. In the same way we consider the case $k < 2k_3$.

REFERENCES

- 1. Krylov N.M., Bogolyubov N.N., Introduction to non-linear mechanics, Kyiv: Publ.Acad.Scien. UkrSSR, 1937.
- 2. Bogolyubov N.N., Mitropolskij Yu.A., Asymptotic methods in the theory of non-linear oscillations, M.: Nauka, 1974.
- 3. Mitropolskij Yu.A., Kolomiets V.G., On the action of random forces to the non-linear oscillating systems, Math. physics and non-linear mechanics, 5(39), (1986), 23-34.
- 4. Borysenko O.V., Small random parturbations in oscillating systems of second order, Ukr.Math.Journ., 44 (1992), no.1.
- 5. Borysenko O.V., Behaviour of non-autonomous oscillating system under the action of small random perturbations in the resonance case, Ukr. Math. Journ., 44 (1992), no.12.
- Borysenko O.D., Borysenko O.V. Asymptotic behaviour of stochastic dynamical system, Theory of optimal decisions, Kyiv, Inst. Cibernetics NANU, (1999), 38 – 44.

- Borysenko O.D., Borysenko O.V., Malyshev I.G., Limit behaviour of dynamical system under action of small random perturbations in non-resonance case, Theory of optimal decisions, Kyiv, Inst.Cibernetics NANU, (2002), no.1, 70 – 78.
- 8. Borysenko O.D., Borysenko O.V., Malyshev I.G., Asymptotic behavior of third order random oscillation system in the resonance case, Theory of Stoch. Proc., **9(25)** (2003), no.3-4, 1 11.
- 9. Borysenko O.D., Malyshev I.G., The limit behaviour of integral functional of the solution of stochastic differential equation depending on small parameter, Theory of Stoch. Proc., **7(23)** (2001), no.1-2, 30 36.
- 10. Gikhman, I.I., Skorokhod, A.V., Stochastic Differential Equations, Springer-Verlag, Berlin, 1972.
- 11. Skorokhod, A.V., Studies in the Theory of Random Processes, Addison-Wesley, 1965.
- 12. Gikhman, I.I., Skorokhod, A.V., *The Theory of Stochastic Processes*, v.I, Springer-Verlag, Berlin, 1974.
- 13. Ikeda, N. and Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam and Kadansha, Tokyo, 1981.

DEPARTMENT OF PROBABILITY THEORY AND MATHEMATICAL STATISTICS, KYIV NATIONAL TARAS SHEVCHENKO UNIVERSITY, KYIV, UKRAINE *E-mail:* odb@univ.kiev.ua

DEPARTMENT OF MATHEMATICAL PHYSICS, NATIONAL TECHNICAL UNIVERSITY "KPI", KYIV, UKRAINE