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A. BABENKO AND E. BELITSER

ORACLE WIENER FILTERING OF A GAUSSIAN SIGNAL

We study the problem of filtering a Gaussian process whose trajectories, in some
sense, have an unknown smoothness β0 from the white noise of small intensity ε. If
we knew the parameter β0, we would use the Wiener filter which has the meaning
of oracle. Our goal is now to mimic the oracle, i.e., construct such a filter without
the knowledge of the smoothness parameter β0 that has the same quality (at least
with respect to the convergence rate) as the oracle. It is known that in the pointwise
minimax estimation, the adaptive minimax rate is worse by a log factor as compared
to the nonadaptive one. By constructing a filter which mimics the oracle Wiener
filter, we show that there is no loss of quality in terms of rate for the Bayesian
counterpart of this problem - adaptive filtering problem.

1. Introduction

Suppose we observe a continuous-in-time signal f(t) ∈ L2[0, 1] in the white noise model
(see Ibragimov and Khasminski (1981), Evromovich (1999), Johnstone (2004), Tsybakov
(2008)):

(1) dXε(t) = f(t)dt+ ε dW (t), 0 ≤ t ≤ 1,

where Xε(·) is an observation process, W (t) is a standard Wiener process, ε is the noise
intensity. The goal is to recover the signal f(t0) at a point t0 ∈ [0, 1], based on the
observation (X(ε)(t), t ∈ [0, 1]), in the asymptotic setup as ε → 0. From now on we
will skip the index ε in the notations. The estimation quality of an estimator f̂(t0) is
measured by the (quadratic) risk function R(f̂(t0), f(t0)) = E|f̂(t0)− f(t0)|2, where the
estimator f̂(t0) is a measurable function of observations and the expectation depends on
whether the unknown signal f(t) is deterministic or random.

Recall that, given an orthonormal basis {φi, i ∈ N} in L2[0, 1], the model (2) can be
translated into an equivalent sequence model

(2) Xi = θi + εξi, i ∈ N,

with the observations Xi =
∫ 1

0
φi(t)dXε(t), the unknown Fourier coefficients of the signal

θi =
∫ 1

0
φi(t)f(t)dt, independent Gaussian noises ξi =

∫ 1

0
φi(t)dW (t). While interesting

in communication theory in its own right, in case of deterministic f model (1) also
provides a good approximation to a variety of curve estimation problems, for example
regression estimation and density estimation problems. For such problems ε = n−1/2,
where n is the sample size.

The prior knowledge about the signal f(t) can basically be modelled in two ways:
either the signal f is assumed to be deterministic and to belong to a given functional
class Fβ , where the parameter β typically has a meaning of the signal smoothness; or the
signal f(t) is assumed to be random according to a certain prior distribution πβ , i.e., it is
a stochastic process with distribution πβ . Both approaches are actually connected to each
other within the decision theoretic framework: according to the von Neumann minimax
theorem, the minimax risk over Fβ (which is r(Fβ) = inf f̂ supf∈Fβ

R(f̂(t0), f(t0))) in
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the first setting is equal to the Bayes risk corresponding to the so-called least favorable
prior πβ in the second setting.

This interplay between minimax and Bayesian frameworks has been studied by Li and
Zhao (2002) and later Babenko and Belitser (2009) for the case of a Sobolev ellipsoid
Fβ ⊂ L2[0, 1] and a certain choice of normal prior πβ (a family of priors in Babenko
and Belitser (2009)). The signal f(t) from the Bayesian perspective becomes a certain
Gaussian process of smoothness (in some sense) β, the estimation problem becomes the
problem of filtering of this Gaussian process of smoothness β from white noise and the
corresponding Bayes estimator is nothing else but the Wiener filter. It was shown that
this Bayes estimator attains this minimax rate over the Sobolev ellipsoid Fβ, i.e., the
prior πβ is least favorable (at least in terms of the convergence rate) for the problem of
minimax (over Fβ) pointwise estimation of the signal value f(t0). In a way, this means
that prior πβ adequately models the deterministic condition f ∈ Fβ and the problem
of filtering of this Gaussian process from white noise mimics the problem of pointwise
minimax estimation of a regression function f from the Sobolev ellipsoid Fβ.

The construction of the minimax Bayes estimators in Li and Zhao (2002) and in
Babenko and Belitser (2009) is based on the knowledge of the smoothness parameter β.
If the parameter β is unknown, then the problem of adaptive estimation of the signal
f(t0) at point t0 arises. In the minimax setup, Lepski (1990, 1991, 1992) showed that
a penalty log factor in the minimax risk is unavoidable for the problem of adaptive
pointwise estimation and proposed an adaptive estimator attaining this adaptive (i.e.,
degraded by the log factor) minimax rate.

In this note we consider a Bayesian version of the adaptive pointwise estimation of
the signal f(t0), which is in fact an adaptive filtering problem. We assume that the
signal f(t) is distributed according a prior πβ0 with an unknown “true smoothness” β0.
Clearly, the Bayes estimator f̂β0(t0) = E(f(t0)|X), which is the Wiener filter, cannot be
used because β0 is unknown. We regard f̂β0(t0) as a Bayesian oracle (or oracle Wiener
filter) and its risk becomes our benchmark, which we call the oracle Bayes risk. The main
goal is then to mimic the Bayesian oracle, that is to find such a procedure f̂(t0) without
using the knowledge of β0 whose Bayes risk with respect to the prior πβ0 is within the
constant factor of the oracle Bayes risk. The same type of Bayesian adaptation problem
but for the global L2 estimation of the signal f was studied by Belitser and Enikeeva
(2008). It was shown that the empirical Bayes approach mimics the Bayesian oracle
whose rate coincides in this case with the nonadaptive global minimax rate. In the
pointwise minimax estimation, there is a peculiarity as earlier mentioned: the adaptive
minimax rate is worse by a log factor as compared to the nonadaptive one. In this paper
we show that a better situation occurs for the Bayesian counterpart of this problem:
there is no log penalty factor for the Bayesian pointwise adaptation. We construct a
marginal likelihood (an empirical Bayes) estimator β̂ for the smoothness parameter β0

which leads to the plug-in procedure f̂β̂(t0) for the signal value f(t0) and show that it
mimics the Bayesian oracle without any loss in the convergence rate.

Of course, one could study this problem from the Bayesian perspective from the very
beginning, without relating it to the pointwise minimax estimation. Then the considered
problem has the following interpretation: we want to filter a Gaussian process whose
trajectories have an unknown smoothness β0 from the white noise. If we knew parameter
β0, we would use the Wiener filter, which has the meaning of oracle. Our goal is now
to mimic the oracle, i.e., construct such a filter without the knowledge of smoothness
parameter β0 that has the same quality (at least with respect to the convergence rate)
as the oracle.
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2. Preliminaries

Recall the sequence observation model (2) and that we are given a basis {φi, i ∈ N}
so that our signal f(t) has a Fourier representation:

(3) f(t) =
∞∑
i=1

θiφi(t), t ∈ [0, 1],

with the Fourier coefficients θ = (θ1, θ2, . . .) ∈ �2.
Assume from now on that supt∈[0,1] |φi(t)| ≤ 1. Next assume that θ is a Gaussian

element from the space �2 with the distribution πβ,δ for a β > 1/2 and δ < 2β−1, where
the distribution πβ,δ is determined as follows: θ ∼ πβ,δ means that

(4) θi
ind∼ N (0, τ2

i (β, δ)), τ2
i (β, δ) = τ2

i (β, δ, ε) = i−2β+δεδ/β , i ∈ N.

Remark 2.1. All the results of this paper can be easily generalized to the case

τ2
i (β, δ, ε) = A(i, ε)i−2β+δεδ/β , i ∈ N,

where 0 < A1 ≤ A(i, ε) ≤ A2 <∞ uniformly in i ∈ N and ε > 0.

Remark 2.2. Suppose that δ = 0 (i.e., τi(β, 0) = i−2β) and {φi, i ∈ N} is the trigonomet-
ric basis. The parameter β has a meaning of smoothness since the fractional derivative
(in Weyl sense) of process (3) of order β−1/2−γ for any γ > 0 is a well defined Gaussian
process.

For a fixed β > 1/2, we thus defined a family of distributions {πβ,δ, δ < 2β − 1}.
Clearly, the signal f(t) is a well defined centered Gaussian process with the covariance
function Cov(t, s) =

∑∞
i=1 τ

2
i (β, δ)φi(t)φi(s). If the basis functions φi(t)’s are continuous

on [0, 1] and L2[0, 1]-orthogonal, then (3) is a Karhunen-Loève decomposition of the
Gaussian process f(t). If {φi, i ∈ N} is the usual trigonometric basis of L2[0, 1], the
resulting Gaussian process f(t) is also stationary. Notice that the only prior which does
not depend on the parameter ε is πβ,0, the one considered in Li and Zhao (2002).

To measure the quality of an estimator f̂(t0), we use the risk function

(5) Rπ(f̂(t0)) = R(f̂(t0), f(t0)) = E
(
f̂(t0)− f(t0)

)2 = EπEθ
(
f̂(t0)− f(t0)

)2
,

where by Eθ we denote the expectation with respect to the conditional distribution of
X given θ, by Eπ the expectation with respect to the distribution π = πβ,δ of θ defined
by (4) and by E the expectation with respect to the joint distribution of (X, θ). If f(t)
is a Gaussian process described by (3) and (4), the optimal estimator f̃(t0) with respect
to the risk Rπ is the Bayes estimator

(6) f̃(t0) = f̃β(t0) = f̃β(t0, δ,X) = E(f(t0)|X) =
∞∑
i=1

φi(t0)E(θi|X) =
∞∑
i=1

φi(t0)θ̃i,

where

θ̃i = θ̃i(β, δ,X) = E(θi|X) = E(θi|Xi) =
τ2
i (β, δ)Xi

τ2
i (β, δ) + ε2

, i ∈ N.

Let us relate the above problem of filtering the signal f(t) to the problem of minimax
estimation of the signal over a Sobolev class of smoothness β. For a β > 1/2, introduce
the Sobolev functional class

Fβ = Fβ(Q) =
{
f(t), t ∈ [0, 1] : f(t) =

∞∑
i=1

θiφi(t), θ ∈ Θβ(Q)
}
,

where

Θβ(Q) =
{
θ :

∞∑
i=1

i2βθ2i ≤ Q
}
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is the Sobolev ellipsoid in space �2. Suppose that the signal f is deterministic and f ∈ Fβ.
In this case, the risk of an estimator f̂(t0) =

∑∞
i=1 θ̂iφi(t0) is

(7) R∗
f (f̂(t0)) = R(f̂(t0), f(t0)) = Eθ

(
f̂(t0)− f(t0)

)2
, θ ∈ Θβ(Q).

Now we remind a result concerning the properties of the estimator f̃β(t0), obtained in
the paper of Babenko and Belitser (2009) with ε = n−1/2.

Theorem 2.1. Let β > 1/2, the risks Rπ and R∗
f be defined by (5) and (7) respectively,

where a prior π = πβ,δ is from the family defined by (4) with δ < min{2β − 1, β + 1/2}.
Let f̃β(t0) be the corresponding Bayes estimator defined by (6) and supt∈[0,1] |φi(t)| ≤ 1,
i ∈ N. Then

sup
f∈Fβ(Q)

R∗
f (f̃β(t0)) ≤ C1ε

(2β−1)/β and Rπ(f̃β(t0)) ≤ C2ε
(2β−1)/β ,

where constant C1 depends only on β, δ and Q and constant C2 only on β and δ.

Remark 2.3. The precise description of the values of the constants C1 and C2, can be
found in Babenko and Belitser (2009): the assertions of the above theorem hold for any

C1 ≥
B
(

4β−2δ−1
2β−δ , 1

2β−δ
)

+QB
(

2β−1
2β−δ ,

2β−2δ+1
2β−δ

)
2β − δ and C2 ≥ π

(2β − δ) sin(π/(2β − δ)) ,

for all sufficiently small ε ≤ ε0 = ε0(C1, C2), where B(α, β) =
∫ 1

0 u
α−1(1 − u)β−1du,

α, β > 0, is the beta function.

The above theorem implies that the chosen prior adequately reflects the requirement
f ∈ Fβ(Q): both frequentist and Bayes risks of the Bayes estimator f̃β(t0) have the
same convergence rate uniformly over the Sobolev class Fβ(Q). It is known that, under
appropriate assumptions on φ(t0) = (φ1(t0), φ2(t0), . . .), this rate is in fact minimax: the
minimax risk rε(Fβ(Q)) = inf f̃ supf∈Fβ(Q)R

∗
f (f̃β(t0)) is of order ε(2β−1)/β and it is sharp

(see Donoho and Low (1992)), i.e., there exist 0 < C1 ≤ C2 <∞, such that

C1 ≤ lim inf
ε→0

ε−(2β−1)/βrε(Fβ(Q)) ≤ lim sup
ε→0

ε−(2β−1)/βrε(Fβ(Q)) ≤ C2.

The lower bound in the above relations holds only for the so called “nonparametric”
φ(t0); a simple example is |φi(t0)| ≥ κ > 0, i ∈ N. We should mention here the difference
of the pointwise (quadratic) minimax rate with the global L2-minimax rate (with respect
to the risk Ef‖f̂−f‖2, where ‖·‖ is the usual norm in L2[0, 1]) over the Sobolev ellipsoid
Fβ, the latter being ε4β/(2β+1). However, if the smoothness parameter β is unknown,
Lepski (1990, 1991, 1992) (see also Tsybakov (1998)) showed that a penalty log factor
is unavoidable: the so called adaptive (quadratic) rate of convergence (see the exact
definition in Tsybakov (1998)) is

(
ε2 log(1/ε)

)(2β−1)/2β.
This lower bound holds also for the minimax risk over the periodic Sobolev functional

class of smoothness β (which is a subset of the usual Sobolev functional class, so the same
lower bound holds for the Sobolev class); see Evromovich (1999) and Tsybakov (2009).
In this case, ellipsoid Θ̃β(Q) =

{
θ :
∑∞

k=1 k
2β(θ22k+θ22k+1) ≤ Q

}
is used instead of Θβ(Q)

and the sequence φ(t0) = (φ1(t0), φ2(t0), . . .) is such that φ2
2k(t0)+φ2

2k+1(t0) = 2, k ∈ N.
If {φk, k ∈ N} is the standard trigonometric basis: φ1(t) = 1, φ2k(t) =

√
2 cos(2πkt),

φ2k+1(t) =
√

2 sin(2πkt), k ∈ N, the above relations on φ(t0) = (φ1(t0), φ2(t0), . . .),
k ∈ N, are indeed fulfilled.
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3. Adaptive filtering by empirical Bayes

In what follows, we consider a Bayesian version of the adaptive estimation of the
functional Φ(θ), which is in fact an adaptive filtering problem. Namely, we assume that
θ ∼ πβ , i.e., θ is a random element distributed according a prior πβ with unknown “true
smoothness” β.

We restrict ourselves to the simplest (and the most natural from the Bayesian point
of view) prior πβ = πβ,0 from the family of priors {πβ,δ, δ < 2β − 1}, i.e., we take δ = 0
in the expression of the variances τ2

i (β, δ). Slightly abusing the notations, we denote

τ2
i (β) = τ2

i (β, 0) = i−2β, i ∈ N,

in what follows. It is possible in principle to consider the general case δ < 2β−1 as well,
but the mathematical treatment becomes more involved.

From now on we denote by β0 > 1/2 the true value of the unknown parameter β.
Since β0 is unknown, the Bayes estimator f̃β(t0) given by (6) cannot be used and it plays
now a role of the Bayesian oracle. We call its risk Rπ(f̃β(t0)) the oracle Bayes risk.
Instead, we are going to use a plug-in estimator f̃β̂(t0) for the signal value f(t0), where
β̂ is an estimator of the smoothness parameter β0.

Recall that from the Bayesian perspective,

(8) Xi
ind∼ N (0, ε2 + τ2

i (β0)), i ∈ N,

where β0 denotes the true value of the unknown smoothness parameter. Let Lε(β) =
Lε(β,X) be the marginal likelihood of the data X = (Xi)i∈N:

Lε(β) =
∞∏
i=1

1√
2π
(
τ2
i (β) + ε2

) exp
{
− X2

i

2
(
τ2
i (β) + n−1

)}.
Maximizing the function Lε(β) is equivalent to minimizing Zε(β) = −2 logLε(β). To
avoid complications in defining the minimum of Zε(β) under the events {Zε(β) = ±∞},
for some fixed reference value β̄ > 0 it is convenient to introduce Z̄ε(β) = Zε(β, β̄) =
−2 log Lε(β)

Lε(β̄)
, which is finite almost surely. For any set Sε ⊆ (0,+∞), define the marginal

likelihood estimator of β restricted to the set Sε:

(9) β̂ = β̂(Sε) = β̂(Sε, X, ε) = arg min
β∈Sε

Z̄ε(β).

This means that Zε(β̂(Sε)) ≤ Zε(β′) for all β′ ∈ Sε, or equivalently Zε(β̂(Sε), β′) ≤ 0 for
all β′ ∈ Sε. We will use a finite set Sε so that the above estimator is well defined.

Remark 3.1. Certainly, this is not the only possible way to estimate the smoothness
parameter. The estimator is easy to implement in practice and it has an appealing
feature that it is based on the fundamental principle in statistics: maximization of the
likelihood. However, the analytic treatment of this approach is somewhat involved, even
in our case for conjugate pair of normal model and normal prior. One can in principle try
to find another estimator for β (for example, by using the method of moments), which
should be good enough to plug in f̃β(t0) and is easier to treat.

Remark 3.2. The problem of estimating the smoothness parameter β0 is an auxiliary
problem, but it is of interest on its own right. This a peculiar problem of parametric
estimation with infinitely many non-identically distributed normal observations and a
peculiar asymptotics: in our case ε → 0 some information parameter involved in the
variances of the observations, and not the traditional size of the observation sample.
In fact, we use a version of the maximum likelihood method. Similar approach was
previously considered by Belitser and Enikeeva (2008) for another estimation problem,
the signal estimation in the �2-norm.
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Remark 3.3. The accompanying problem of estimating the smoothness parameter β0 by
the empirical Bayes procedure β̂ can be seen as a Bayesian counterpart of the inference
problem on the smoothness parameter β0. In the minimax frequentist setting, it is
impossible to estimate the smoothness in any meaningful sense, while it is a well defined
problem from the Bayesian point of view as the problem of estimating a parameter β of
the prior distribution πβ0 .

From now on we define the set Sε to be as follows:

(10) Sε = {1/2 + κε + kδε, k = 0, 1, . . . ,Mε − 1},
where the positive sequences κε → 0, δε → 0 and Mε ∈ N, Mε →∞ so that Mεδε →∞,
as ε→ 0.

The next lemma describes the quality of the smoothness estimator β̂.

Lemma 3.1. Let β̂ be defined by (9), Sε by (10) with δε = o
(
1/ log(1/ε)

)
as ε→ 0. Then

there exist c1 = c1(β0) and ε0 = ε0(β0) such that for any β ∈ Sε such that |β − β0| ≥ 2δε
the inequality

P{β̂ = β} ≤ exp
{− c1δ2ε ( log 1/ε)

)2
ε−1/β0

}
holds for all ε ≤ ε0.

The proof is rather tedious and lengthy, but we omit it since it essentially follows the
same line as the proof of Lemma 2 in Belitser and Enikeeva (2008), with the substitutions
ε2 and β0−1/2 instead of quantities n−1 and β0 respectively in Lemma 2 of Belitser and
Enikeeva (2008).

Next, denote f̂(t0, β) = f̃β(t0) and introduce the empirical Bayesian plug-in estimator
for the signal value f(t0):

(11) f̂ = f̂(t0, β̂) = f̃β̂(t0) =
∞∑
i=1

φi(t0)τ2
i (β̂)Xi

τ2
i (β̂) + ε2

,

with f̃β(t0) defined by (6), β̂ = β̂(Sε) defined by (9) and Sε defined by (10).
To avoid uninteresting cases (when the signal value f(t0) is close to zero), we assume

that
Rπ(f̃β0(t0)) ≥ cεα

for some c, α > 0. This requirement is not restrictive since it will be fulfilled if there
exists an i ∈ {1, 2, . . . , �ε−2�} such that φ2

i (t0) ≥ 2c > 0. Indeed, as β0 > 1/2, then

Rπ(f̃β0(t0)) =
∞∑
i=1

φ2
i (t0)

i2β0 + ε−2
≥ cε4β0 .

The next theorem claims that, under the above condition and very mild conditions on
the choice of the set Sε, the adaptive empirical Bayes estimator f̂ mimics the Bayesian
oracle, i.e., its Bayes risk is asymptotically not worse than the Bayesian oracle risk.

Theorem 3.1. Suppose Rπ(f̃β0(t0)) ≥ cεα for some c, α > 0. Let f̂(t0, β̂) be defined by
(11), constant c1 = c1(β0) be from Lemma 3.1, and the sequences κε, δε and Mε from
the definition (10) of the set Sε be such that δn = o

(
1/ log(1/ε)

)
and

κ−1
ε Mε exp

{− c1δ2ε ( log(1/ε)
)2
ε−1/β0/2

}
= o(εα)

as ε→ 0. Then for some C = C(β0, α)

Rπ(f̂(t0, β̂)) ≤ Rπ(f̃β0(t0))(4 + o(1)) ≤ Cε(2β0−1)/β0(1 + o(1)) as ε→ 0.
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Remark 3.4. Many choices of sequences δε, κε and Mε satisfying the conditions of the
theorem are possible. For example, δε = 1/(log(1/ε))2, κε = 1/ log(1/ε) and Mε =
(log(1/ε))3 will do. In fact, there is no need to take a sequence κε converging to zero
faster than 1/ log(1/ε) since already for β0 = κε = 1/ log(1/ε) the risk will not converge
to zero. Neither does it make sense to take the sequence Mε converging to infinity faster
than a sequence for which log(1/ε) = o(Mεδε), since already for β0 = log(1/ε) the risk
will have the unimprovable parametric convergence rate ε2.

Proof. Write

Rπ(f̂(t0, β̂)) = E(f̂(t0, β̂)− f(t0))2 = E
[
(f̂(t0, β̂)− f(t0))2I{|β̂ − β0| ≥ 2δε}

]
+ E

[
(f̂(t0, β̂)− f(t0))2I{|β̂ − β0| < 2δε})

]
= T1 + T2.

First notice that

T2 = E
[
(f̂(t0, β̂)− f(t0))2I{|β̂ − β0| < 2δε})

]
≤

∑
β∈Sε: |β−β0|<2εn

E(f̂(t0, β)− f(t0))2

≤ 4 max
β: |β−β0|<2δε

E(f̂(t0, β)− f(t0))2,(12)

since there are at most 4 β’s from the set Sε such that |β − β0| < 2δε. Now, recall that
E(Xi − θi)2 = ε2 and Eθ2i = i−2β0 . Therefore,

E(f̂(t0, β)− f(t0))2 = EπEθ(f̂(t0, β)− f(t0))2

=
∞∑
i=1

ε2φ2
i (t0)τ

4
i (β)

(τ2
i (β) + ε2)2

+ Eπ

( ∞∑
i=1

ε2φi(t0)θi
τ2
i (β) + ε2

)2

=
∞∑
i=1

φ2
i (t0)ε

−2

(i2β + ε−2)2
+

∞∑
i=1

φ2
i (t0)i

4β−2β0

(i2β + ε−2)2

=
∞∑
i=1

φ2
i (t0)

i2β + ε−2
+

∞∑
i=1

φ2
i (t0)(i

4β−2β0 − i2β)
(i2β + ε−2)2

.(13)

Next, let Kε = �ε−α/(2β0−1)−γ� for some fixed γ > 0 (for example, take γ = 1). Then,
as ε→ 0,

∞∑
i=Kε+1

i−2β0 ≤
∞∑

i=Kε+1

i−2(β0−2δε) = o(εα) = o
(
Rπ(f̃β0(t0))

)
due to the condition Rπ(f̃β0(t0)) ≥ cεα. Using this relation and the elementary inequality
a − 1 ≥ 1 − a−1 for any a > 0, we obtain that, uniformly over |β − β0| < 2δε with
δε = o(1/ log(1/ε)),

∞∑
i=1

φ2
i (t0)|i4β−2β0 − i2β |

(i2β + ε−2)2
=

∞∑
i=1

φ2
i (t0)i

4β |i−2β0 − i−2β |
(i2β + ε−2)2

≤
∞∑
i=1

φ2
i (t0)i

4β0+8δε |i−2β0 − i−2β|
(i2β0+4δε + ε−2)2
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=
∞∑
i=1

φ2
i (t0)i

2β0+8δε |1− i−2(β−β0)|
(i2β0+4δε + ε−2)2

≤
Kε∑
i=1

φ2
i (t0)i

4δε(i4δε − 1)
i2β0 + ε−2

+
∞∑

i=Kε+1

1
i2β0

+
∞∑

i=Kε+1

1
i2β

≤ o(1)
Kε∑
i=1

φ2
i (t0)

i2β0 + ε−2
+

∞∑
i=Kε+1

2
i2(β0−2δε)

= o
(
Rπ(f̃β0(t0))

)
(14)

as ε→ 0.
Since Rπ(f̃β0(t0)) ≥ cεα and δε = o(1/ log(1/ε)) as ε→ 0, it is not difficult to establish,

similarly to (14), that
∞∑
i=1

φ2
i (t0)

i2β + ε−2
−Rπ(f̃β0(t0)) =

∞∑
i=1

φ2
i (t0)

i2β + ε−2
−

∞∑
i=1

φ2
i (t0)

i2β0 + ε−2

= o
(
Rπ(f̃β0(t0))

)
,

uniformly over |β − β0| < 2δε. By combining (12), (13), (14) and the last relation, we
derive that, as ε→ 0,

T2 ≤ 4 max
β: |β−β0|<2δε

E
(
f̂(t0, β)− f(t0)

)2 = Rπ(f̃β0(t0))(4 + o(1)).

To finish the proof of the theorem, it remains to show that, as n→∞,

T1 = o(εα) = o
(
Rπ(f̃β0(t0))

)
.

Recall the elementary cr-inequality |a+ b|r ≤ cr(|a|r + |b|r) for r > 0 and cr = 1 if r ≤ 1
and cr = 2r−1 if cr > 1. Using this and the Cauchy-Schwartz inequality, we obtain that(

f̂(t0,β̂)− f(t0)
)4

=
[ ∞∑
i=1

φi(t0)
(τ2

i (β̂)(Xi − θi)
τ2
i (β̂) + ε2

− ε2θi

τ2
i (β̂) + ε2

)]4
≤ 8
[ ∞∑
i=1

φi(t0)τ2
i (β̂)ξiε

τ2
i (β̂) + ε2

]4
+ 8
[ ∞∑
i=1

φi(t0)ε2θi
τ2
i (β̂) + ε2

]4
≤ 8

∑
βk∈Sε

[ ∞∑
i=1

φi(t0)τ2
i (βk)ξiε

τ2
i (βk) + ε2

]4
+ 8

∑
βk∈Sε

[ ∞∑
i=1

φi(t0)ε2θi
τ2
i (βk) + ε2

]4
.

Recall the following fact. Let Z1, Z2, . . . be independent, Zi ∼ N (0, σ2
i ), with

∑∞
i=1 σ

2
i <

∞, then

E
( ∞∑
i=1

Zi

)4

≤ 3
( ∞∑
i=1

σ2
i

)2

.

Apply this relation and again the cr-inequality (for r = 1/2) to get that[
E
(
f̂(t0,β̂)− f(t0)

)4]1/2
≤ 2
√

6Mε

∞∑
i=1

φ2
i (t0)ε

−2

(i1+2κε + ε−2)2
+ 2
√

6Mε

∞∑
i=1

φ2
i (t0)ε

4i−2β0

(τ2
i (βMε) + ε2)2

≤ 2
√

6Mε

(
1 + (2κε)−1 + 1 + (2β0 − 1)−1

)
≤ c2κ

−1
ε

√
Mε
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for sufficiently small ε. Using the above estimate and the Cauchy-Schwartz inequality,

T1 = E
[(
f̂(t0, β̂)− f(t0)

)2
I{|β̂ − β0| ≥ 2δε}

]
≤
[
E
(
f̂(t0, β̂)− f(t0)

)4]1/2[
P{|β̂ − β0| ≥ 2δε}

]1/2
≤ c2κ

−1
ε

√
Mε

[
P{|β̂ − β0| ≥ 2δε}

]1/2
.

Since εn = o(1/ logn), by Lemma 3.1, we have that for all ε ≤ ε(β0), with c1 = c1(β0)
and ε0(β0) from Lemma 3.1,

P{β̂ = β} ≤ exp
{− c1δ2ε ( log 1/ε)

)2
ε−1/β0

}
uniformly over all β such that |β − β0| ≥ 2δε. Therefore,

P
{|β̂ − β0| ≥ 2δε

}
=

∑
β∈Sε: |β−β0|≥2δε

P
{
β̂ = β

}
≤Mε exp

{− c1δ2ε ( log 1/ε)
)2
ε−1/β0

}
for all ε ≤ ε(β0). Combining the last relations with the condition of the theorem, we
obtain that

T1 ≤ c2κ
−1
ε Mε exp

{− c1δ2ε ( log(1/ε)
)2
ε−1/β0/2

}
= o(εα) = o

(
Rπ(f̃β0(t0))

)
.

as ε→ 0, which completes the proof. �
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