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N.V. ZAKHARCHENKO AND L.I. NAKONECHNA

ON A DISCRETE EXTREMAL PROBLEM WITH CONSTRAINTS

The results on the existence of solutions for some discrete extremal problems with
constraints were established. As an application the existence of a solution of a non-

linear eigenvalue problem was obtained.

Variational methods constitute effective means for studying nonlinear boundary value
problems for differential equations. At the same time, there are practically no works
where these methods are used for difference equations. In the case of discrete Schrödinger
equations on the infinite lattice the first results of this type were obtained in [1]. A similar
approach is applied in this paper to examine a variational problem with constraints
associated with a discrete nonlinear eigenvalue problem of the type

(1) (Au)(n) = λf(n, u(n)), n ∈ Zd.

This problem is a discrete analogue of the problem considered in [2].
Let us formulate the main assumptions. The operator A has the following form:

(2) (Au)(n) =
∑
m∈Zd

a(n,m)u(m),

where {a(n,m)} — is a real symmetric infinite matrix that satisfies the condition:
(a1) sup|a(n,m)| < ∞ and there is such positive integer N0, that a(n,m) = 0 if

|n −m| > N0. The operator A is a bounded self-adjoint operator in l2 = l2
(
Zd
)
, 1 6

p 6∞, for the space of all real p-summable sequences, indexed with Zd elements [1].
It is also assumed that:
(a2) operator A is positive definite, that is there is such α0 > 0, that (Au)(n) >

> α0‖u‖2l2 for all u ∈ l2.
Let us formulate the rest of the conditions on the operator A. It is assumed that

(3) (a)(n,m) = a(n,m) + a0(n,m),

(a3) there exists a vector k0 ∈ Zd, such that a(n+ k0, m+ k0) = a(n,m),
(a4) a0(n+ k, m+ k)→ 0 at k → 0 for all n,m ∈ Zd.
According to (3) the operator A can be written as A = A + A0, where A and A0

correspond to the matrices {a(n,m)} and {a0(n,m)} respectively.
Let us proceed to the conditions on the nonlinear term f(n, u). Let f be defined as

f(n, u) = f(n, u) + f0(n, u), where f and f0 are continuous in u ∈ R, and the following
conditions are fulfilled:

(f1) f(n+ k0, u) = f(n, u);
(f2) for any l > 0 lim

n→∞
f0(n, u) = 0 uniformly on u ∈ [−l, l];

(f3) there are such p > 0 and c > 0, that |f(n, u)|+ |f0(n, u)| 6 c|u|p−1, |u| 6 1;
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(f4) for some n0 ∈ Zd there is a sequence uk ∈ R, lim
k→∞

uk = 0, such that f(n0, uk) >

> 0.

Let us set F (n, u) =
u∫
0

f(n, y)dy, F (n, u) =
u∫
0

f(n, y)dy and determine the functionals

of the class C1 for l1:

E(u) = 1
2 (Au, u), E(u) = 1

2 (Au, u),

Φ(u) =
∑
n∈Zd

F (n, u(n)), Φ(u) =
∑
n∈Zd

F (n, u(n))

Let us consider the extremal problems for q ≥ 0:

(4) Iq = inf
{
E(u) : u ∈ l2,Φ(u) = q

}
,

(5) Iq = inf
{
E(u) : u ∈ l2,Φ(u) = q

}
.

It can be shown that for any r ∈ [0, q] the following inequalities are valid:
Iq 6 Ir + Iq−r, Iq 6 Ir + Iq−r.

Furthermore, I0 = I0 = 0 and Iq, Iq are continuous functions of q > 0.

Theorem 1. Let the conditions (a1) − (a4) and (f1) − (f4) be fulfilled. For every
minimizing sequence of the problem (4) to be relatively compact in l2, it is necessary and
sufficient that the following inequality is satisfied:

(6) Iq < Ir + Iq−r, ∀r ∈ [0, q)

For every minimizing sequence of the problem (5) to be relatively compact in l2 with
regard to shifts, it is necessary and sufficient that the following inequality is satisfied:

(7) Iq < Ir + Iq−r, ∀r ∈ (0, q).

In particular, the inequality (6) (respectively (7)) guarantees the existence of the prob-
lem’s (4) (respectively (5)) solution.

Proof. Let uk be a minimizing sequence for (6). Then uk is bounded in l2. Without
loss of generality it can be assumed that ‖uk‖2l2 → γ > 0, as k → ∞. By virtue of
Lemma 1 [1] one of the following three cases must occur:

(i) there is such mk ∈ Zd, that for any ε > 0 there will be such r > 0, that∑
n∈mk+Kt

u2k(n) ≤ γ − ε;

(ii) lim
k→∞

‖uk‖l∞ = 0;

(iii) there are β ∈ (0, γ) and such sequences with bounded support uk,1, uk,2, that

lim
k→∞

‖uk − (uk,1 + uk,2)‖l2 = 0, lim
k→∞

‖uk,1‖2l2 = β, lim
k→∞

‖uk,2‖2l2 = γ − β and

dist(supp(uk,1), supp(uk,2))→∞ as k →∞.

In the case (ii) it follows from Lemma 2 [1] that lim
k→∞

uk = 0 in lp, 2 < p 6∞. Then

by virtue of the condition (f3), Φ(uk) → 0, as k → ∞, which contradicts the condition
Φ(uk) = q > 0. Thus, the case (ii) is excluded.

In the case (iii) we have q = lim
k→∞

Φ(uk,1 + uk,2) = lim
k→∞

bΦ(uk,1) + Φ(uk,2)c, since the

supports of uk,1 and uk,2 do not intersect for large k. Without loss of generality it can
be assumed that the following limits exist: lim

k→∞
Φ(uk,1) = q1, lim

k→∞
Φ(uk,2) = q2 and
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q1 + q2 = q. It is easy to check that q1 > 0 and q2 > 0. Passing to the subsequences (and
interchanging, if necessary, the positions of uk,1 and uk,2) it can be assumed that

lim
k→∞

bΦ(uk,2)− Φ(uk,2)c = 0, lim
k→∞

bE(uk,2)− E(uk,2)c > 0.

Hence it follows that

Iq = lim
k→∞

E(uk) = lim
k→∞

[E(uk,1) + E(uk,2)] > Iq1 + lim
k→∞

E(uk,2) = Iq1 + Iq2,

which contradicts (6).
Thus only the case (i) remains. In this case the sequence uk(◦ + mk) is relatively

compact in l2. If the sequence mk is bounded, then the sequence uk itself is relatively
compact. If mk is unbounded then, like before, it follows that Iq > Iq. The latter
contradicts (6) for r = 0. This proves the sufficiency in the first theorem statement. The
necessity is established in a similar way [3].

The second statement is proved in a similar way.
�

Now let us consider the periodic problem, similar to (5). Let us set

Qm =
{
n ∈ Zd : −mj−1

2 < nj 6
mj−1

2 , j = 1, . . . , d
}

for the vector m ∈ Zd with pos-

itive components.
Furthermore, without loss of generality it can be assumed that the vector k0 ∈ Zd

under the conditions (a3), (f1) has positive components. Let s > 0 be an integer. Let
us denote by Hs the finite-dimensional space of sk0-periodic sequences with the scalar

product (u, v)s =
∑

n∈QSk0

u(n)v(n). Obviously, the operator A acts in Hs.

Let us set Es(u) =
1

2
(Au, u)s, Φs(u) =

∑
n∈QSk0

F (n, u(n)).

It is easy to see that the finite-dimensional extremal problem

I
(s)
q = inf {Es(u) : u ∈ Hs, Φs(u) = q} , q > 0, always has at least one solution us.

Theorem 2. Let the conditions (a1)−(a2), (f1)−(f4) and the inequality (7) be fulfilled.
Then there exist solutions of the problem (5), a sequence sk ∈ N and a sequence mk ∈ Zd,
such that lim

j→∞
[χsj · usj (◦ + mj) − u] = 0 in the space l2, where χs(n) = 1 if n ∈ Qsk0

and χs(n) = 0 if n /∈ Qsk0
.

The theorem is proved similarly to Theorem 1.
Let us apply Theorem 1 to the problem (1).

Theorem 3. Let the conditions (a1) − (a2), (f1) − (f4) be fulfilled and one of the
following inequalities hold: f(n, u)u > 0,∀n ∈ Zd, u 6= 0, or f(n, u) > cF (n, u),∀n ∈
Zd, u ∈ R, where c > 0. If the inequality (6) is fulfilled, then there is a solution (u, λ), u ∈
l2, u 6= 0, λ > 0, of the problem (1) with Φ(u) = q. If a0(n,m) ≡ 0, f0(n,m) ≡ 0, then
for the existence of such a solution it is sufficient that the inequality (7) is fulfilled.

Proof. According to Theorem 1 there is a solution u 6= 0 of the problem (4). Obviously,
5Φ(u) = {f(n, u(n))}. If f(n, u)u > 0, u 6= 0, then

(5Φ(u), u) =
∑
n∈Zd

f(n, u(n))u(n) > 0.

If f(n, u)u ≥ 0, u 6= 0, then

(5Φ(u), u) =
∑
n∈Zd

f(n, u(n))u(n) > c
∑
n∈Zd

F (n, u(n)) = cΦ(u) = cq > 0.

In both cases 5Φ(u) 6= 0. As ∆E(u) = Au, then by virtue of the Lagrange multiplier
rule (see, for instance, [4]), there is such λ ∈ R, that

(Au)(n) = λf(n, u(n)).
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Multiplying this equation scalarly by u and considering that (Au, u) > 0, (f(n, u), u) > 0,
we obtain that λ > 0.

The theorem is proved. �

Let us consider a partial case f(n, u) = K(n)|u|p−2u, where p > 0, K(n) = K(n) +
+K0(n) > 0, K(n) > 0, K0(n) is periodic, lim

n→∞
K0(n) = 0.

In this case it is easy to see that Iq = q
2
p I1 > 0, Iq = q

2
p I1 > 0, hence it follows

that the inequality (7) is always fulfilled, and the inequality (6) is fulfilled if and only if
I1 < I1.

In particular, if a0(n,m) ≡ 0, K0(n) ≡ 0, then there is a solution u ∈ l2, u 6= 0 of
equation

Au = λK(n)|u|p−2u, λ > 0.

Hence it follows that ν = λ
1

p−2u 6= 0 is the equation’s solution

Aν = K(n)|ν|p−2ν, λ > 0.

The existence of solutions of the last equation also follows from the results of [1].
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