
Theory of Stochastic Processes
Vol. 25 (41), no. 2, 2020, pp. 37–60

IE. KARNAUKH

EXIT PROBLEMS FOR KOU’S PROCESS IN A MARKOVIAN

ENVIRONMENT

In this paper, we consider a path-wise sum of a Brownian motion plus a compound

Poisson process with exponentially distributed positive and negative jumps with pa-
rameters that depend on some finite Markov chain. Using known fluctuation iden-

tities we investigate one-sided and two-sided exit problems generalizing some results

for Kou’s processes to the setting of regime switching models without exploiting the
fluid embedding technique. The generating function for the hitting time of the state-

dependent levels is analyzed. For the case of two states, the numerical examples are

given.

1. Introduction

Kou’s model is a double exponential jump diffusion model introduced in [35] for the
purpose of option pricing. This model represents a generalization of the Black–Scholes
model which accurately fits price dynamics of different assets (see for instance [43] and
[44]) and incorporates the asymmetric leptokurtic feature and the volatility smile. More-
over, the model is analytically tractable and provides exact solutions for a variety of
option pricing problems (see also [37]).

Kou’s process is a special case of Lévy processes and a wide range of applications can
be captured within the correspondent fluctuation theory. We refer to the monographs
[18] and [39] for an introduction to the recent results of the fluctuation theory and its
application for different types of Lévy processes. A number of fluctuation identities
are semi-explicit up to the components of the Spitzer-Rogozin factorization, which are
usually called as the Wiener-Hopf factors. The closed form of these factors are known
only for special classes of Lévy processes. A rich enough class contains the processes the
jumps of which form a compound Poisson process with a rational characteristic function
of jumps. In [4, Chapter 2, Section 2], it was shown that the Wiener-Hopf factors for
such processes can be expressed in terms of roots of the cumulant equation, see also [41]
and [13]. In [38], Kuznetsov et al. represented meromorphic Lévy processes for which
the Wiener-Hopf factors can be expressed as rational functions of infinite degree. For
Kou’s process the Wiener-Hopf factors are rational functions of degree two with poles
of multiplicity 1. This essentially simplifies fluctuation identities preserving its general
structure. With this fact in mind, Kou’s model can be considered as a handy delegate
of the class of Lévy processes with rational Wiener-Hopf factors.

Parameters of Lévy processes do not depend on time which is not completely consis-
tent with the real dynamics of different time series. To incorporate time-inhomogeneity
Hamilton [20] proposed an econometric model with parameters that vary with the state of
the environment. The parameters of the model take different values when the discrete-
state Markov process is in different states. Such a state is usually referred to as a
regime and the corresponding Markov-modulated processes are called regime switching
processes.
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Regime switching Lévy processes belong to the class of Markov additive processes
(MAP). For an introduction to MAP we refer to [1, Chapter III, Section 4]. One of
the important advantages of MAP is that the classical results of the fluctuation theory
for Lévy processes can be extended without sacrificing the analytical tractability; see
[17]. Van Beek et al. [46] mentioned that this is also true for an affine process. As well
as in the scalar case (that is, when the environment has only one state) we need some
additional restrictions on the process structure to receive closed-form representations for
the distribution of different functionals. A quite general class of MAPs for which these
closed-form representations are known includes the so called phase-type MAPs. For the
definition and basic properties of phase-type distributions we refer to [1, Chapter IX].
Breuer [5] showed that the Laplace transform of the first passage time for phase-type
MAPs has a phase-type form and presented a numerically stable iterative procedure to
determine the parameter matrices. The fluid embedding method used in the paper was
based on adding new states that correspond to jumps so as to reformulate the initial
problem in terms of a related continuous MAP (see [6]–[10] for more detail). A Markov
modulated Kou process is a phase-type MAP and there exists a one-to-one correspon-
dence with a Markov modulated Brownian motion but due to the simple structure we can
do analysis without extending the state space and rebuilding the process. This allows us
to get generalizations of results known for the scalar case in a more direct way. Moreover,
working with a model with jumps rather than with a modified continuous version we can
detect possible pitfalls connected to the overshoot problem. These remarks formed the
motivation for our paper.

Fluctuation theory studies the properties of the supremum and the infimum functionals
and their connection with one and two sided exit problems. For MAPs, the corresponding
investigations appeared in 1970s and have been an active research topic over the past
decades. These investigations provide us a series of different approaches for finding
explicit expressions for the integral transforms of the functional distributions for Kou’s
processes defined on a finite Markov chain. The arguments we use here are generalizations
of ideas from [18, Section 5.7] and [31]. Using the corresponding results we discuss an
algorithm of obtaining the Laplace transform of the joint distribution of the first passage
through state-dependent levels and the value of process at that moment. The results are
of interest to applications such as the option pricing in finance and the dividend problem
in risk theory. Following Jiang and Pistorius [27], if the stock price process is modeled as
a geometric MAP, then the optimal exercise strategy for a perpetual American put option
is the hitting time of the state-dependent levels (see also [2]), and the value function could
be represented in terms of the corresponding generating function. Jiang and Pistorius
[28] showed that the state-dependent levels define the optimal dividend strategy for a
company whose cumulative net revenues evolve as a regime switching Brownian motion
with positive drifts.

The rest of the paper is organized as follows. In Section 2, we introduce Kou’s process
in a Markovian environment, and then derive an algorithm for finding the densities of
killed extrema and the integral transforms of one-sided and two-sided boundary function-
als. Some alternatives are discussed in the remarks. In Section 3, we give a representation
of the integral transform of the joint distribution for the first passage time through state-
dependent levels and the overshoot at this moment in terms of those for one-sided and
two-sided boundary functionals. For the case when the environment has two possible
states, we represent numerical examples.

2. Model

Let Zt = {Xt, Jt} be the bivariate Markov process, where Jt is a finite irreducible
nonperiodic Markov chain with finite state space E = {1, . . . , N}, transition rate matrix
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Q = ‖qij‖Ni,j=1, and the stationary distribution π = (π1, . . . , πN ). Process Xt is given by

dXt = aJtdt+ σJtdW (t) +

N∑
k=1

I{Jt=k}dSk(t), X0 = 0.

That is, conditional on Jt = k, the increments of Xt is determined by the increments of
Xk(t) = akt+ σkW (t) + Sk(t). Here,

• constants ak, σk are the drift and volatility of the diffusion part,
• {W (t), t ≥ 0} is a standard Wiener process,
• {Sk(t), t ≥ 0}Nk=1 are compound Poisson processes with exponentially distributed

positive and negative jumps.

The notation I{·} denotes the indicator function of {·}. Processes {W (t), S1(t), . . . , SN (t)}
are mutually independent. For the scalar case (N = 1) see also [36].

The derivation of our results relies on the factorization theory for MAPs (see [17]).
This theory generalizes the Wiener-Hopf theory for Lévy processes. The factorization
method turn out to provide useful tool to analyze various functionals of MAPs, such as
running maximum and minimum

X+
t = sup

0≤u≤t
Xu, X−t = inf

0≤u≤t
Xu,

the first passage time over a positive level x ≥ 0 (below a negative level x ≤ 0)

τ+(x) = inf{t > 0 : Xt > x}
(
τ−(x) = inf{t > 0 : Xt < x}

)
,

and the corresponding overshoots:

γ+(x) = Xτ+(x) − x; γ−(x) = x−Xτ−(x);

the exit time from an interval (x− b, x), 0 < x < b:

τ(x, b) = inf{t > 0 : Xt /∈ (x− b, x)},
and the overshoot at the moment of exit from the interval

γ(x, b) =
(
Xτ(x,b) − x

)
I{Xτ(x,b)≥x} +

(
x− b−Xτ(x,b)

)
I{Xτ(x,b)≤x−b}.

Using these functionals we can investigate the first passage time over (below) a level that
depends on the current state of the environment

(1) T+
b = inf {t > 0 : Xt > bJt}

(
T−b = inf {t > 0 : Xt < bJt}

)
and the overshoot

(2) γ+b = XT+
b
− bJ

T
+
b

(
γ−b = bJ

T
−
b

−XT−
b

)
.

Let Pi and Ei be shorthand for P {·|X0 = 0, J0 = i} and E {·|X0 = 0, J0 = i} respectively
and Ei[ξ; A] = Ei[ξ I{A}]. The distribution of a MAP is determined by the matrix
moment generating function

EerXt =
∥∥Ei [erXt ; Jt = j

]∥∥N
i,j=1

= etK[r], Re[r] = 0, K[0] = Q.

We understand Eg(τ) as the N ×N matrix with elements Ei[g(τ); Jτ = j]. For the Kou
process the cumulant function (the analogue of the Laplace exponent for the scalar case)
is as follows (cf. [17, p. 14])

(3) K[r] = rA + r2Σ +

∫ ∞
−∞

(erx − 1) Λf(x)dx+ Q,

(4) f(x) = p+B+e−B
+xI{x≥0} + p−B−eB

−xI{x<0},
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where A = diag (a1, . . . , aN ), Σ = diag
(
σ2
1/2, . . . , σ

2
N/2

)
, Λ = diag (λ1, . . . , λN ), λk are

the rates of the time intervals between two neighboring jumps, B+ = diag
(
β+
1 , . . . , β

+
N

)
,

B− = diag
(
β−1 , . . . , β

−
N

)
, β+

k and β−k are the parameters of exponentially distributed

positive and negative jumps, correspondingly, p± = diag
(
p±1 , . . . , p

±
N

)
: p±k > 0, p+k +p−k =

1, k = 1, . . . N . Combining (3) and (4) yields

K[r] = rA + r2Σ + rΛp+
(
B+ − rI

)−1 − rΛp−
(
B− + rI

)−1
+ Q.

That is, K[r] is the N ×N matrix with elements

rak + r2
σ2
k

2
+
λkp

+
k r

β+
k − r

−
λkp
−
k r

β−k + r
+ qkk

on the diagonal and with qkj as off-diagonal elements. Hence, all entries of K[r] are
rational functions with respect to r.

2.1. Time-reversed process. In order to formulate the statement about factorization
decomposition, we need some more notation related to time-reversion. To the process Jt
we can associate the so called reversed process Ĵt, where the process Jt is considered in the
reversed time. The reversed process Ĵt is a Markov process with the initial distribution
π and its transition rates are q̂ij =

πjqji
πi

, or using notation ∆π = diag (π1, . . . , πN )

Q̂ = ∆−1π Q>∆π.

In general, the reversed process is a different process from the original one. The process Jt
is reversible if Q̂ = Q or if ∆πQ is a symmetric matrix (see, for example, [45, Chapter 6]).

The process Ẑt = {X̂t, Ĵt} with cumulant K̂[r] = ∆−1π K>[r]∆π is called reversed

process for Zt. The characteristics of Ẑt will be indicated by using a hat over the
existing notation for the characteristics of Zt. Process Zt is called reversible if ∆πK[r]

is a symmetric matrix. If Zt is reversible, then it has the same law as Ẑt (see, e.g.,
[22, Section 2.5]). For the process with cumulant function (3) the reversibility could be
established from the reversibility of Jt. So, if N = 2, then Zt is reversible. For a more
thorough discussion on time reversal for MAP see [26].

2.2. Factorization identity. Let θs be an exponentially distributed random variable
with parameter s > 0 (P{θs > t} = e−st, t ≥ 0), independent of Zt. We can rewrite the
matrix moment generating function of Xθs as follows

(5) EerXθs = s

∫ ∞
0

e−stEerXtdt = s (sI−K[r])
−1
,

where I is the identity matrix. The Wiener-Hopf procedure hinges on finding a product
factorization for sI−K[r] in the form sI−K[r] = K−(s, r)K+(s, r), where components
K∓ define the moment generating functions of the running minimum and the process
reflected at its minimum killed at time θs. More precisely, we have the identity of
infinitely divisible factorization [17, Theorem 2.2] (see also [33, Theorem 1]):

EerXθs =

{
EerX

+
θsP−1s Eer(Xθs−X

+
θs

),

EerX
−
θsP−1s Eer(Xθs−X

−
θs

),
Re[r] = 0,

where Ps = s (sI−K[0])
−1

. Note that the factorization components admit the analytic
continuation into the corresponding half-plane (∓Re[r] > 0).

Set

(6) P[r] =
(
B− + rI

) (
I− s−1K[r]

) (
B+ − rI

)
,

then the moment generating function of Xθs can be represented as

EerX(θs) =
(
B+ − rI

)
P−1[r]

(
B− + rI

)
.
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Following [40, Section 3.7], if equation det P[r] = 0 has all distinct real roots, then P[r]
can be decomposed into a product of linear factors:

(7) P[r] = (rI−X4) (rI−X3) s−1Σ (rI−X2) (rI−X1) .

This decomposition is not unique we can choose matrices Xi such that X1,X2 have
only positive eigenvalues: ρ+i , i = 1, . . . , 2N , and X3,X4 have only negative eigenvalues:

−ρ−j , j = 1, . . . , 2N . Hence, ρ+i define the factorization component EerX
+
θs and ρ−j define

the component Eer(Xθs−X
+
θs

). Inverting factorization components with respect to r we
can get the distribution of X+

θs
and Xθs −X+

θs
.

Proposition 2.1. If equation det P[r] = 0 has all distinct real roots, then the densities
of extrema and process reflected at its extrema could be represented as follows

f± (x) =

∥∥∥∥ ∂∂xPi {X±θs < x, Jθs = j
}∥∥∥∥N

i,j=1

=

2N∑
k=1

A±k e
∓ρ±k x,±x ≥ 0,(8)

f± (x) =

∥∥∥∥ ∂∂xPi {Xθs −X∓θs < x, Jθs = j
}∥∥∥∥N

i,j=1

=

2N∑
l=1

Ā±l e
∓ρ±l x,±x ≥ 0,(9)

for some matrices A±k , Ā
±
l , k, l = 1, . . . , 2N .

Proof. Since ∀i, j ∈ E: Ei[|Xt|; Jt = j] <∞, from [19, Th. 1] we get

EerX
+
θs =

[
I− r

(
C̄+

1 + s−1k(r)
)]−1

Ps,

where C̄+
1 = s−1f− (0) Σ and

k(r) =

∫ ∞
0

erx
∫ 0

−∞
f−(y)

∫ ∞
x−y

Λf(z)dzdydx.

Since every diagonal matrix commutes with all other diagonal matrices of the same
dimension, substituting (4) gives

EerX
+
θs =

(
I− rC̄+

1 −
r

s

∫ 0

−∞
f−(y)eB

+ydyΛp+
(
B+ − rI

)−1)−1
Ps

=

(((
I− rC̄+

1

) (
B+ − rI

)
− r

s

∫ 0

−∞
f−(y)eB

+ydyΛp+

)(
B+ − rI

)−1)−1
Ps

=
(
B+ − rI

)(
B+ + r2C̄+

1 − rI− rC̄
+
1 B+ − r

s

∫ 0

−∞
f−(y)eB

+ydyΛp+

)−1
Ps.

Write

C̄+
2 = I + C̄+

1 B+ + s−1
∫ 0

−∞
f−(y)eB

+ydyΛp+,

then

(10) EerX
+
θs =

(
B+ − rI

) (
B+ − rC̄+

2 + r2C̄+
1

)−1
Ps.

Considering process X̄t = −Xt we get the similar representation for the moment gener-
ating function of X−θs :

(11) EerX
−
θs =

(
B− + rI

) (
B− + rC̄−2 + r2C̄−1

)−1
Ps,

where

C̄−1 = s−1f+ (0) Σ, C̄−2 = I + C̄−1 B− + s−1
∫ ∞
0

f+(y)e−B
−ydyΛp−.
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Taking into account that Eer(Xθs−X
±
θs

) = ∆−1π

(
EerX̂

∓
θs

)>
∆π (see, for instance, [33])

we deduce

(12) Eer(Xθs−X
±
θs

) = Ps

(
B∓ ± rC∓2 + r2C∓1

)−1 (
B∓ ± rI

)
,

C±1 = s−1Σf∓ (0) , C±2 = I + B±C±1 + s−1Λp±
∫ ∞
0

e−B
±yf∓(∓y)dy.

So, the identity of infinitely divisible factorization gives

EerXθs =
(
B+ − rI

) [(
B−

(
C−1
)−1

+ rC−2
(
C−1
)−1

+ r2I
)

C−1 P−1s C̄+
1 ×

×
((

C̄+
1

)−1
B+ − r

(
C̄+

1

)−1
C̄+

2 + r2I
)]−1 (

B− + rI
)

But

EerXθs =
(
B+ − rI

)
P−1[r]

(
B− + rI

)
,

hence

P[r] =
(
B−

(
C−1
)−1

+ rC−2
(
C−1
)−1

+ r2I
) (

C−1 P−1s C̄+
1

)
×

×
((

C̄+
1

)−1
B+ − r

(
C̄+

1

)−1
C̄+

2 + r2I
)
.

Comparing the leading coefficient matrices on the left and right-hand sides of the equality
gives C−1 P−1s C̄+

1 = s−1Σ. Thus,

(13) P[r] =
(
B−

(
C−1
)−1

+ rC−2
(
C−1
)−1

+ r2I
) (
s−1Σ

)
×

×
((

C̄+
1

)−1
B+ − r

(
C̄+

1

)−1
C̄+

2 + r2I
)
.

Since the equation det P[r] = 0 has all distinct real roots, we can write the decomposition

P[r] = (rI−X4) (rI−X3) s−1Σ (rI−X2) (rI−X1)

with matrices Xi such that X1,X2 have only positive eigenvalues and X3,X4 have only
negative eigenvalues. Moreover, substituting r = 0 into (6) and (7) gives

B−P−1s B+ = X4X3

(
s−1Σ

)
X2X1.

So, we obtain the next decomposition

(14) EerXθs =
(
B+ − rI

)
[(rI−X2) (rI−X1)]

−1
(
X2X1

(
B+
)−1)

PsP
−1
s ×

×Ps

((
B−
)−1

X4X3

)
[(rI−X4) (rI−X3)]

−1 (
B− + rI

)
The factor (B+ − rI) [(rI−X2) (rI−X1)]

−1
(
X2X1 (B+)

−1
)

Ps admits the analytic

continuation into the half-plane Re[r] < 0 and the second factor Ps

(
(B−)

−1
X4X3

)
×

× [(rI−X4) (rI−X3)]
−1

(B− + rI) into Re[r] > 0. Hence, these factors define the com-
ponents of the factorization (for details see [17, Chapter I]) and

C̄+
1 = B+ (X2X1)

−1
, C−1 = (X4X3)

−1
B−,(15)

C̄+
2 = B+ (X2X1)

−1
(X2 + X1) , C−2 = − (X4 + X3) (X4X3)

−1
B−.(16)

Substituting these formulas in relations (10) and (12) and inverting with respect of r
gives the representations for f+ and f−. Considering process X̄t = −Xt completes the
proof. �
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Remark 2.1. From (10) it follows that the generating function for the distribution of X+
θs

is a matrix with entries that are rational functions of degree two. To get the explicit
expression we need to specify matrices C̄+

1 and C̄+
2 in terms of the process parameters.

For the scalar case we have a simple algorithm which is based on finding roots of the
cumulant equation; see [18, Section 5.7.1]. Asmussen et al. [3] offers a recent treatment
for a jump diffusion with phase-type jumps. In general, we need a factorization of
the matrix polynomial P [r] = P+ [r]

(
s−1Σ

)
P− [r], where P+ [r] and P− [r] are monic

polynomials with disjoint spectra (see [15, Chapter 4] for more detail). The condition
on roots of det P[r] allows us to obtain the factorization in terms of matrices X1, . . . ,X4

which are (right) solvents for P [X]. Moreover, this condition provides the exponential
form of the densities. So, we have the following algorithm:

(1) Solve the equation det P[r] = 0 and verify that all solutions are different.
(2) Find solvents (diagonalizable) for P [X], such that

• X1,X2 have only positive eigenvalues, and
• X3,X4 have only negative eigenvalues.

(3) Express EerX
+
θs in terms of X1,X2 and Eer(Xθs−X

+
θs

) in terms of X3,X4 using
(10), (15) and (12), (16) respectively.

(4) Invert the factorization components with respect to r to get the matrices A+
k

and Ā−k , k = 1, . . . , 2N.

Breuer [5] used fixed-point equations to obtain the Laplace transform of the first passage
time for phase-type MAPs without the restriction on roots of det P[r]. For the purpose
of numerical inversion, Kim et al. [32] provided an algorithm for obtaining the Laplace

transform with complex parameters. Since E
[
e−sτ

+(x), τ+ <∞
]

Ps = P
{
X+
θs
> x

}
we can adapt the iterative procedures to get a representation of the density of X+

θs
in

a matrix exponential form. Using the theory of generalized Jordan chains D’Aura et
al. [11] (see also [22]) obtained the Jordan normal form of the corresponding matrix
exponent for a spectrally negative MAP which can be applied for Kou’s processes in a
Markov environment via the fluid embedding technique.

2.3. One-sided exit problems. The Kou process can cross a level x by hitting the
level exactly (by creeping) or by a jump which causes an overshoot over (below) the
level. That is, we have two different cases γ± (x) = 0 and γ± (x) > 0 (to stress the cases
we use the corresponding left subscripts in our notation). Following [36], we can show
that the first passage and the overshoot at first passage are conditionally independent
given the state of J and that the overshoot is more than 0. Moreover, the overshoot is
conditionally memoryless; see also [2].

Set

0T
±
r = A±r P−1s C̄±1 , >T±r = A±r P−1s

((
ρ±r
)−1

I− C̄±1

)
,

v±ij (x, dy) = Ei
[
e−sτ

±(x); τ± (x) <∞, γ± (x) ∈ dy, Jτ±(x) = j
]
.

Proposition 2.2. Under the assumptions of Proposition 2.1, the integral transform of
the joint distribution of {τ± (x) , γ± (x)} has the next representation

v±ij (x, dy) = 0v
±
ij (x) δ (dy) + >v

±
ij (x)β±j e

−β±
j ydy, ±x ≥ 0, y ≥ 0,

where passages by creeping and by jump are as follows

0v
±
ij (x) =

2N∑
r=1

(
0T
±
r

)
ij
e∓ρ

±
r x, >v

±
ij (x) =

2N∑
r=1

(
>T±r

)
ij
e∓ρ

±
r x,

δ (·) is the Dirac measure at 0.
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Proof. From [17, Corollary I.3.4], we can deduce

(17) E
[
e−sτ

+(x); τ+ (x) <∞, Xτ+(x) − x ∈ dy, x−Xτ+(x)−0 ∈ dz
]

=
∥∥∥Ei [e−sτ+(x); τ+ (x) <∞, γ+ (x) ∈ dy, x−Xτ+(x)−0 ∈ dz, Jτ+(x) = j

]∥∥∥N
i,j=1

=
∂

∂x
P
{
X+
θs
< x

}
P−1s C̄+

1 δ (dy) δ (dz)

+ s−1
∫ min{x,z}

u=0

P
{
X+
θs
∈ x− du

}
P−1s P

{
X+
θs
−Xθs ∈ dz − u

}
Λf (y + z) dy.

Substituting the representation of f and integrating in y and z yields

E
[
e−sτ

+(x); τ+ (x) <∞
]

=
∂

∂x
P
{
X+
θs
< x

}
P−1s C̄+

1 +

+ s−1
∫ x

0

f+ (u) P−1s

∫ 0

−∞
f− (z) Λp+e−B

+(x−z−u)dzdu.

Hence,

s−1
∫ x

0

f+ (u) P−1s

∫ 0

−∞
f− (z) Λp+e−B

+(x−z−u)dzdu

= P
{
X+
θs
> x

}
P−1s −

∂

∂x
P
{
X+
θs
< x

}
P−1s C̄+

1

and from (17) we can deduce

E
[
e−sτ

+(x); τ+ (x) <∞, γ+ (x) ∈ dy
]

=
∂

∂x
P
{
X+
θs
< x

}
P−1s C̄+

1 δ (dy)

+

(
P
{
X+
θs
> x

}
P−1s −

∂

∂x
P
{
X+
θs
< x

}
P−1s C̄+

1

)
B+e−B

+ydy.

Taking into account the results from Proposition 2.1 and considering process X̄t = −Xt

completes the proof. �

Remark 2.2. Fluctuation identity (17) for the scalar case can be considered as a mar-
ginal of the quintuple law for overshoots and undershoots from [12] and represents the
Gerber-Shiu measure in risk theory. Breuer [6] obtained an explicit matrix exponential
representation of the quintuple law for phase-type MAPs. Using [6, Theorem 1] we can

get an alternative representation for πE
[
e−sτ

+(x); τ+ (x) <∞, γ+ (x) ∈ dy
]
e, where e

is a column vector of 1’s of appropriate dimension.
For passage by jump we have

E
[
e−sτ

+(x); γ+ (x) ∈ dy|τ+ (x) <∞, γ+ (x) > 0, Jτ+(x) = j
]

= E
[
e−sτ

+(x)|τ+ (x) <∞, γ+ (x) > 0, Jτ+(x) = j
]
β+
j e
−β+

j ydy,

which justify the conditional independence of the first passage and the overshoot at the
first passage.
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2.4. Two-sided exit problems. Set

u+ij (x, dy) = Ei
[
e−sτ(x,b); γ (x, b) ∈ dy, J (τ (x, b)) = j,Xτ(x,b) ≥ x

]
,

u−ij (x, dy) = Ei
[
e−sτ(x,b); γ (x, b) ∈ dy, J (τ (x, b)) = j,Xτ(x,b) ≤ x− b

]
,

U± (x, v) =

∥∥∥∥∫ ∞
0

e−vyu±ij (x, dy)

∥∥∥∥N
i,j=1

.

Here v is such that
∫∞
0
e−vyu±ij (x, dy) are finite.

To derive the main result in this section we employ an approximation method gener-
alizing ideas given in [31]. For a non-step Lévy process ξt we can construct a sequence
of step processes ξn (t) such that Eerξn(t) → Eerξt , n → ∞. Since {τ+ (x) , γ+ (x)} are
functionals almost everywhere continuous in the Skorokhod topology on cádlág functions,
the joint Laplace transform for {τ+n (x) , γ+n (x)} converges to the Laplace transform of
{τ+ (x) , γ+ (x)}, see [14, Theorem IV.3]; for two-sided boundary functionals see also [4,
Chapter 1, Section 3].

For the Markov modulated Kou process we construct an approximating process Z
(n)
t ={

X(n) (t) , Jt
}

as follows. If J (t) = k, X(n) (t) evolves like a compound Poisson process

with drift a
(n)
k = ak + 3n

2 σ
2
k, with intensity of jumps λ

(n)
k = λkp

+
k + 3n2σ2

k + λkp
−
k e
−
β
−
k
n ,

and the density of jumps is

f
(n)
k (x) =


p1 (k, n)β+

k e
−β+

k x, x ≥ 0;

p2 (k, n)n, − 1
n ≤ x < 0;

p3 (k, n)β−k e
β−
k (x+1/n), x ≤ − 1

n ,

where p1 (k, n) =
λkp

+
k

λ
(n)
k

, p2 (k, n) =
3n2σ2

k

λ
(n)
k

, p3 (k, n) =
λkp

−
k

λ
(n)
k

e−β
−
k /n. Such a construction

of X
(n)
t grants both possibilities for passage over a level by creeping (for large enough

n) and by exponential jump. In this section, we add right subscript (n) to our notation
to distinguish the corresponding characteristics of Z(n) from those of Z. To justify the
name approximating process we consider the cumulant function for Z(n):

K(n) [r] = rA(n) +

∫ ∞
−∞

(erx − 1) Λ(n)f(n)(x)dx+ Q.

Using the representations of A(n) = diag
(
a
(n)
1 , . . . , a

(n)
N

)
, Λ(n) = diag

(
λ
(n)
1 , . . . , λ

(n)
N

)
,

and f(n) (x) = diag
(
f
(n)
1 (x) , . . . , f

(n)
N (x)

)
given above after some manipulations yields

(for the scalar case see [31])

K(n) [r] = rA + r2Σ (1 + o (1)) + rΛp+
(
B+ − rI

)−1
− rΛp−

(
B− + rI

)−1
e−

1
nB−

+ Q,

where o (1)→ 0, as n→∞. Hence,

EerX
(n)
t = etK(n)[r] −→

n→∞
etK[r] = EerXt .

Following [17, pp. 17–18], we can get the Laplace transform for {τ (x, b) , γ (x, b)} as the
limit of corresponding Laplace transform for the approximating process: U± (x, v) =
limn→∞U±(n) (x, v).

Write ∥∥
0L
±
ij (x)

∥∥N
i,j=1

=
(

J±1 (x) J±2 (x)
)(J±1 (b) J±2 (b)

J̃±1 I + J̃±2

)−1(
0V
±

0Ṽ
±

)
,
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∥∥
>L
±
ij (x)

∥∥N
i,j=1

=
(

J±1 (x) J±2 (x)
)(J±1 (b) J±2 (b)

J̃±1 I + J̃±2

)−1(
>V±

I + >Ṽ±

)
,

where

J±1 (x) =

2N∑
k,l=1

A±k P−1s Ā∓l
e−ρ

∓
l b

ρ±k + ρ∓l

(
eρ

∓
l x − e−ρ

±
k x
)

;

J±2 (x) =

2N∑
k,l=1

A±k P−1s Ā∓l
e−ρ

∓
l b

ρ±k + ρ∓l

(
eρ

∓
l x − e−ρ

±
k x
)
s−1Λp±

(
ρ∓l I + B±

)−1
e−B

±b;

0V
± =

∥∥
0v
±
ij (±b)

∥∥ , 0Ṽ
± =

∫ b

0

B±eB
±z
∥∥
0v
±
ij (∓z)

∥∥ dz,
>V± =

∥∥
>v
±
ij (±b)

∥∥ , >Ṽ± =

∫ b

0

B±eB
±z
∥∥
>v
±
ij (∓z)

∥∥ dz,
J̃±l =

∫ b

0

B±eB
±zJ±l (z) dz, l = 1, 2.

As for one-sided boundary functionals, we can state that the first exit time from an inter-
val and the corresponding overshoot are conditionally independent given that {γ (x, b) >
0}.

Proposition 2.3. Under the assumptions of Proposition 2.1, if the corresponding inverse
matrices exist, then the integral transform of the joint distribution of {τ (x, b) , γ (x, b)}
has the next representation

(18) u±ij (x, dy) = 0u
±
ij (x) δ (dy) +>u

±
ij (x)β±j e

−β±
j ydy, ±x ≥ 0, y ≥ 0,

where passage over upper level x is determined by

0u
+
ij (x) = 0v

+
ij (x)− 0L

+
ij (x) , >u

+
ij (x) = >v

+
ij (x)− >L

+
ij (x) ,

and passage below lower level x− b by

0u
−
ij (x) = 0v

−
ij (x− b)− 0L

−
ij (b− x) , >u

−
ij (x) = >v

−
ij (x− b)− >L

−
ij (b− x) .

Proof. Consider the approximating process Z
(n)
t =

{
X(n) (t) , Jt

}
. According to the

total probability law and the strong Markov property the following integro-differential
equation holds (0 < x < b)

A(n)
∂

∂x
U+

(n) (x, v) = −
(
sI−Q + Λ(n)

)
U+

(n) (x, v) +

∫ ∞
−∞

Λ(n)f(n) (z) U+
(n) (x− z, v) dz,

with boundary conditions

U+
(n) (x, v) =

{
0, x ≥ b;
evxI, x ≤ 0.

Extending the equation for x ≥ b gives

A(n)
∂

∂x
U+

(n) (x, v) = −
(
sI−Q + Λ(n)

)
U+

(n) (x, v)+

∫ ∞
−∞

Λ(n)f(n) (z) U+
(n) (x− z, v) dz

−Λ(n)p
+
(n)e

−B+x

(
B+

(
vI + B+

)−1
+

∫ b

0

B+eB
+zU+

(n) (z, v) dz

)
I{x≥b}, 0 < x <∞.

For the scalar case, this equation and the one we get after the passage to the limit as
n → ∞ were studied in [31]. Applying similar considerations as in the scalar case and
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paying extra attention to non commutativity of matrix product yields

(19) U+ (x, v) = E
[
e−sτ

+(x)−vγ+(x); τ+ (x) <∞
]

−
∫ x−b

−b
f+ (x− y − b) P−1s f− (y) dyC+

1 (v, b)

−
∫ x

0

f+ (y) P−1s

∫ x−y−b

−∞
f− (z) s−1Λp+e−B

+(x−y−z)dzdyC+
2 (v, b) ,

where C+
1 (v, b) and C+

2 (v, b) satisfy the following system of equations{
U+ (b, v) = 0,

B+ (vI + B+)
−1

+
∫ b
0

B+eB
+zU+ (z, v) dz = C+

2 (v, b) .

Under the conditions of the proposition we find(
C+

1 (v, b)
C+

2 (v, b)

)
=

(
J+
1 (b) J+

2 (b)

J̃+
1 I + J̃+

2

)−1((
0V

+

0Ṽ
+

)
+

(
>V+

I + >Ṽ+

)
B+
(
vI + B+

)−1)
and combining with (19) gives (18).

To get the expression for U− (x, v) we can use the fact that U− (x, v) = Ū+ (b− x, v),
where Ū+ (x, u) is the integral transform of the joint distribution of {τ (x, b) , γ (x, b)}
for the process Z̄t = {−Xt, Jt}. �

Corollary 2.1. Under the assumptions of Proposition 2.1, the density of X killed before
exit from (x− b, x) can be expressed as follows (x− b < z < x)

∂

∂z
P {Xθs < z, τ (x, b) > θs} =

∥∥∥∥ ∂∂zPi {Xθs < z, τ (x, b) > θs, Jθs = j}
∥∥∥∥m
i,j=1

=

2N∑
k,l=1

A+
k P−1s Ā−l

1

ρ+k + ρ−l

(
e−ρ

+
k z
(
e(ρ

+
k +ρ−l )(z∧0) − e(ρ

+
k +ρ−l )(x−b)

)

− e−ρ
−
l b
(
eρ

−
l (b−x+z) − e−ρ

+
k (b−x+z)

)(
0U

+ (x) + >U+ (x) B+
(
ρ−l I−B+

)−1))
,

where 0U
+ (x) =

∥∥
0u

+
ij (x)

∥∥, >U+ (x) =
∥∥
>u

+
ij (x)

∥∥.

Proof. Inverting the fluctuation identity [30, (12)] with respect to α gives

(20) P {Xθs ∈ dz, τ (x, b) > θs} =

∫ z

x−b
P
{
X+
θs
∈ dz − y

}
P−1s

×
(

P
{(
Xθs −X+

θs

)
∈ dy

}
I{y≤0}

−
∫ ∞
0

P
{(
Xθs −X+

θs

)
∈ dy − x− v

}
E
[
e−sτ(x,b); γ (x, b) ∈ dv,Xτ(x,b) ≥ x

])
and Proposition 2.3 leads to

∂

∂z
P {Xθs < z, τ (x, b) > θs} =

∫ z∧0

x−b
f+ (z − y) P−1s f− (y) dy

−
∫ z

x−b
f+ (z − y) P−1s f− (y − x) U+

0 (x) dy

−
∫ z

x−b
f+ (z − y) P−1s

∫ ∞
0

f− (y − x− v) U+
> (x) B+e−B

+vdvdy,
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which gives the assertion of the corollary when combined with (8) and (9). �

Remark 2.3. For scalar MAPs Kadankov and Kadankova obtained representations of
the integral transforms of the joint distribution for {τ (x, b) , γ (x, b)} in terms of series of
integral transforms for one-boundary functionals (see [29, Theorem 1]); for a series form
of linear operators we refer to [38, Theorem 4]. We can extend these representations for
general MAPs and then convert them to the specific setting of Markov modulated Kou’s
processes. Moreover, for a Markov modulated Brownian motion Gusak in [16] (see also
[17]) showed that U± (x, 0) can be represented as a “fraction” of two matrix exponen-
tial expressions. We can use this fact to justify that the nonsingularity assumption for(

J±1 (b) J±2 (b)

J̃±1 I + J̃±2

)
is a mild restriction. For MAPs with phase-type jumps the two-sided

exit problem was solved in [27, Proposition 1]; see also [9, Section 3.3]. Ivanovs [21] and
Ivanovs et al. [23] considered two-sided exit problems for a Markov-modulated Brownian
motion with a two-sided reflection.

To solve one-sided and two-sided exit problems for spectrally negative MAPs, Ko-
rolyuk and Shurenkov [34] proposed the so called potential method. They showed that
U+ (x, 0) can be represented as a “fraction” of the values of the resolvent function (the
scale matrix) at x and b. For the probabilistic construction of the scale matrix see [24].
The reader is referred to [25] for the densities of potential measures for spectrally negative
MAPs with reflecting or terminating upper and lower barriers.

For the scalar case the fluctuation identity (20) is a modification of the Kemperman-
Pecherskii identity given in [42] (see also [4, Section 3.7]). A series form for the joint
distribution of the supremum, infimum and the values of the process

P
{
Xt ∈ (α, β) , X−t ≥ x− b,X+

t ≤ x
}

= P {Xt ∈ (α, β) , τ (x, b) ≥ t} ,

x − b ≤ α < β ≤ x, in terms of “convolutions” of P {τ± (·) ∈ dt, γ± (·) ∈ dy} may be
found in [14, (IV.2.57)] and [4, Lemma 6.1]. It provides an alternative way of reasoning.

2.5. Example. To demonstrate, we consider the two state space, i.e., N = 2. Let s = 5,

A =

(
1 0
0 −2

)
,Σ =

(
3 0
0 8

)
,Λ =

(
5/2 0
0 4

)
,

p+ =

(
1/5 0
0 1/4

)
,B+ =

(
2 0
0 3/2

)
,B− =

(
3 0
0 5/2

)
,

and Q =

(
−0.1 0.1
0.05 −0.05

)
.

Process Jt is time-reversible with stationary distribution π = (1/3, 2/3) and EX1 =
−1.494̄. The roots of det P[r] = 0 (to 3 s.f.) are (see Figure 1)

ρ+4 = 2.11, ρ+3 = 1.64, ρ+2 = 1.13, ρ+1 = 0.878,

−ρ−1 = −0.623,−ρ−2 = −1.30,−ρ−3 = −2.64,−ρ−4 = −3.28.

The solvents of P [X] are diagonazible and can be found by the method from [47] (let v
be an eigenvector for X with corresponding eigenvalue λ which is a root of the equation
det P[r] = 0. Then v can be taken from the nonzero elements of Null (P [λ])):

X1 =

(
2.11 −0.00292

−0.000199 1.64

)
,X2 =

(
1.13 −0.0107

−0.00309 0.878

)
,

X3 =

(
−1.30 0.00481

0.00830 −0.623

)
,X4 =

(
−3.28 0.000306

0.000459 −2.64

)
.
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Figure 1. Roots of det P[r] = 0

Figure 2. Defective densities of X+
θs

and Xθs −X+
θs

The coefficient matrices for the density of killed running maximum in (8) are as follows

A+
4 =

(
0.133 −0.000387

−0.000308 9.00× 10−7

)
,A+

3 =

(
1.27× 10−6 −0.00280
−0.0000778 0.172

)
,

A+
2 =

(
1.04 −0.0268
−0.0101 0.000261

)
,A+

1 =

(
0.000839 0.0395
0.0165 0.777

)
.

Similarly, matrices in (9) are

Ā−4 =

(
0.000195 0.0162
0.00729 0.606

)
, Ā−3 =

(
1.20 −0.00864

−0.00270 0.0000195

)
,

Ā−2 =

(
−4.59× 10−7 0.000255
−0.0000832 0.0461

)
, Ā−1 =

(
0.196 −0.000264

0.000347 −4.68× 10−7

)
.

Figure 2 illustrates graphs of defective densities (f+ (x))ij = ∂
∂xPi

{
X+
θs
< x, Jθs = j

}
and (f− (x))ij = ∂

∂xPi
{
Xθs −X+

θs
< x, Jθs = j

}
, i, j ∈ {1, 2}.

Using the results from [5] we can also deduce the following representation

f+ (x) = −
(

0 I
) (

ReRx
)( I

I

)
Ps,

where matrix R satisfies the fixed point equations given in [5, Theorem 3]. After 5000
iterations we get

R =


−2 0 2 0
0 −1.5 0 1.5

0.048 0.000 −1.245 0.014
0.000 0.057 0.003 −1.016


and the representation for f+ is consistent with the results above.
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Figure 3. Passage by creeping ((a) , (b)) and by jump ((c) , (d)). Take
attention to different scales for y axis.

For passage by creeping (to 3 s.f.) we have

0v
+
11 (x) = 0.113e−2.11x + 0.0000162e−1.64x + 0.886e−1.13x + 0.000502e−0.878x,

0v
+
12 (x) = −0.00154e−2.11x − 0.00295e−1.64x − 0.0371e−1.13x + 0.0416e−0.878x,

0v
+
21 (x) = −0.000263e−2.11x − 0.000995e−1.64x − 0.00862e−1.13x + 0.00988e−0.878x,

0v
+
22 (x) = 3.57× 10−6e−2.11x + 0.181e−1.64x + 0.000361e−1.13x + 0.819e−0.878x,

and for passage by jump

>v
+
11 (x) = −0.0490e−2.11x + 1.66× 10−6e−1.64x + 0.0490e−1.13x + 0.0000236e−0.878x,

>v
+
12 (x) = 0.0000936e−2.11x + 0.00122e−1.64x − 0.00512e−1.13x + 0.00380e−0.878x,

>v
+
21 (x) = 0.0001142e−2.11x − 0.000102e−1.64x − 0.000476e−1.13x + 0.000464e−0.878x,

>v
+
22 (x) = −2.17× 10−7e−2.11x − 0.0749e−1.64x + 0.0000498e−1.13x + 0.0749e−0.878x.

Figure 3 shows behavior of 0v
+
km (x) and >v

+
km (x).

Particularly, for passage by creeping we get

E
[
e−sτ

+(x); τ+ (x) <∞; γ+ (x) = 0
]

= 0.0371e−2.11x + 0.119e−1.64x + 0.278e−1.13x + 0.566e−0.878x,

which is consistent with the result we can get from [6, Corollary 2].
With b = 3, for passages by creeping and by jump through upper and lower bounds

we obtain correspondingly

0u
+
11 (x) = 0.113e−2.11x + 0.0000161e−1.64x + 0.887e−1.13x + 0.000505e−0.878x

− 1.87× 10−6e0.623x − 0.00055e1.30x + 1.15× 10−11e2.64x − 1.34× 10−7e3.28x,

>u
+
11 (x) = −0.0490e−2.11x + 1.66× 10−6e−1.64x + 0.0490e−1.13x + 0.0000237e−0.878x

− 8.15× 10−8e0.623x − 0.0000286e1.30x + 4.17× 10−13e2.64x − 7.01× 10−9e3.28x,
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Figure 4. Passage by creeping ((a) , (b)) and by jump ((c) , (d)) over
upper level x. Take attention to different scales for y axis.

0u
−
11 (x) = −0.00148e−2.11x + 6.15× 10−7e−1.64x − 0.0159e−1.13x − 0.0000285e−0.878x

+ 0.0000124e0.623x + 0.0174e1.30x + 1.30× 10−10e2.64x + 7.53× 10−6e3.28x,

>u
−
11 (x) = −0.000137e−2.11x+4.22×10−8e−1.64x−0.00147e−1.13x−2.33×10−6e−0.878x

+ 9.72× 10−7e0.623x + 0.00162e1.30x + 3.17× 10−11e2.64x − 4.27× 10−6e3.28x.

Figures 4 and 5 illustrate graphs of 0u
±
km (x) and >u

±
km (x).

Using Corollary 2.1 we get the density

∂

∂z
P {Xθs < z, τ (x, b) > θs} =

∂

∂z
πP {Xθs < z, τ (x, b) > θs} e

with b = 3 (see Figure 6). E.g., for x = 1
2 we have

∂

∂z
P {Xθs < z, τ (0.5, 3) > θs}

=



0.0173e−2.11z + 0.0316e−1.64z + 0.182e−1.13z

+0.226e−0.878z − 0.111e0.623z − 0.0539e1.30z −2.5 < z ≤ 0,

−0.00131e2.64z − 0.00185e3.28z,

−2.24× 10−6e−2.11z − 0.0000602e−1.64z − 0.000259e−1.13z

−0.00285e−0.878z + 0.137e0.623z + 0.133e1.30z 0 < z < 0.5.

+0.00677e2.64z + 0.0155e3.28z,

3. First passage through state-dependent levels

The main objects of research in this section are the integral transforms

w±ij (b) = w±ij (b, s, v) = Ei
[
e−sT

±
b +vγ±

b ; T±b <∞, JT±
b

= j
]
.

For definition of T±b and γ±b see (1) and (2). Since w−ij (b) = w̄+
ij (−b), where w̄+

ij is

the corresponding integral transform for Z̄t = {−Xt, Jt}, we concentrate attention on
w+
ij . To determine an integral equation for w+

ij (b) we use probabilistic reasoning (for

definiteness, we assume that the levels are ordered as b1 < . . . < bN ).
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Figure 5. Passage by creeping ((a) , (b)) and by jump ((c) , (d)) below
lower level x− b. Take attention to different scales for y axis.

10.5- 2.5
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3
- 3

0

3

0.15

0.3

Figure 6. The density of X killed before exit from (x− b, x) with b = 3.
Behavior of the density for different values of x ∈ (0, b) is illustrated in
(a) and for the fixed value x = 1

2 in (b).

To shorten notation, we write τ1 = τ+ (b1) and γ1 = γ+ (b1) for the first passage time

over the level b1 and the corresponding overshoot, τ̃k = τ (bk+1, bk+1 − bk) and ξ̃k = Xτ̃k

for the first exit time from the interval (bk, bk+1) and the value of the process at that
time. Denote by ζ the epoch of the first regime switch and by η the value of X at this
switch.

Theorem 3.1. If 0 < b1, then

w+
ij (b) =

∫ ∞
bj

v+ij (b1, dy − b1) ev(y−bj) +

N∑
l=2

∫ bl

b1

v+il (b1, dy − b1)w+
lj (b− y) ,

where v+ij (b1, dy) = Ei [e−sτ1 ; τ1 <∞, γ1 ∈ dy, Jτ1 = j], i, j = 1, . . . , N , and b − y =

(b1 − y, . . . , bN − y).
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If bk ≤ 0 < bk+1, 1 ≤ k < N , or k = N and bN ≤ 0, then

w+
ij (b) = e−vbjI{i≤k,i=j} +

∫ ∞
bi

Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
e−v(bj−y)I{i=j,i>k}

+

∫ bk+1

bk

Ei
[
e−sζ ; ζ < τ̃k, Jζ = j, η ∈ dy

]
e−v(bj−y)I{j≤k,i>k}

+

∫ bi

bk+1

Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
w+
ij (b− y) I{i>k+1}

+

∫ bk+1

bk

N∑
l=k+1

Ei
[
e−sζ ; ζ < τ̃k, Jζ = l, η ∈ dy

]
w+
lj (b− y) I{i>k}

+

∫ bk

−∞
Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
w+
ij (b− y) I{i>k}.

Remark 3.1. By definition, Xt evolves as Xi (t) for t < ζ, given J0 = i. Hence,

Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
=

{
E
[
e−(s−qii)τi(bk+1,bk+1−bk); γi (bk+1, bk+1 − bk) ∈ dy − bk+1

]
, y ≥ bk+1,

E
[
e−(s−qii)τi(bk+1,bk+1−bk); γi (bk+1, bk+1 − bk) ∈ bk − dy

]
, y ≤ bk,

and

Ei
[
e−sζ ; ζ < τ̃k, Jζ = l, η ∈ dy

]
=

qil
s− qii

∂

∂y
P {Xi (θs−qii) < y, τi (bk+1, bk+1 − bk) > θs−qii} dy,

where τi (bk+1, bk+1 − bk) and γi (bk+1, bk+1 − bk) are the exit time from the interval
(bk, bk+1) for Xi (t) and the corresponding overshoot. Applying Propositions 2.2 and

2.3 gives that Ei [e−sτ1 ; τ1 <∞, Jτ1 = l, γ1 ∈ dy] and Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
are degenerate integral kernels, whereas Corollary 2.1 shows that this is not the case
for Ei

[
e−sζ ; ζ < τ̃k, Jζ = l, η ∈ dy

]
. Nevertheless, if N = 2, then we can reduce the

equations for w+
ij in Theorem 3.1 to a system of linear algebraic equations.

Proof. Let us consider the first case 0 < b1. The first passage through state-dependent
levels can happen at the first passage over b1 or after that moment whether or not the
overshoot exceeds bJτ+(b1)

− b1 (for the case N = 2, see Figure 7). So, by conditioning

on τ1 and on γ1 we obtain

Ei
[
e−sT

+
b +vγ+

b ; T+
b <∞, JT+

b
= j
]

=

∫ ∞
bj−b1

Ei
[
e−sτ1 ; τ1 <∞, Jτ1 = j, γ1 ∈ dy

]
ev(y−(bj−b1))

+

N∑
l=2

∫ bl−b1

0

Ei
[
e−sτ1 ; τ1 <∞, Jτ1 = l, γ1 ∈ dy

]
× El

[
e
−sT+

b−(y+b1)
+vγ+

b−(y+b1) ; T+
b−(y+b1) <∞, JT+

b−(y+b1)
= j
]
.

For the second case bk ≤ 0 < bk+1, 1 ≤ k < N , or k = N and bN ≤ 0, we use the
following reasoning. By definition, for i ≤ k

(21) Ei
[
e−sT

+
b +vγ+

b ; T+
b <∞, JT+

b
= j
]

= e−vbjI{i=j}.
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Figure 7. Case 0 < b1. The passage through levels with J0 = 1 is
illustrated in (a) − (d) and with J0 = 2 is illustrated in (e) − (h). The
solid lines correspond to the state 1 of J and the dotted lines to the
state 2.

Figure 8. If b1 ≤ 0 < b2, then only the case J0 = 2 is nontrivial. The
passage through levels with JT+

b
= 1 is illustrated in (a) and (b), while

with JT+
b

= 2 in (c) and (d). The solid lines correspond to the state 1

of J and the dotted lines to the state 2.

If i > k, then we condition on whether or not X leaves the interval (bk, bk+1) before the
first regime switch (see Figure 8 for the case N = 2):

Ei
[
e−sT

+
b +vγ+

b ; T+
b <∞, JT+

b
= j
]

=

N∑
l=1

∫ bk+1

bk

Ei
[
e−sζ ; ζ < τ̃k, Jζ = l, η ∈ dy

]
El
[
e−sT

+
b−y+vγ

+
b−y ;T+

b−y <∞, JT+
b−y

= j
]

+

∫
(−∞,bk)∪(bk+1,∞)

Ei
[
e−sτ̃k ; Jτ̃k = i, ζ ≥ τ̃k, ξ̃k ∈ dy

]
× Ei

[
e−sT

+
b−y+vγ

+
b−y ; T+

b−y <∞, JT+
b−y

= j
]
.

Taking into account (21) completes the proof. �
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3.1. Two state case. Let the environment has two states (N = 2). Set∫ b2

b1

E2

[
e−sζ ; ζ < τ̃1, Jζ = 1, η ∈ dy

]
e−v(b1−y) = h (b1, b2) ,

lim
y↓b1

∂

∂y
h (b1 − y, b2 − y) = h0,∫ b2

b1

β+
2 e
−β+

2 (y−b1)h (b1 − y, b2 − y) dy = h+.

From Proposition 2.3 we have the next representation

E2

[
e−sτ̃1 ; Jτ̃1 = 2, ζ ≥ τ̃1, ξ̃1 ∈ dy

]
=

{
E
[
e−(s−q22)τ2(b2,b2−b1); γ2 (b2, b2 − b1) ∈ dy − b2

]
, y ≥ b2,

E
[
e−(s−q22)τ2(b2,b2−b1); γ2 (b2, b2 − b1) ∈ b1 − dy

]
, y ≤ b1.

=

{
0u

+
2 (b2) δ (dy − b2) +>u

+
2 (b2)β+

2 e
−β+

2 (y−b2)dy, y ≥ b2,
0u
−
2 (b2) δ (b1 − dy) +>u

−
2 (b2)β−2 e

−β−
2 (b1−y)dy, y ≤ b1,

where >
0

u±2 (b2) determine correspondingly passage by creeping and by jump through

bounds of the interval (b1, b2) for X2 killed at the rate s− q22. Write

lim
y↓b1

∂

∂y

(
>
0

u±2 (b2 − y)
)

= f±>
0

,∫ b2

b1

β+
2 e
−β+

2 (y−b1)
>
0

u±2 (b2 − y) dy =+f
±
>
0

,

and

lim
y↑b1

∂

∂y

(
>
0

v+2j (b1 − y)
)

= g
>
0

j ,∫ b1

−∞
β−2 e

−β−
2 (b1−y)

>
0

v+2j (b1 − y) dy =−g
>
0

j , j = 1, 2.

Then from Theorem 3.1 we can deduce.

Corollary 3.1. For v < min
{
β+
1 , β

+
2

}
,

w+
11 (b) =

{
0v

+
11 (b1) +>v

+
11 (b1)

β+
1

β+
1 −v

+0v
+
12 (b1)G0

21 +>v
+
12 (b1)G+

21, 0 < b1,

e−vb1 , b1 ≤ 0.

w+
21 (b) =


0v

+
21 (b1) +>v

+
21 (b1)

β+
1

β+
1 −v

+ 0v
+
22 (b1)G0

21 +>v
+
22 (b1)G+

21, 0 < b1,

h (b1, b2) +0u
−
2 (b2)G0

21 +>u
−
2 (b2)G−21, b1 ≤ 0 < b2,

0, b2 ≤ 0.

w+
12 (b) =

{
>v

+
12 (b1)

β+
2

β+
2 −v

e−β
+
2 (b2−b1) +0v

+
12 (b1)G0

22 +>v
+
12 (b1)G+

22, 0 < b1,

0 b1 ≤ 0.

w+
22 (b) =


>v

+
22 (b1)

β+
2

β+
2 −v

e−β
+
2 (b2−b1) + 0v

+
22 (b1)G0

22 +>v
+
22 (b1)G+

22, 0 < b1,

0u
+
2 (b2) +>u

+
2 (b2)

β+
2

β+
2 −v

+0u
−
2 (b2)G0

22 +>u
−
2 (b2)G−22, b1 ≤ 0 < b2,

e−vb2 b2 ≤ 0.
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where G2j satisfy the systems of equations
g01 + g>1

β+
1

β+
1 −v
− h0 =

(
f−0 − g02

)
G0

21 − g>2 G
+
21 + f−>G

−
21,

h+ = −+f
−
0 G

0
21 − +f

−
>G
−
21 +G+

21,

−g
0
1 + −g

>
1

β+
1

β+
1 −v

= −−g02G0
21 − −g>2 G

+
21 +G−21,

and
g>2

β+
2

β+
2 −v

e−β
+
2 (b2−b1) −

(
f+0 + f+>

β+
2

β+
2 −v

)
=
(
f−0 − g02

)
G0

22 − g>2 G
+
22 + f−>G

−
22,

+f
+
0 + +f

+
>

β+
2

β+
2 −v

= −+f
−
0 G

0
22 − +f

−
>G
−
22 +G+

22,

−g
>
2

β+
2

β+
2 −v

e−β
+
2 (b2−b1) = −−g02G0

22 −−g>2 G
+
22 +G−22.

Remark 3.2. Corollary 3.1 provide us an algorithm for calculation of the integral trans-
form for the joint distribution of

{
T+
b , γ

+
b

}
. We need to solve the first passage problem

for Zt (for instance, using the results of Subsection 2.3) and two-sided exit problems for
X2 (t) (since X2 is an ordinary Kou process, we can use the results of [31]). Then we
solve the corresponding system of linear equations and get the representations for w+

ij (b),
b1 < b2. If b1 = b2, then

w+
ij (b) =

{
0v

+
ij (b1) +>v

+
ij (b1)

β+
1

β+
1 −v

, 0 < b1,

e−vb1I{i=j}, b1 ≤ 0.

For the case b1 > b2 we can consider a process Z∗t with relabeled states: {J∗t = 1} =
{Jt = 2} and {J∗t = 2} = {Jt = 1}.

3.2. Example. As an illustrative example, we suppose that s = 0.02. The transition

rate matrix for Jt is Q =

(
−1 1
1
2 − 1

2

)
. Given the state of Jt, drifts are a1 = −1.353̄,

a2 = 2.4925 and volatilities are σ1 =
√

2, σ2 =
√

5. The jumps follow compound Poisson
processes with jump rates λ1 = 6, λ2 = 0.225. Upward jump sizes are exponential with
rates β+

1 = 0.5, β+
2 = 5 and downward jump sizes are exponential with rates β−1 = 2,

β−2 = 4. Probabilities of having upward jumps are p+1 = 5
6 , p+2 = 5

9 . Using v = 0 and v =

−1, from Corollary 3.1 we can obtain representations for Ei
[
e−sT

+
b ;T+

b <∞, JT+
b

= j
]

and Ei
[
e−sT

+
b −γ

+
b ;T+

b <∞, JT+
b

= j
]
, i, j = 1, 2, (see Figure 9 and Figure 10), which

can be used for an option valuation problem.
Consider a market model (B,S) with the price processes Bt = e−st, St = ex−Xt , t ≥ 0

(see Figure 11). Since ES1 <∞, the market is arbitrage-free. The market is incomplete,
but since we choose drifts as:

ai = −s+
σ2
i

2
+ λi

(
p−i

β−i − 1
− p+i
β+
i + 1

)
,

we have

Ee−stSt = S0

and the model is risk-neutral (see, for instance, [27, Section A.1]). Following [27, The-
orem 1], the arbitrage-free price for a perpetual American put option with strike K is
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Figure 9. The integral transform for the distribution of T+
b , given J0 =

1 ((a) , (c)) and given J0 = 2 ((b) , (d)).

given by

Vi (x, b) = K

2∑
j=1

Ei
[
e−sT

+
x−b ; T+

x−b <∞, JT+
x−b

= j
]

−
2∑
j=1

ebjEi
[
e−sT

+
x−b−γ

+
x−b ; T+

x−b <∞, JT+
x−b

= j
]

= K
2∑
j=1

w+
ij (x− b, s, 0)−

2∑
j=1

ebjw+
ij (x− b, s,−1) ,

where b = (b1, b2) satisfies

lim
x↓b1

∂

∂x
V1 (x, b) = −eb1 , lim

x↓b2

∂

∂x
V2 (x, b) = −eb2 .

If K = 70, then b1 ≈ −0.781, b2 ≈ −0.669. Fixing x0 = 3 yields V1 (x0, b) ≈ 68.504
and V2 (x0, b) ≈ 67.855 (see Figure 12). Note that, Jiang and Pistorius [27] provided the
example for the case when jumps in one state are (one-sided) exponential and no jumps
occur in the other state.
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