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In this paper an analogue of the Clark-Ocone representation for solution to measure-

valued equation with interaction is studied. It is proved that the integrand is abso-

lutely continuous with respect to Lebesgue measure.

1. Introduction

In this article we consider the measure-valued process, which is the solution to the
following one-dimensional equation with interaction

dx(u, t) =

∫
R
a(x(u, t), x(v, t))µ0(dv)dt+ b(x(u, t))dW (t)

x(u, 0) = u, u ∈ R.(1)

Here µ0 is a probability measure on R, which can be treated as an initial mass distribution
of the infinite system of particles whose trajectories are x(u, t), t ≥ 0, u ∈ R. In such
interpretation the measure

µt = µ0 ◦ x−1(·, t), t ≥ 0

is the distribution of the mass of particles at the moment t ≥ 0. Hence, the equation (1)
is the partial case of more general equation with interaction

dx(u, t) = a (x(u, t), µt) dt+ b (x(u, t), µt) dW (t)

x(u, 0) = u, u ∈ R,
µt = µ0 ◦ x−1(u, t), t ≥ 0.(2)

This type of equation was introduced and studied by A. Dorogovtsev in [2].
Here we consider the measure-valued process µt as a functional of the noise W (·). It is

natural question for one to ask, what would be the Clark representation for the random
measure µt. Let us recall on Clark representation for random variables.

Theorem 1.1. (Clark [1]) Let α be square-integrable random variable measurable with
respect to a Wiener process {W (t); t ∈ [0; 1]}. Then there exists non-anticipating square-
integrable random function {ξ(t); t ∈ [0; 1]} such that

(3) α = Eα+

∫ 1

0

ξ(t)dW (t).

The random function ξ is unique up to the stochastic equivalence.
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10 JASMINA D̄ORD̄EVIĆ AND ANDREY DOROGOVTSEV

The representation from previous theorem can be transformed into representation of
martingales adapted to the Wiener filtration and it has a wide application in construction
of backward stochastic differential equations (see [3], [7]). Thus it would be interesting
to find Clark representation for measure-valued process µt. The idea will be developed
in following way. For any test function ϕ ∈ C∞0 (R) , consider integral

〈ϕ, µt〉 :=

∫
R
ϕ(v)µt(dv) =

∫
R
ϕ(x(u, t))µ0(du).

This random variable has Clark representation

(4) 〈ϕ, µt〉 = E 〈ϕ, µt〉+

∫ t

0

Θϕ(s)dW (s).

It is obvious that Θϕ is linear with respect to ϕ. The aim is to explore if Θϕ can be
expressed as

Θϕ(s) = 〈ϕ,κs〉 ,
where κs is a random signed measure. So we are looking for the Clark representation
formula of the following kind

(5) µt = Eµt +

∫ t

0

κsdW (s),

which is valid in the sense of action on the test function.
In order to deduce representation (5), we will use Clark-Ocone’s formula (see [5]).

This formula provides the expression for integrand in Clark representation in terms of
stochastic derivative for the random variable α.

Namely, if α has stochastic derivative Dα, then

α = Eα+

∫ t

0

E (Dα(s) | Fs) dW (s),

where FW
s = σ{W (l), l ≤ s}.

This is a part of general question. Let B be a real separable Banach space, and let
ξ ∈ B be a random element with a finite second moment of the norm. Suppose that
ξ is measurable with respect to a Wiener process W (t), t ∈ [0, 1]. Then for arbitrary
ϕ ∈ B∗ (B∗ is dual space of B) random variable 〈ϕ, ξ〉 (scalar product) has Clark repre-
sentation

〈ϕ, ξ〉 = 〈ϕ, ξ̄〉+

∫ 1

0

Rϕ(t)dW (t),

where ξ̄ is the (Bochner) mean value of ξ and Rϕ(·) is the square-integrable integrand
which linearly depends on ξ. The main question can be formulated in the following way:
CanRϕ be represented as

Rϕ = 〈ϕ, η(t)〉,
where η(t), t ∈ [0, 1] is B -valued random process, which is adapted to the Wiener filtra-
tion? Answer to this question depends on the geometry of the space B.

Definition 1.1. (See [6].) Let B be a Banach space. It has unconditionality of martingale
differences (shorter UMD) property if for every martingale difference d1, d2, . . . , dn with
the finite p -th moment of the norm (for p > 1 ) and arbitrary choice of signs εk = ±1,
next inequality holds

max
1≤m≤n

E

∥∥∥∥∥
m∑

k=1

εkdk

∥∥∥∥∥
p

≤ Cp max
1≤m≤n

E

∥∥∥∥∥
m∑

k=1

dk

∥∥∥∥∥
p

where constant Cp depends only on p.
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It was proven [6] that if the property from Definition 1.1 holds for some p > 1, then
it holds for all p > 1. Per example, spaces Lp, for p > 1 with respect to σ-finite measure
have the UMD property, while L1 does not have this property. It occurs that UMD
property has a crucial role for Clark representation. The answer to introduced problem
is positive for Banach spaces which have UMD property. As it can be easily seen the
space of finite signed measures on R with distance in variation contains L1 as a subspace.
But in certain cases Clark representation for random measures still has good properties.
Let us consider following example.

Example 1.1. Let W (t), t ∈ [0, 1] be a Wiener process. Consider a random measure
δW (1). Then for function f ∈ C∞0 (R) one can get

〈
f, δW (1)

〉
= f(W (1)) =

∫
R
f(u)p1(u)du+

∫ 1

0

E
(
Df(W (1))(t) | FW

t

)
dW (t)

=

∫
R
f(u)p1(u)du+

∫ 1

0

E
(
f ′(W (1)) | FW

t

)
dW (t)

=

∫
R
f(u)p1(u)du+

∫ 1

0

∫
R
f ′(W (t) + v)p1−t(v)dvdW (t)

=

∫
R
f(u)p1(u)du+

∫ 1

0

∫
R
f(W (t) + v)

(
−p′1−t(v)

)
dvdW (t).

Hence, in the sense of pairing with the test functions, the following formula holds

δW (1) = p1 −
∫ 1

0

p′1−t(· −W (t))dW (t).

Remark 1.1. Stochastic derivative for solution of equation with interaction was discussed
in [4], where also the probability density was established. For our purpose we need the
estimation of the density which will lead to completely different approach than the one
which is used in [4].

2. Stochastic derivative of the solution

As it was already mentioned in the Introduction, stochastic derivative of α will be
denoted with Dα. Further, let us suppose that the coefficients a(·, ·), b(·), of equation (1)
have continuous bounded derivatives up to second order with respect to all variables.
Then following statement holds.

Theorem 2.1. The solution x(u, t) of the equation (1) has the stochastic derivative
ηs(u, t) := Dx(u, t)(s), which satisfies equation

dηs(u, t) =

∫
R
a′(x(u, t), x(v, t))µ0(dv)ηs(u, t)dt

+

∫
R
a′(x(u, t), x(v, t))ηs(v, t)µ0(dv)dt

+ b′(x(u, t))ηs(u, t)dW (s)

ηs(u, s) = b(x(u, s)).(6)

Moreover, for every T > 0 and p > 0

sup
s≤t≤T,u∈R

E |ηs(u, t)|p < +∞.
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Proof. We will recall on the iteration sequence for the solution of eq.(1). Let

x0(u, t) = u, u ∈ R, t ≥ 0
µ0
t = µ0 ◦ x0(·, t)−1 = µ0.

For n > 0 put

dxn+1(u, t) =

∫
R
a (xn(u, t), xn(v, t))µ0(dv)dt+ b (xn(u, t)) dW (t)

xn+1(u, 0) = u, u ∈ R.
It has been proved in [2], that this sequence converges to a solution x(·, ·) of eq. (1), in
a sense that for every K,T, p > 0

E sup
|u|≤K,0≤t≤T

E |xn(u, t)− x(u, t)|p −→ 0, n −→ +∞.

Using this, existence of stochastic derivative of process x(·, ·) can be proved.
Denote

ηns (u, t) = Dxn(u, t)(s).

It can be checked by induction that ηns (u, t) exists and satisfies the relation

dηn+1
s (u, t) =

∫
R
a′1 (xn(u, t), xn(v, t)) ηns (u, t)µ0(dv)dt

+

∫
R
a′2 (xn(u, t), xn(v, t)) ηns (v, t)µ0(dv)dt

+ b′ (xn(u, t)) ηs(u, t)dW (s),

ηn+1
s (u, s) = b (xn(u, s)) .

We have used the known result that for the continuous, stochastically differentiable
adapted process β(r), r ≥ 0, the stochastic derivative of Itô integral

D

∫ t

0

β(r)dW (r)(s) = β(s) +

∫ t

s

Dβ(r)(s)dW (r).

The proof of the theorem follows from the fact that the stochastic derivative is a closed op-
erator. The estimation of the moments of stochastic derivative follows from the Gronwall-
Bellman lemma.

�

Remark 2.1. Repeating the same steps, it can be shown that a second stochastic deriv-
ative of process x(·, ·) exists and that it has bounded moments.

Remark 2.2. It should be noted that in [5] author provided the estimates for stochastic
derivative under weaker conditions.

Note that in case b(x) ≡ 1, x ∈ R the stochastic derivative satisfies the equation
without the stochastic differential and can be bounded from zero and infinity.

So one can try to apply Clark-Ocone formula to µ1.

〈ϕ, µ1〉 = 〈ϕ,Eµ1〉+

∫ 1

0

E
(
D 〈ϕ, µ1〉 (t) | FW

t

)
dW (t)

= 〈ϕ,Eµ1〉+

∫ 1

0

E
(
D 〈ϕ(x(·, 1)), µ0〉 (t) | FW

t

)
dW (t)

= 〈ϕ,Eµ1〉+

∫ 1

0

∫
R
E
(
ϕ′(x(u, 1))ηt(u, 1) | FW

t

)
dµ0(u)dW (t).

Let us consider expression under the integrals, with the evident notations
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E
(
ϕ′(x(u, 1))ηt(u, 1) | FW

t

)
= E

(
ϕ′(x(u, 1))

(
1 +

∫ 1

t

α(u, s)ηt(u, s)ds

+

∫ 1

t

∫
R
β(u, v, s)ηt(v, s)µ0(dv)ds

)
| FW

t

)
.

Now,

E
(
ϕ′(x(u, 1)) | FW

t

)
= E

(
ϕ′ (xt,1 (µt, x(u, t))) | FW

t

)
,

where xt,1(ν, v) is the solution to our equation with interaction starting at time t from
the point v and measure ν. Hence,

E
(
ϕ′(x(u, 1)) | FW

t

)
=

∫
R
ϕ′(v)σt,1 (µt, x(u, t)) (dv),

where σt,1(ν, v)(·) is the distribution of xt,1(ν, v). Due to the existence of the second
stochastic derivative and the properties of the first and second derivatives for process
x, measure σt,1(ν, v) has a differentiable density pt,1(ν, v, ·) with respect to Lebesgue
measure. Consequently,

E
(
ϕ′(x(u, 1)) | FW

t

)
=

∫
R
ϕ′(v)pt,1 (µt, x(u, t), v) dv

= −
∫
R
ϕ(v)

∂pt,1 (µt, x(u, t), v)

∂v
dv.

Now consider the summand:

E(ϕ′(x(u, 1))

∫ 1

t

α(u, s)η(u, s)ds
∣∣FW

t ) =

∫ 1

t

E(ϕ′(x(u, 1))η(u, s)α(u, s)
∣∣FW

t )ds.

Similarly to the previous case,

E(ϕ′(x(u, 1))α(u, s)η(u, s)
∣∣FW

s )

= η(u, s)α(u, s)

∫
R
ϕ′(v)σs,1(µs, x(u, s), dv)

= −α(u, s)η(u, s)

∫
R
ϕ(v)

∂

∂v
ps,1(µs, x(u, s), v)dv.

Using Fubini theorem one can check that

E(ϕ(x(u, 1))

∫ 1

t

α(u, s)η(u, s)ds
∣∣FW

t )

= −
∫
R
ϕ(v)

∫ 1

t

E(α(u, s)η(u, s)
∂

∂v
ps,1(µs, x(u, s), v)

∣∣FW
t )dsdv.

Similarly to this case last summand can be considered. Consequently the following
theorem was proved.

Theorem 2.2. Suppose that the coefficient a of equation with interaction

dx(u, t) =

∫
R
a (x(u, t), x(v, t))µ0(dv)dt+ dW (t),

x(u, 0) = u, u ∈ R,
µt = µ0 ◦ x−1(u, t), t ≥ 0,(7)
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is bounded, together with two continuous partial derivatives. Then, the measure-valued
solution µt has Clark-Ocone’s representation which can be written as follows. For the
test function ϕ ∈ C∞0 (R)

〈ϕ, µ1〉 = E〈ϕ, µ1〉+

∫ 1

0

∫
R
ϕ(v)gt(v)dW (t),

for some random function g.

Hence the integrant in Clark representation for measure-valued solution to equation
with interaction takes values in the set of absolutely continuous measures.
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