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P. DOSTÁL AND T. MACH

PROGRESSIVE PROJECTION AND LOG-OPTIMAL INVESTMENT

IN THE FRICTIONLESS MARKET

In this paper, we introduce notion of progressive projection, closely related to the

extended predictable projection. This notion is flexible enough to help us treat the

problem of log-optimal investment without transaction costs almost exhaustively in
case when the rate of return is not observed. We prove some results saying that

the semimartingale property of a continuous process is preserved when changing the

filtration to the one generated by the process under very general conditions. We also
had to introduce a very useful and flexible notion of so called enriched filtration.

1. Introduction

The purpose of the paper is (1) to motivate the problem of robust filtering by the
notion of log-optimal investment and (2) to prove some technical tools that will help us
obtain further results in the forthcoming papers. This includes Proposition 3.22 which is
the main technical result of this paper. We introduce the notion of progressive projection,
closely related to the notion of predictable projection, which helps us remove classical L2-
assumptions in the problem of filtering.

Proposition 3.22 is essentially an answer to question (Q) described below, after intro-
ducing the corresponding notions. Let F be a given filtration and let X(F) stand here
for the set of all continuous F-semimartingales, say X, with the trend part, say VX ,
having locally absolutely continuous trajectories. Let us also mention that P will stand
for the underlying probability measure here and that 1A stands for the indicator function
of a set A in general. The question here is the following.

(Q) If X ∈ X(F) and if G is a subfiltration of F , under which conditions X ∈ X(G)?

The answer given by Proposition 3.22 is essentially the following. It is enough to re-
quire that (i) X is G-adapted, (ii) the following measure on G-progressive sets is σ-finite
G ↦ ∫ ∫ 1G(t, ω)dVXt dP(ω), and (iii) the filtrations F ,G are enriched, which is satisfied
for example if F0,G0 contain all null sets from the underlying probability space. The
condition (ii) is equivalent to the condition that ∣dVXt /dt ∣ has a G-predictable projection
finite almost surely at almost every t ∈ [0,∞), see Lemma 3.33.

We believe that, in the financial markets, it is essentially necessary to put together
the process of estimating parameters and the process of making decisions reflected in the
applied strategy, and it can be done only by using filtering techniques. In the frictionless
financial market, the investor observes the market prices and hence also their volatilities,
but one thing, which is crucial, is not observed. It is the rate of return. To observe
the rate of return is equivalent to the observation of so called log-optimal proportion. If
the investor has such information, he/she can use something which we call log-optimal
strategy and which corresponds to what is in [18] called the numéraire portfolio.This
strategy simply keeps the vector of proportions of wealth invested in each risky asset
equal to the log-optimal proportion and maximizes the long run growth rate of the
investor’s wealth process in the frictionless market. For details see Definition 3.12 and

2010 Mathematics Subject Classification. 60H30, 60G44, 91G80.
Key words and phrases. log-optimal investment, progressive projection, filtering.

37
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Proposition 3.13. Also, if the investor faces small transaction fees, in order to be able
to apply some kind of an almost log-optimal strategy, one needs to know the log-optimal
proportion with respect to the filtration generated by the market (here shown to be
the projection of the log-optimal proportion to the corresponding filtration) and also its
dynamics which is not covered in this paper due its current length.

For the interested reader we can outline what type of results we obtain in the forth-
coming papers based on this one. Here, we consider the most simple example just for
illustration. Imagine the Black-Scholes (BS) model of a geometric Brownian motion of
the stock market price with zero interest rate, with unknown rate of return µ and volatil-
ity σ > 0. Then the log-optimal proportion θ = σ−2µ is also the unknown parameter which
we are interested in. Let us model it as a random variable independent of the standard
Brownian motion driving the (BS) model and let us assume, for simplicity, that it attains

values in a countable set. Let F̂ stand for the filtration generated by the stock market
price (up to enrichment) and let W(ξ) be the wealth process of a primary investor who
assumes that θ = ξ ∈ R following the log-optimal strategy under this assumption. Then
the posterior distribution of θ can be expressed in terms of W(ξ) as follows

P(θ = ξ∣F̂t) =
P(θ=ξ)W

(ξ)
t /W

(ξ)
0

∑εP(θ=ε)W
(ε)
t /W

(ε)
0

, t ∈ [0,∞).(1.1)

Note that this equation is related to so called Kallianpur-Striebel formula and also note
that the roots of the formula can be found in Lemma 3.27 and Proposition 3.28 in this
paper.

The ideas behind this and also of the forthcoming papers were derived mostly inde-
pendently of the current literature on filtering and we believe that this circumstance can
help the experienced reader look on the already known things from another perspective
and the inexperienced one to find a way how to get into the problem which can otherwise
be very difficult.

The literature compared with our results comes from the following books [14, 23, 25].
All these sources use L2-approach to filtering which seems insufficient to us when applied
to the model of log-optimal investment, since the corresponding arising restrictions would
be unnatural and this is also the reason why we decided to leave the classical L2-approach
and to seek a more flexible one. The results we obtained could not be included in
a single paper unless the number of pages and provided information exceeded reasonable
boundaries.

The reader interested in older papers on filtering is referred to [11, 15, 16, 17, 21]
and the one interested in more recent papers to [6, 7], where further literature can
be found, similarly as in the book [2]. We refer the reader interested in log-optimal
investment in the discrete time to [1, 3, 4, 5, 20], especially to [1] when interested in the
asymptotic optimality principle, to [4] in order to see that the log-optimal investment
(almost) minimizes the expected time necessary to reach a large amount of money, and
to [5] for the Bayesian approach to log-optimal investment in the discrete time. Note
that maximizing of the geometric mean in the long run is also called Kelly criterion,
named after the author of [20].

The paper is organized as follows. In Section 2, we introduce basic notation, used
also in appendix, including the notion of enriched filtration, absolute convergence in
a metric space. We encourage the reader to start reading from the third section and
consult Section 2 as necessary. Section 3 is devoted to trading in frictionless market
and especially to the log-optimal trading. As we will show in the forthcoming paper,
the wealth process of a log-optimal trading strategy (starting with unit initial value) is
closely connected to the density of the posterior distribution of the unobserved random
variable, which we are interested in, w.r.t. the prior one. Here, the log-optimal trading
serves primarily as the motivation for our task, but later on in another paper, we will
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show how important the concept of log-optimal trading without transaction costs is,
cf. (1.1).

The main result of Section 3 is Proposition 3.22 which gives an answer to question
(Q) from the beginning of this section. The main concept of Section 3, especially of
Subsection 3.1, is based on a new notion called progressive projection which is shown to
be related to the notion of dual predictable projection, see Example 3.21. In Subsection
3.2, we show that the progressive projection is very closely related to the (extended)
predictable projection considered in [12].Very interesting is also Proposition 3.28 which
tells us how the progressive projection changes if we replace our probability measure by
another one that is locally absolutely continuous w.r.t. the original measure.

The last result, used in the forthcoming paper, is Proposition 3.44 based on Propo-
sition 3.22 which among other things says that if our market is regular and log-optimal
proportion has a progressive projection to the (enriched) filtration generated by the
market, then the market is regular also w.r.t. its own filtration and that the progressive
projection of the log-optimal proportion plays the role of log-optimal proportion w.r.t. to
the (enriched) filtration generated by the market. Section 4 is devoted to proofs and the
last section serves as an appendix.

2. Elementary notation and enriched filtration

Notation 2.1. Let (Ω,A) be a measurable space. We denote by L(A) the set of all
real-valued A-measurable functions and by L(A,S) the set of all measurable maps from
(Ω,A) to a measurable space (S,S). By C we denote the set of all continuous functions
on R+ def

== [0,∞) endowed with a complete and separable metric

r (x, y) def
== ∑

k∈N

2−k ∧ ∣x − y∣∗k, where ∣x∣∗t
def
== sup

s≤t
∣xs∣,

and by C = (Ct)t≥0 we denote the canonical filtration, i.e.,

Ct
def
== σ(ps; s ∈ [0, t]), where pt(x)

def
== xt, whenever x ∈ C, t ≥ 0.

Note that C∞ is just the Borel σ-algebra on C w.r.t. the metric r and that it is usually
referred to as the cylindrical σ-algebra. Further note that a map X ∶ Ω → C belongs
to L(A,C∞) if and only if Xt

def
== pt ○ X ∈ L(A) for every t ≥ 0, i.e., if X = (Xt)t≥0

is a (continuous) real valued random process on (Ω,A). This view leads us to a more
intuitive notation C(Ω,A)

def
== L(A,C∞) for the set of all continuous processes on (Ω,A).

We also denote the set of all positive continuous functions on R+ equipped with the
canonical filtration as follows

C̃ def
== C ∩ (0,∞)

[0,∞), C̃ def
== (C̃t)t≥0, where C̃t

def
== {C ∩ C̃;C ∈ Ct}, t ∈ [0,∞).

If F = (Ft)t≥0 and D def
== (Dt)t≥0 are filtrations, we put

F ⊗D def
== (Ft ⊗Dt)t≥0.(2.1)

In this paper, every vector is (by default) assumed to be column and even (x, y) denotes
the same column vector as (

x
y) whenever x, y are (column) vectors or just numbers. The

corresponding transposition of x is denoted as x
T

if x is a real vector or a matrix. If A is
a set and n ∈ N,An stands for the n-th Cartesian power defined by induction as follows
A1 def

== A,An+1 def
== An×A in general if not stated otherwise. One exception from this rule

is the following one. If n ∈ N, we put C 1 def
== C and C n+1 def

== C n
⊗C . The same notation

will be used also with C replaced by C̃ . Note that C̃ n
t = {C ∩ C̃n;C ∈ C n

t }, t ≥ 0, and

therefore if π is a C n-stopping time, its restriction to C̃n is a C̃ n-stopping time.
Similarly as in (2.1), we denote F ⊗D

def
== (Ft⊗D)t≥0 and D⊗F def

== (D⊗Ft)t≥0 if D
is a σ-algebra. If A,B are sets and a ∶ A → R, b ∶ B → R, we denote by a⊙ b their tensor
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product defined on A ×B as follows

(a⊙ b)(x, y) def
== a(x)b(y), x ∈ A,y ∈ B.

In the paper, 1A stands for a function attaining the value 1 just on the set A and the
value 0 otherwise (with unspecified domain) and on the other hand 1A ∶ A → A stands
for the identity map on A. We also use the following symbols 1m ∈ {1}m ⊆ Rm and
1m

def
== diag(1m) ∈ Rm×m if m ∈ N. Finally, if Σ ∈ Rm×m, by the inequality Σ > 0 we

mean that the matrix Σ is positive definite. If x ∈ R, we denote x+ def
== max{x,0} and

x− def
== max{−x,0}.

Remark 2.2. Let (xn)
∞
n=1 ∈ C

N and x ∈ C, then

r (xn, x) → 0 if and only if ∀ t ≥ 0 ∣xn − x∣
∗
t → 0(2.2)

as n → ∞, i.e., r generates compact-open topology on C corresponding to the uniform
convergence on compact sets. Note that the more difficult implication ’⇐’ can be easily
shown using the Dominated Convergence Theorem while the easier implication ’⇒’ in
(2.2) is left to the reader.

Definition 2.3. If X,Y ∈ L(A,C∞) = C(Ω,A), we have that Xt − Yt ∈ L(A) whenever
t ∈ [0,∞), and therefore also

r (X,Y ) = ∑
∞
k=12−k ∧ sup{∣Xq − Yq ∣; q ∈ Q ∩ [0, k]} ∈ L(A).

Hence, if (Ω,A,P) is a probability space, we are allowed to define the distance of X,Y as

(2.3) �(X,Y )
def
== E[r (X,Y )].

As r is bounded, it is clear that � is a bounded pseudometric on C(Ω,A). Note that

�(X,Y ) = 0 if and only if X
as
= Y and by a slight abuse of notation we will call � a metric

on (Ω,A) interpreting the equality almost surely as equality (instead of dealing with
a pseudometric or a metric on a factor space) as is usual when dealing with Lp spaces.
We will denote the convergence in � by ↝.

Remark 2.4. Let (Ω,A,P) be a probability space and X (n), Y ∈ C(Ω,A), n ∈ N, then

�(X (n), Y ) → 0 iff ∀ t ∈ [0,∞) ∣X (n)
− Y ∣

∗
t → 0 in probability P, n→∞.(2.4)

Notation 2.5. Let F = (Ft)t≥0 be a filtration on a measurable space (Ω,A). ByM(F )

we denote the σ-algebra of F -progressive sets, i.e.,

M(F )
def
== {F ⊆ Ω∞;∀ t ≥ 0 F ∩Ωt ∈ Bt ⊗Ft},

where Ωt
def
== [0, t]×Ω,Bt is a Borel σ-algebra on [0, t] if t ∈ [0,∞) and Ω∞

def
== [0,∞)×Ω =

∪n∈NΩn. By A(F ) we denote the set of all F -adapted processes and by

CA(F )
def
== C(Ω,F∞) ∩A(F ) ⊆ L(M(F )),

CI0(F )
def
== {X ∈ CA(F ) non-decreasing ;X0 = 0},

CFV (F )
def
== {X ∈ CA(F ) with locally finite variation }

the set of all continuous F -adapted processes, and its subsets of non-decreasing processes
starting from zero or with locally finite variation, respectively. Whenever F ,D are
filtrations, we put

A(F ,D)
def
== ∩t≥0 L(Ft,Dt) ⊆ L(F∞,D∞) so that A(F ,C k

) = CA(F )
k, k ∈ N.

If (Ω,A, P,F ) is a filtered probability space, we denote by

CM(F )
def
== CMP

(F )
def
== {X ∈ CA(F ) is an F -martingale under P},

CMloc(F )
def
== CMP

loc(F )
def
== {X ∈ CA(F ) is a local F -martingale under P},

CS(F )
def
== CSP (F )

def
== {X + Y ;X ∈ CMP

loc(F ), Y ∈ CFV (F )}
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the set of all continuous F -martingales, continuous local F -martingales and continous
F -semimartingales, respectively. If K ∈ CI0(F ), put

M
p
K(F )

def
== {G ∈ L(M(F )); ∀k ∈ N ∫

k
0 G

p dK < ∞}, p ∈ [1,∞),(2.5)

and similarly, we define M̃p
K(F ) but with the integrability w.r.t. K required only almost

surely. Further, we omit the lower index K in the notation in case Kt = t, t ≥ 0.

2.1. Enriched filtration. In this and the forthcoming papers, we need a filtration, say
F , that admits a continuous adapted version of any process which is a limit in � of
processes from CA(F). Note that the classical approach, based on ensuring that all null
sets from F∞ are also in F0, is insufficient here, since we need to ensure that we can
move from one probability measure to another one, which is locally equivalent, without
losing the desired property of the filtration.

Definition 2.6. Let F be a filtration on a measurable space (Ω,A). Probability mea-
sures P,Q onA are said to be locally F -equivalent if P ∣Ft ∼ Q∣Ft are equivalent measures
whenever t ≥ 0. Note that “∼” is used for equivalence of measures and it means that the
measures have the same null sets and domain.

Notation 2.7. If B and D are σ-algebras on the same set, we denote B∨D def
== σ(B∪D).

Let (Ω,A,P,F ) be a filtered probability space. We introduce a system of negligible sets

N F ,P
t

def
== {N ∈ F∞;∃F ∈ Ft,P(F ) = 0, F ⊇ N}, t ∈ [0,∞),(2.6)

N F ,P
∞

def
== {∪

∞
n=0Nn;Nn ∈ N F ,P

n , n ∈ N0}.(2.7)

We also introduce enriched filtration as

F
P def
== (F

P
t )t≥0, where F

P
t

def
== Ft ∨ σ(N

F ,P
∞ ).(2.8)

We will omit upper indices if there is no doubt which filtration or which measure
is considered, respectively. If X ∈ L(A,C∞)

k, k ∈ N, we introduce the corresponding
canonical filtration and its enrichment

FX
t

def
== σ(Xs; s ≤ t) = {[X ∈ C];C ∈ C k

t }, F
X,P
t

def
== FX

t ∨ σ(N X,P
∞ ), t ∈ [0,∞),

(2.9)

where N X,P
∞

def
== N FX ,P

∞ . If G = (Gt)t≥0 is a filtration such that Ft ⊆ Gt ⊆ A whenever
t ∈ [0,∞), we also introduce a filtration

F
F ,G def

== F
F ,G ,P such that F

F ,G ,P
t

def
== Ft ∨ σ(N

G ,P
∞ ), t ∈ [0,∞),

and we call it a relative enrichment of F by G under P (or a relatively enriched filtration).
If the filtration F is generated by a process Y and G by X, we will use also the following
notation FY,X def

== F
F ,G . Finally, in the special case when (Ω,A,P,F ) = (Ck,C k

∞, ν,C
k
),

we put

C
ν
t

def
== N Ck,ν

t , t ∈ [0,∞],

whenever ν is a probability measure on (Ck,C k
∞), k ∈ N.

Remark 2.8. If the underlying probability space (Ω,A,P) is complete and if Gt = A
holds for every t ∈ [0,∞), then the relatively enriched filtration FF ,G corresponds to
the smallest complete extension of F considered in [13]. It also corresponds to what is
called the augmentation in [19, Definition 2.7.2] if Gt = F∞ = A, t ∈ [0,∞), and if the
underlying probability space is complete, but the reader have to keep in mind that in
that definition it is assumed that the filtration F is generated by a Brownian motion.

Here, we need a notion that is more subtle, since we want to be able to replace the
original probability measure P by a measure which is not equivalent with P, but only
locally F -equivalent. This is the reason why N∞ does not have to contain all P-null sets
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from G∞ and for other (technical) reasons, we do not restrict ourselves to the case when
F = G .

Remark 2.9. Let us consider the same context as in Notation 2.7. Then FF ,G
∞ ⊆ G∞

and N G ,P
∞ is closed under countable unions and it contains G∞-measurable subsets of its

elements. Further, all its elements are G∞-measurable P-null sets. In particular,

N G ,P
∞ = {G ∈ G∞;G ⊆ ∪

∞
n=1Nn,Nn ∈ Gn,P(Nn) = 0, n ∈ N}.(2.10)

Remark 2.10. Let F = (F
F ,G
t )t≥0 be as in Notation 2.7. As F is an extension of F

by the system σ(N G ,P
∞ ) of P-trivial sets (independent of any subsystem of A), we get

from Theorem 1.4.3 in [10, part III] that CMloc(F ) ⊆ CMloc(F) and then also CS(F ) ⊆

CS(F) as obviously CVF (F ) ⊆ CVF (F). Finally, as F is a subfiltration of F , the same
theorem can be used in order to obtain that CMloc(F) ∩ CA(F ) ⊆ CMloc(F ), i.e., we
have that

CMloc(F ) = CMloc(F) ∩CA(F ), CS(F ) ⊆ CS(F).(2.11)

Notation 2.11. WheneverX is a continuous semimartingale, ⟨X⟩ will stand for a version
of its quadratic variation that is non-decreasing, continuous, adapted to FX and that
starts from ⟨X⟩0 = 0. See Corollary A.17 in order to agree that such process exists. Note
that this assumption is assumed in the whole paper except in the proof of the corollary
and that we do not deal with the quadratic variation in the appendix until the corollary
is stated.

Similarly, we will assume that the result of stochastic integration is a continuous pro-
cess adapted to a given enriched filtration such that the integrator is a (multidimensional)
continuous semimartingale and the integrand is progressively measurable. To justify this
assumption, see Lemma A.31 for the case of integration w.r.t. a (multidimensional) local
martingale. Similarly, we may and will assume that the stochastic integrals start from
0. Note that in the whole paper, we use the following notation.

Notation 2.12. The stochastic integral is in this paper understood in the Itô sense
except for one special case, when the integrator is of locally finite variation. In this
case, the integral is understood in Lebesgue-Stieltjes sense, which is consistent with the
above-mentioned Itô sense defining the integral uniquely only up to a null set.

(i) Let M ∈ CMloc(F)
k and H ∈ L(M(F))

k, k ∈ N. We consider the integral

∫ H
T

dM def
== � - lim

n→∞
∫ 1[HTH≤n]H

T

dM if ∫

t
0 tr{HH

T

d⟨⟨M⟩⟩}

as
< ∞, t ∈ [0,∞).(2.12)

Note that without this extension the integral ∫ H
T
dM is well defined if and only if

∑
k
i=1∫

t
0 (H(i)

)
2 d⟨M (i)

⟩

as
< ∞, t ∈ [0,∞),(2.13)

and if (2.13) is satisfied, we have equality almost surely in (2.12) on the left. Moreover,
if the components of M are uncovariated, then (2.13) is equivalent to the condition in
(2.12) on the right. (ii) Generally, let M = L+ I −J ∈ CS(F)

k, where L ∈ CMloc(F)
k and

I, J ∈ CI0(F)
k be such that

H(i)
∈ M̃

1
I(i)+J(i)(F), i ≤ k.(2.14)

Then ∫ H
T
dM is well defined by (2.12) if the corresponding condition on the right is

satisfied and obviously ∫ H
T
dM

as
= ∫ H

T
dL + ∫ H

T
dI − ∫ H

T
dJ in that case.

3. Log-optimal trading in a frictionless market and filtering

We consider an investor that may invest in the money market and also in the stock
market with m stocks. Let us consider a fixed filtered probability space (Ω,A,P,F),
where F = (Ft)t≥0 is an enriched filtration.
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Definition 3.1. By a (frictionless) market we mean Ŝ = (S
(i)

)
m
i=0, where S(i) is a positive

continuous F-semimartingale whenever i ∈ {0, . . . ,m}. In that case, there are continuous

F-semimartingales V (i) def
== ln(S(i)

/S
(i)

0 ) +
1
2
⟨lnS(i)

⟩ adapted to F Ŝ , see Notation 2.11,
such that

dS(i)
= S

(i)dV (i), V (i)

0 = 0, i ∈ {0, . . . ,m}.(3.1)

The process S(i) represents the price of the i-th asset in the market. If i = 0, it is called
bond and its price describes the value of money in time and this way it represents the
money market. If i = 1, . . .m, the i-th asset is called the i-th stock. Further, we denote
S

def
== (S

(i)
)
m
i=1.

Definition 3.2. A pair (ϕ(0), ϕ) is called a trading strategy in the frictionless market
(S

(0),S) if ϕ = (ϕ(i)
)
m
i=1 and if ϕ(i) is an F-progressive process for each i = 0, . . .m.

In this paper, the process ϕ(i)

t stands for the random variable describing the number
of shares of the i-th asset held by the investor at time t ∈ [0,∞).

Definition 3.3. Let (ϕ(0), ϕ) be a trading strategy in the market (S
(0),S). The corre-

sponding wealth process W is defined as follows

W
def
== ∑

m
i=0 ϕ

(i)
S

(i)
= ϕ(0)

S
(0)
+ ϕ

T

S.

If the wealth process W is positive, we are allowed to introduce the i-th position in the
market for i = 0, . . .m and the position process as follows

π(i) def
== ϕ(i)

S
(i)
W

−1, π def
== (π(i)

)
m
i=1.

Definition 3.4. A trading strategy (ϕ(0), ϕ) in the market (S
(0),S) is called self-financing

if W is a continuous F-semimartingale with the differential

dW = ∑
m
i=0 ϕ

(i)dS(i)
= ∑

m
i=0 ϕ

(i)
S

(i)dV (i),(3.2)

i.e., the changes of the wealth process are simply generated by the changes of the market
prices of the assets without any additional income or costs.

Remark 3.5. Let (ϕ(0), ϕ) be a self-financing strategy in the market (S
(0),S) and let D(i)

t

be the absolute variation of the drift part of S(i) from the decomposition on the interval
[0, t]. As the stochastic integral from the expression in (3.2) on the right has to be defined
correctly, we get from (2.12) in Notation 2.12 that the self-financing condition is satisfied
only if

∫

t
0 tr[ϕϕ

T

d⟨⟨S⟩⟩]
as
< ∞, t ∈ [0,∞), ϕ(i)

∈ M̃
1
D(i)(F), i = 0, . . . ,m.(3.3)

Definition 3.6. A market (S
(0),S) will be called regular if there exist an m-dimensional

standard F-Brownian motion B, {α(i)
}
m
i=0 ⊆ M

1
(F) and (σ(i, j)

)
m
i,j=1 ∈ M

2
(F)

m×m with
values within the set of all regular matrices such that

S
(0) as

= S
(0)

0 + ∫ α
(0)

t S
(0)

t dt, S
(i)

t
as
= S

(i)

0 + ∫ S
(i)

t (α(i)

t dt +∑
m
j=1σ

(i, j)

t dB(j)

t ).(3.4)

Remark 3.7. The reader interested in the question of existence of an arbitrage in regular
markets should look at Example 4.6 in [18] which offers an example of an arbitrage (on
the interval [0,1]). Example 4.7 in [18] may be also interesting from this point of view.

Notation 3.8. In the context of Definition 3.6, we put

α def
== (α(i)

)
m
i=1, σ def

== (σ(i, j)
)
m
i,j=1, Σ def

== (Σ(i, j)
)
m
i,j=1

def
== σσ

T

∈ M
1
(F)

m×m,(3.5)

and by diag(x) def
== x ∈ Rm×m we denote a diagonal matrix with x(i, j)

= x(i)1[i=j].
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Remark 3.9. Note that the SDE in (3.4) on the right can be equivalently rewritten in
the form

dSt = diag(St)[αt dt + σt dBt] = diag(St)dVt, where V def
== (V (i)

)
m
i=1.(3.6)

Further note that we are able to express (V (0), V ) in the regular market as follows

V (0) as
= ∫ α

(0)

t dt, V
as
= ∫ αtdt + ∫ σdB.(3.7)

Lemma 3.10. Let (ϕ(0), ϕ) be a self-financing strategy in a regular market with the
position π. Then

π
T

Σπ, π(i)α(i)
∈ M̃

1
(F), i = 0, . . . ,m.

Proof. See Subsection 4.1 in section Proofs. �

Remark 3.11. If (ϕ(0), ϕ) is a self-financing strategy in the regular market (S
(0),S) with

the wealth processW and with the position process π, we get from (3.2,3.7) the following
SDE for the wealth process in terms of the position process

dWt =

m

∑

i=0

ϕtS
(i)

t dV (i)

t = Wt

m

∑

i=0

π(i)

t dV (i)

t = Wt[(π
(0)

t α
(0)

t + π
T

tαt)dt + π
T

tσtdBt]

and we get from Lemma A.25 an almost surely unique solution in the form

Wt
as
= W0 exp{∫

t
0 π

T

σ dB + ∫

t
0 (π(0)

s α
(0)
s + π

T

sαs −
1
2
π

T

sΣsπs )ds}.

Hence, we have a decomposition of the logarithm lnW of the wealth process (up to the

initial value) into the local F-martingale part Mt
def
== ∫

t
0 π

T
σ dB and the drift part almost

surely equal to

Dt
def
== ∫

t
0 q(πs, α

(0)
s , αs,Σs)ds, where q(x, r, a,A)

def
== x

T

a − 1
2
x

T

Ax + r(1 − x
T

1m),

t ≥ 0. Here, we have used an obvious equality π(0)

t = 1− π
T

t1m. Since the market is regular
by assumption, we get that Σt = σtσ

T

t is always a positive definite matrix, and therefore
we obtain the maximum of q in x simply by differentiating which leads to the equation
0 = a −Ax − r1m. Hence, the maximum is attained at x = A−1

(a − r1m).

Definition 3.12. In a regular market (S
(0),S), we define the log-optimal proportion θ as

θt
def
== Σ−1

t (αt − α
(0)

t 1m), t ≥ 0.(3.8)

A self-financing strategy (ϕ(0), ϕ) with the position process π is called log-optimal if

πt
as
= θt holds for almost every t ≥ 0. This definition is justified by Proposition 3.13, see

also Remark 3.15.

Proposition 3.13. Let (S(0),S) be a regular market, let (ϕ(0), ϕ) be a log-optimal strategy
with the wealth process W. If (ϕ̃(0), ϕ̃) is a self-financing strategy with a positive wealth

process W̃, then

lim sup
t→∞

1
t

ln(W̃t/Wt)
as
≤ 0.(3.9)

Proof. See Subsection 4.2 in section Proofs. The proof uses Notation 3.14. �

Notation 3.14. Let us consider a regular market (S
(0),S). In order to avoid dealing

with the value π(0)
= 1 − π

T
1m, we introduce notation for the process playing a similar

role as V but for the discounted market prices. It is defined as

V def
== V − ∫ α

(0)

t dt1m ∈ CS(F)
m.(3.10)

Then the wealth process W of a self-financing strategy with the position π satisfies

dWt = Wt[α
(0)

t dt + π
T

tdVt], i.e., Wt
as
= W0 exp{∫

t
0 (α(0)

s −
1
2
π

T

sΣsπs)ds + ∫
t

0 π
T

dV},(3.11)
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t ≥ 0, by Lemma A.25, since V ∈ CS(F)
m is such that ⟨⟨V ⟩⟩t

as
= ⟨⟨V ⟩⟩t

as
= ∫

t
0 Σsds. Further,

V
as
= ∫ σdB + ∫ (αs − α

(0)
s 1m)ds

as
= ∫ σdB + ∫ Σsθsds,(3.12)

where θ is the log-optimal proportion introduced in Definition 3.12.

Remark 3.15. The log-optimal strategy corresponds to what is called the numéraire
portfolio in [18]. It does not have to exist in a regular market. It is sufficient to consider
the case when

α(0)
s

def
== 0, αs

def
== 1, σs

def
== (1 − s)1/21[s<1] + 1[s≥1].

In this case, the log-optimal proportion is of the form θs
def
== (1 − s)−11[s<1] + 1[s≥1], but

no log-optimal strategy exists in this case, since its wealth at time t = 1 would have to
be ∞ almost surely which is something we do not allow. This example also shows that
the condition of no unbounded profit with bounded risk, considered in [18], does not hold
in regular markets in general.

3.1. Filtering. This subsection serves as a technical background for Subsection 3.3,
where we will cope with the difficulty that the log-optimal proportion is not observed
directly from the market.

Definition 3.16. Let ν be a measure on a measurable space (T,T ). Let f ∈ L(T ) and
H ⊆ T be a σ-algebra such that ν∣H and (∫H ∣f ∣dν)H∈H are σ-finite measures. Put

µ(+) def
== (∫Hf

+ dν)H∈H and µ(−) def
== (∫Hf

− dν)H∈H.

A function f̂ ∈ L(H) is called a ν-projection of f to H if the following equality holds ν-a.e.

f̂ = Pν
H(f) def

==
dµ(+)

dν∣H
−

dµ(−)

dν∣H
.(3.13)

Note that if ν is a probability measure, then f̂ is just the conditional expectation of f

givenH under ν, i.e., f̂
as
= Eν[f ∣H], where Eν here stands for the (conditional) expectation

w.r.t. ν.

Remark 3.17. Note that the fractions in (3.13) on the right stand for the Radon-Nikodym
derivatives. The reader interested in an elementary proof of the Radon-Nikodym Theo-
rem (in a finite case) or in the references to its various proofs can look at [22].

The following lemma summarizes the basic properties of the ν-projection.

Lemma 3.18. Let (T,T , ν), f,H, be as in Definition 3.16. (i) Then f̂ ∈ L(H) is a ν-
projection of f to H if and only if

∫Hfdν = ∫H f̂dν holds for every H ∈ Hf
def
== {H ∈ H; ∫H ∣f ∣dν < ∞},(3.14)

and if (3.14) holds, then

∫H ∣f̂ ∣dν ≤ ∫H ∣f ∣dν, H ∈ H.(3.15)

(ii) If f, g ∈ L(T ) have ν-projections f̂ and ĝ to H, respectively, then f + g has a ν-

projection f̂ + ĝ to H, i.e.,

Pν
H(f + g) = Pν

H(f) +Pν
H(g) holds ν-almost everywhere.

(iii) If f ∈ L(T ) has a ν-projection f̂ to H, and g ∈ L(H), then fg has a ν-projection f̂g
to H, i.e.,

Pν
H(fg) = gPν

H(f) holds ν-almost everywhere.

(iv) Let K ⊆ H be sub-σ-algebras of T . If f ∈ L(T ) has a ν-projections f̃ = Pν
K(f), f̂ =

Pν
H(f) of f to K and to H, respectively, then f̃ is a ν-projection of f̂ to K, i.e.,

Pν
K(f) = Pν

K(P
ν
H(f)) holds ν-almost everywhere.(3.16)
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Proof. See Subsection 4.3 in section Proofs. �

Notation 3.19. Let B∞ stand for the Borel σ-algebra on [0,∞) and let L stand for
the Lebesgue measure restricted to ([0,∞),B∞). Let G be a filtration on (Ω,A). Then
� def
== L ⊗ P restricted to M(G) is a σ-finite measure. A process H ∈ L(B∞ ⊗ A) has

a �-projection to M(G), from here on called the �-progressive projection of H to the
filtration G, if and only if the measure

�∣H ∣

M(G)

def
== (∫G

∣H ∣d�)G∈M(G) is σ-finite.(3.17)

This happens for example if ∫ ∣Hs∣ds is an integrable process. A �-progressive projection
of H to G is further denoted also as

P
P
G(H)

def
== P�

M(G)(H).

We will use
ae
= for equality up to a set M with zero measure �(M) = 0, where � = L⊗P. Note

that the meaning of this equality does not change if P is replaced by an equivalent measure
Q. Even if Q is only locally F -equivalent to P and M ∈ M(F ), then (L⊗P)(M) = 0 has
the same meaning as in the case, where P is replaced by Q. For example, if (L⊗Q)(M) = 0,
then (L⊗Q)(Mn) = 0 holds with Mn

def
== M ∩Ωn ∈ Bn ⊗Fn, and as Q,P are locally F -

equivalent, we have that (L ⊗Q)∣Bn ⊗Fn ∼ �∣Bn ⊗Fn which ensures that �(Mn) = 0,
n ∈ N, and finally that �(M) = 0.

Remark 3.20. By Lemma 3.18, if (3.17) holds and if G is a G-progressive process, then

also (3.17) holds with H replaced by GH and if Ĥ is a �-projection of H to G, then GĤ
is a �-projection of GH to G. In particular, if G ∈ M(G) attains only non-zero values,

the �-progressive projection Ĥ of H to G exists if and only if HG has a �-progressive
projection to G and in both cases the �-projection of GH to G is equal to GĤ up to
a �-null set

Example 3.21. Let 0 ≤H ∈ M
1
(F) be such that the process U def

== ∫ Hudu is integrable.
First, as mentioned in Notation 3.19, the condition (3.17) is satisfied in this case. Hence,

we have that H has a �-progressive projection Ĥ ∈ M
1
(G). Note that we have from the

assumption H ≥ 0, the definition and uniqueness of the progressive projection that also
Ĥ ≥ 0 holds �-almost everywhere which means that we may assume (without loss of

generality) that Ĥ = Ĥ+
≥ 0 holds. Then we have from (3.15) in Lemma 3.18 that

E[∫
∞

0 H1GdL] ≥ E[∫
∞

0 Ĥ1GdL], G ∈ M(G)(3.18)

and that we have the equality in (3.18) if the expression on the left is finite. In particular,
if 0 ≤ s ≤ t < ∞ and G ∈ Gs, we get from the choice G def

== [s, t) ×G ∈ M(G) that

E[Ut −Us;G] = E[Ût − Ûs;G], where Û def
== ∫ Ĥudu.

Further note that if U is even uniformly integrable, i.e., ∞ > E∫
∞

0 Hudu = E∫
∞

0 Ĥudu, then

Û is also uniformly integrable. In this case, we have that (Û ,U,G) satisfy the conditions

on (U∗, U,F ) in Theorem 3.1.4 in [14], which means that Û is something which is in [14]
later on called the dual predictable projection of U . For the relation of the progressive
projection and the (extended) predictable projection, see the next subsection.

The main technical result of this paper reads as follows.

Proposition 3.22. Let M ∈ CMloc(F) and let H ∈ M
1
(F) satisfy (3.17) with an en-

riched subfiltration G of F such that

X def
== M + ∫ Hu du ∈ A(G).(3.19)

Then there exists a �-progressive projection Ĥ ∈ M
1
(G) of H to G such that

M̂ def
== X − ∫ Ĥu du ∈ CMloc(G).(3.20)
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Proof. See Subsection 4.4 in section Proofs. �

Remark 3.23. Recall that in the whole section F is assumed to be an enriched filtration
on the probability space (Ω,A,P). Note that this assumption is not essential in Proposi-
tion 3.22. It can be seen as follows. Let F be a filtration, M ∈ CMloc(F ), H ∈ M

1
(F )

and let (3.17,3.19) hold. Then obviously H ∈ M
1
(F ) ⊆ M

1
(F) and by (2.10) in Re-

mark 2.9 also M ∈ CMloc(F ) ⊆ CMloc(F), where F is an enrichment of F . Then it is
enough to use Proposition 3.22 in order to get that it holds also with F replaced by
F . We conjecture that also the assumption that the filtration G is enriched could be re-
moved if certain technical details were generalized in this paper, but the above statement
is sufficient for our reason in this form.

The following lemma tells us how to verify that a progressive process is a progressive
projection of another process if we face no problems with integrability.

Lemma 3.24. Let G be a subfiltration of F and let H ∈ M
1
(F ) be such that ∫ ∣Hs∣ds

is an integrable process. Further, let Ĥ ∈ L(M(G )) be such that

Ĥt
as
= E[Ht∣Gt] holds for a.e. t ≥ 0.(3.21)

Then Ĥ is a �-progressive projection of H to G .

Proof. See Subsection 4.5 in section Proofs. �

Remark 3.25. Later on, we will use the following obvious property. If P,Q are equivalent

measures, then also � def
== L⊗P is equivalent to � def

== L⊗Q and d�
d�

ae
=

dP
dQ
.

Indeed, the set {G ∈ B∞ ⊗A;�(G) = ∫G
dP
dQ

d�} is a σ-algebra containing sets of type

B × F, where B ∈ B∞ and F ∈ A, where A def
== dom(P) = dom(Q).

The following lemma says that any progressive process playing the role of the cur-
rent density between two equivalent measures P,Q is just the density between the two
measures introduced in Remark 3.25 w.r.t. the progressive σ-algebra.

Lemma 3.26. Let G be a subfiltration of F and let Q be a probability measure equivalent
to P and let 0 ≤ D̂ ∈ L(M(G )) be such that

D̂t
as
=

dP∣Gt

dQ∣Gt
, t ≥ 0.(3.22)

Then

D̂
ae
=

d(L⊗P)∣M(G )

d(L⊗Q)∣M(G )
.(3.23)

Proof. See Subsection 4.6 in section Proofs. �

Part (ii) of the following lemma says how the problem of seeking for a progressive pro-
jection transforms itself if we switch from one probability measure to an equivalent one.

Lemma 3.27. Let G be a subfiltration of F and let Q be a probability measure equivalent

to P with D =
dP∣F∞
dQ∣F∞

. Put � def
== L⊗P and � def

== L⊗Q. (i) Then D also plays the role of
d�∣B∞⊗F∞
d�∣B∞⊗F∞

and

D̂ def
==

d�∣M(G )

d�∣M(G )
=

d(L⊗P)∣M(G )

d(L⊗Q)∣M(G )
(3.24)

is a �-progressive projection of D to G .

(ii) If H ∈ M
1
(F ), then there exists its �-progressive projection PP

G (H) to G if and only

if there exists �-progressive projection PQG (DH) of DH to G , and if they exist, then

D̂PP
G (H)

ae
= P

Q
G (DH).
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In particular, as Q ∼ P, we have that �∣M(G ) ∼ �∣M(G ) ensuring that there exists

a positive version of D̂, and then we get that PP
G (H) = P

Q
G (DH)/D̂ holds �-a.e.

Proof. See Subsection 4.7 in section Proofs. �

The following proposition says how the progressive projection can be actually com-
puted in a special model.

Proposition 3.28. Let (D,D) be a measurable space, (Ω,A,P,F ) be a filtered proba-
bility space. Let G be a subfiltration of F and Q be a probability measure equivalent with
P. Let Y ∈ L(F0,D) be Q-independent of G∞ and 0 < E ∈ L(M(G ) ⊗D) be such that

E (Y )

t
as
=

dP∣Ft

dQ∣Ft
, t ≥ 0.(3.25)

Then there exists a L⊗Q-progressive projection Ê > 0 of E (Y ) to G such that

Ê
ae
= ∫ E (y)dQY (y).

(i) If h ∈ L(M(G )⊗D) is such that H def
== h(Y ) ∈ M

1
(F ) has a �-progressive projection

Ĥ to G , where � def
== L⊗P, then

Ĥ
ae
= ∫ h(y)E (y)dQY (y)/Ê .(3.26)

In particular, the integral in (3.26) on the right is well defined and finite �-a.e.

Proof. See Subsection 4.8 in section Proofs. �

3.2. Relation between the progressive and the predictable projection. First of
all, we consider the definition of the (extended) predictable projection from [12, Theo-
rem I.2.28]. We have to point out that the point (b) of the theorem simply does not
hold as the process X there does not have to be adapted to the considered filtration.
Moreover, the proof of the theorem contains a gap which has to be fixed. Finally, the
corresponding filtration is assumed to be right-continous there, which is something that
we do not assume here. These several reasons lead us to the conclusion that we have to
re-prove its essential part.

Definition 3.29. Let F be a filtration on a measurable space (Ω,A), then every element
of L(P,B[−∞,∞]) will be called an F -predictable process, where P is the smallest σ-
algebra on Ω∞ such that Y ∈ L(P) holds whenever Y is a left-continous F -adapted
process and where B[−∞,∞] stands for the Borel σ-algebra on [−∞,∞], similarly as
B(−∞,∞] will stand for the Borel σ-algebra on (−∞,∞] later on. A random time
τ ∶ Ω→ [0,∞] is called F -predictable if (1[τ≤t])t≥0 is an F -predictable process.

Theorem 3.30. Let (Ω,A,P,F ) be a probability space and X ∈ L(B∞⊗A,B[−∞,∞]).
Then there exists pX ∈ L(B∞ ⊗A,B[−∞,∞]), called the F -predictable projection of X,
such that
(i) pX is F -predictable,
(ii) for all F -predictable times τ

(
pX)τ1[τ<∞]

as
= lim
m→−∞

lim
n→∞

E[n ∧Xτ ∨m; τ < ∞∣Fτ−],(3.27)

where Fτ−
def
== F0 ∨ σ{A ∩ [t < τ];A ∈ Ft, t ∈ [0,∞)} ⊆ Fτ .

Proof. See Subsection 4.9 in the Section Proofs. �

We also have to re-prove the uniqueness of the predictable projection, see Remark 3.32,
and for this purpose, we need the point (iii) of the following lemma which uses the
notation F+ def

== (Ft+)t≥0 if F is a filtration. Note that then the filtration F+ is already
right-continous.
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Lemma 3.31. (i) If τ is an F+-predictable time, then τ̃ def
== τ + ∞1[τ=0] is an F -

predictable time.
(ii) Let X be an F+-predictable process, then (Xt1[t>0])t≥0 is an F -predictable process.

(iii) Let X be an F -predictable process such that Xτ1[τ<∞]
as
= 0 holds whenever τ is

an F -predictable time. Then X
as
= 0.

Proof. See Subsection 4.10 in the Section Proofs. �

Remark 3.32. If pX, pX̄ are two F -predictable projections of X, then Y (n) def
== (−n) ∨

pX ∧n− ((−n) ∨ pX̄ ∧n) are F -predictable processes such that Y
(n)
τ 1[τ<∞]

as
= 0 whenever

τ is an F -predictable time, and it gives us by Lemma 3.31 (iii) that Y (n) as
= 0, n ∈ N.

Hence, we have that pX
as
=
pX̄.

Finally, we can decide whether a process has a progressive projection, depending on
the predictable projection of its absolute value, and in the positive case, the progressive
projection can be easily obtained from the predictable projection.

Lemma 3.33. Let (Ω,A,P,G ) be a filtered probability space. A process H ∈ L(B∞ ⊗A)

has a G -progressive projection if and only if the G -predictable projection of ∣H ∣ is finite

�-a.e., and in that case any G -predictable projection Ĥ of H is finite �-a.e. and R(Ĥ)

plays the role of the G -progressive projection, where R(x) def
== x1[x∈R] if x ∈ [−∞,∞].

Proof. See Subsection 4.11 in the Section Proofs. �

Corollary 3.34. Let (Ω,A,P,G ) be a filtered probability space and let H ∈ L(B∞ ⊗A)

have a G -progressive projection. If H has a finite G -predictable projection Ĥ, then Ĥ is
also a G -progressive projection of H.

Example 3.35. There exists a filtered probability space (Ω,A,P,G ) andH ∈ L(B∞⊗A),

which has a G -progressive projection, such that Ĥ ≠ Ĥ almost surely whenever Ĥ and
Ĥ are a G -predictable projection and a G -progressive projection of H, respectively.

Let Y be the canonical random variable on Ω def
== N and consider H def

== (Y 1[t=0])t≥0,

P(A)
def
== ∑n∈A

1
n(n+1)

if A ⊆ N, and A
def
== dom(P), Gt

def
== {∅,Ω}, t ∈ [0,∞).

The process H has a G -progressive projection 0 and a G -predictable projection of the
form Ĥ def

== (∞1[t=0])t≥0. Then if Ĥ is any of its G -progressive projections, then Ĥ0 =

∞ ≠ Ĥ0 ∈ R almost surely, hence P(Ĥ ≠ Ĥ) = 1 and the same conclusion holds if Ĥ is
any G -predictable projection by Remark 3.32.

3.3. Trading in a filtered market. At the beginning of this section, we considered
an investor who wants to maximize the long run growth rate of the wealth process, which
means to keep the proportion of the wealth process invested in the i-th asset equal to
θ(i) if i = 1, . . . ,m, where θ is the log-optimal proportion introduced in Definition 3.12.

The practical problem is that the we do not know the value of the log-optimal propor-
tion. So, we assume that we have some a priori information and that we obtain additional
information from the market while also assuming that we have access to no information
from any other source.

Let Ŝ = (S
(0),S) be a regular market on a filtered probability space (Ω,A,P,F). Put

F̂ def
== F Ŝ , F̂

def
== F

Ŝ
= F

F̂ ,F̂ , F̂
def
== F

F̂ ,F
= F

F̂ ,F̂
= F

F̂,F̂ .(3.28)

Note that the last two equalities in (3.28) can be verified as follows. The first of them

follows from the point (2) of Lemma A.15 which says that N F,P
∞ = N F̂,P

∞ , and as F̂ is
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a subfiltration of F̂ , we get first that N F̂ ,P
∞ ⊆ N F̂,P

∞ and then also that

F
F̂,F̂
t = F̂t ∨ σ(N

F̂ ,P
∞ ) ∨ σ(N F̂,P

∞ ) = F̂t ∨ σ(N
F̂,P
∞ ) = F

F̂ ,F̂
t , t ∈ [0,∞).(3.29)

Remark 3.36. From (3.28) and from (2.11) in Remark 2.10, we get that

CMloc(F̂) = CMloc(F̂) ∩CA(F̂), CS(F̂) ⊆ CS(F̂).

The following lemma clarifies the relationship between L(M(F̂)) and L(M(F̂)), and be-

tween X(F̂) and X(F̂) if we use the notation introduced just above (Q) at the beginning
of the paper.

Lemma 3.37. (i) If CS(F̂) ∋ X̂
as
= X̂ ∈ CA(F), then X̂ ∈ CS(F̂).

(ii) If X ∈ CS(F̂) is such that

CA(F̂) ∋X =M + ∫ Hudu, where M ∈ CMloc(F̂),H ∈ M
1
(F̂),

then there are M̂ ∈ CMloc(F̂) and Ĥ ∈ M
1
(F̂) such that X = M̂ + ∫ Ĥudu ∈ CS(F̂).

(iii) Let (S,S) be a measurable space and H ∈ L(M(F̂) ⊗S), then there exist

H ∈ L(M(F̂ ) ⊗S), N ∈ N F,P
∞ such that 0 = 1Ω/N∫

∞

0 1[Ht≠Ht] dt.(3.30)

(iv) The point (iii) holds also if we omit “⊗S” in both its occurrences there. In partic-

ular, if Ĝ ∈ M(F̂), then there exists G ∈ M(F̂ ) such that 1G
ae
= 1Ĝ.

Proof. See Subsection 4.12 in section Proofs. �

The next lemma clarifies the relationship between progressive projections to F̂ and to F̂ .

Lemma 3.38. (i) If H ∈ L(M(F)) has a �-progressive projection Ĥ to F̂ , then Ĥ is

also a �-progressive projection of H to F̂ .
(ii) If H ∈ L(M(F)) has a �-progressive projection Ĥ to F̂ , then H has also a �-

progressive projection Ĥ to F̂ such that Ĥ
ae
= Ĥ.

Proof. See Subsection 4.13 in section Proofs. �

The following lemma says that we may more or less assume that certain coefficients
of the regular market are progressive w.r.t. F̂ or F̂ depending on what we may afford
to neglect. They are the coefficients that are essentially observed in the market, namely
the interest rate and σσ

T
, where σ is the volatility matrix. Note that if the volatility

matrix were assumed to be positive definite, we could (more or less) assume that it is

progressive w.r.t. F̂ or F̂ as well. In the statement and the proof of the following lemma,
we write

ae
= for equality almost everywhere w.r.t. the Lebesgue measure on [0,∞).

Lemma 3.39. Let Ŝ = (S
(0),S) be a regular market on a filtered probability space

(Ω,A,P,F). Then there are α̃(0)
∈ M̃

1
(F̂), α̂ (0)

∈ M
1
(F̂) and 0 < Σ̃ ∈ M̃

1
(F̂)

m×m,

0 < Σ̂ ∈ M
1
(F̂)

m×m such that

α̃(0) as
= α̂ (0) ae

= α(0) and Σ̃
as
= Σ̂

ae
= Σ def

== σσ
T

.

In particular, there exist α̂(0)
∈ M

1
(F̂) and 0 < Σ̂ ∈ M

1
(F̂)

m×m such that α̂(0) ae
= α(0) and

Σ̂
ae
= Σ.

Proof. See Subsection 4.14 in section Proofs. �

In order to be able to follow the log-optimal strategy corresponding to the information
coming just from the market, we need to study the progressive projection of the rates or
return of the risky assets that are not observed directly from the market.
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Definition 3.40. A regular market (S
(0),S) from Definition 3.6 is called filterable if

(∫F∑
m
i=1∣α

(i)
∣d�)

F ∈M(F̂)
is a σ-finite measure, where � def

== L⊗P.(3.31)

It can be easily shown with the help of Lemma 3.33 that that (3.31) holds if and only if

the process ∣∣α∣∣ has an F̂-predictable projection finite �-almost everywhere.

Remark 3.41. A regular market (S
(0),S) is filterable for example if there exists 0 ≤ a ∈

L(M(F̂)) dominating ∑i ∣α
(i)

∣ on M(F̂) in the following way

∫F∑
m
i=1∣α

(i)
∣d� ≤ ∫F ad�, F ∈ M(F̂),(3.32)

since then the measure from (3.31) of Fn
def
== {(t, ω) ∈ Ωn; ∣at(ω)∣ ≤ n} ∈ M(F̂) is not

greater than n2
< ∞ if n ∈ N and these sets unite to ∪nFn = Ω∞. The market is also

filterable, for example, if ∑
m
i=1 ∣α(i)

∣ is an integrable process, cf. the text just below (3.17)
in Notation 3.19.

Definition 3.42. Let (S
(0),S) be a filterable market and let α̂(0), Σ̂ be as in Lemma 3.39.

Then for each i = 1, . . . ,m there exists a �-progressive projection α̂(i) to F̂ and the
corresponding m-dimensional process

α̂ def
== (α̂(i)

)
m
i=1 ∈ L(M(F̂))

m(3.33)

will be called a �-progressive projection of α to F̂ and the m-dimensional process

θ̂ def
== Σ̂−1

(α̂ − α̂(0)1m) ∈ L(M(F̂))
m,(3.34)

cf. (3.8), will be called an F̂-log-optimal proportion in the market Ŝ. Note that

α̂
ae
= α(0)1m +Σθ̂.

Definition 3.43. A trading strategy (ϕ(0), ϕ) is said to be F̂-progressive if {ϕ(i)
}
m
i=0 ⊆

L(M(F̂)).An F̂-progressive self-financing trading strategy with a positive wealth process

is called F̂-log-optimal if its position process π is equal to the F̂-log-optimal proportion

θ̂ from (3.34) �-almost everywhere.

In the following proposition, we show that the self-financing strategy keeping the
position on the projection of the log-optimal proportion is asymptotically optimal within
the set of F̂-progressive self-financing strategies. The reason behind this is that the
projection of the log-optimal proportion plays the role of the log-optimal proportion
w.r.t. a new model obtained by filtering the original one w.r.t. the filtration generated
by the market, driven by so called innovation process introduced in Definition 3.45.

Proposition 3.44. Let (S
(0),S) be a filterable market. (i) Then S, V ∈ CS(F̂)

m and

CS(F̂)
m
∋ V

as
= V̂ def

== V − ∫ α̂
(0)

t dt1m ∈ CS(F̂)
m

where α̂(0)
∈ M

1
(F̂)

m is as in Lemma 3.39.

(ii) Let (ϕ̂(0), ϕ̂) be an F̂-log-optimal trading strategy with the wealth process Ŵ, let

(ϕ̂ (0), ϕ̂) be another self-financing trading strategy adapted to the filtration F̂ with wealth

process Ŵ > 0. Then

lim sup
t→∞

1
t

ln(Ŵt/Ŵt)
as
≤ 0.(3.35)

(iii) If σ ∈ M
2
(F̂)

m×m, there exists a standard m-dimensional F̂-Brownian motion B̂ s.t.

V
as
= ∫ α̂tdt + ∫ σdB̂,(3.36)

cf. (3.7), where α̂ ∈ M
1
(F̂)

m is a �-progressive projection of α to F̂ .

Proof. See Subsection 4.15 in section Proofs. �
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Definition 3.45. The m-dimensional standard F̂-Brownian motion B̂ from Proposi-
tion 3.44 point (iii) is called an innovation process (or innovation standard F̂-Brownian
motion) in the market (S

(0),S), cf. Definition 8.1.1 and Theorem 8.1.4 in [14].

Note that the results of this paper are going to serve primarily as the technical back-
ground for the forthcoming papers on robust filtering based on Bayesian approach.

4. Proofs

4.1. Proof of Lemma 3.10.

Proof. 1. As the position π is well defined by assumption, the wealth process W can
attain only positive values. Then W−1

∈ CA(F) ⊆ L(M(F)) has locally bounded trajec-

tories. Therefore it is enough to verify that W π(i)α(i) and W2π
T
Σπ belong to M̃1

(F)

whenever i ∈ {0, . . . ,m}.

2. See (3.4) in order to agree that D(i) from Remark 3.5 is of the form

D(i)

t
as
= ∫

t
0 ∣α(i)

s ∣ S
(i)
s ds, t ≥ 0, i = 0, . . . ,m.(4.1)

Since W π(i)
= ϕ(i)

S
(i), we get from (3.3, 4.1) that

∫

t
0 ∣Ws π

(i)
s α

(i)
s ∣ds

as
= ∫

t
0 ∣α(i)

s ϕ
(i)
s ∣ S

(i)
s ds

as
= ∫

t
0 ∣ϕ(i)

∣dD(i) as
< ∞, t ∈ [0,∞).(4.2)

From (3.6) in Remark 3.9, we get that the tensor quadratic variation of S is of the form

⟨⟨S⟩⟩
def
== (⟨S

(i),S(j)
⟩)
m

ij=1

as
= ∫ diag(St)Σt diag(St)dt.(4.3)

As W π(i)
= ϕ(i)

S
(i), we get from (4.3) and from (3.3) in Remark 3.5 that

∫

t
0W

2
sπ

T

sΣπs ds = ∫
t

0∑
m
ij=1ϕ

(i)ϕ(j)
S

(i)
s S

(j)
s Σ(i, j)

s ds
as
= ∫

t
0 tr[ϕϕ

T

d⟨⟨S⟩⟩]
as
< ∞, t ∈ [0,∞).

(4.4)

Since the desired processes from the statement are F-progressive and satisfy (4.2, 4.4),
the rest of the proof follows by step 1. �

4.2. Proof of Proposition 3.13.

Proof. Let π̃ be the position of (ϕ̃(0), ϕ̃). Then the equalities in (3.11, 3.12) give that

ln W̃t

Wt
− ln W̃0

W0

as
= ∫

t
0 (π̃ − θ)

T

dV −
1
2∫

t
0 (π̃

T

sΣsπ̃s − θ
T

sΣsθs)ds
as
= Lt −

1
2
⟨L⟩t,(4.5)

where L def
== ∫ (π̃ − θ)

T
σ dB ∈ CMloc(F) starts from L0 = 0. By Lemma 2.27 in [9],

lim sup
t→∞

1
t
(Lt −

1
2
⟨L⟩t)

as
≤ 0(4.6)

and then (3.9) follows immediately from (4.5, 4.6). �

4.3. Proof of Lemma 3.18.

Proof. (i) First, let f̂ ∈ L(H) be a ν-projection of f to H. Then, by definition, (3.13)
holds ν-almost everywhere. If H ∈ Hf , then we get that

∫H f̂dν = µ(+)

(H) − µ(−)

(H) = ∫Hf
+dν − ∫Hf

−dν = ∫Hfdν.

Let f̂ ∈ L(H) be such that (3.14) holds and let f̃ stand for the expression in (3.13) on

the right. We are going to show that f̂ = f̃ holds ν-a.e., i.e., that

ν(H(i)
) = 0, i ∈ {−1,1}, where H(i) def

== {x ∈H; sign[f̂(x) − f̃(x)] = i} ∈ H.(4.7)
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By Definition 3.16 there exists (Hn)
∞
n=1 ∈ H

N
f with ∪nHn = T and without loss of gener-

ality, we may assume that Hn ⊆ Hn+1 holds if n ∈ N. Then also H(i)
n

def
== Hn ∩H

(i)
∈ Hf

and then we get from (3.14) and the Monotone Convergence Theorem that

∫H(i)(f̂ − f̃)dν = lim
n→∞

[∫H
(i)
n
f̂dν − ∫H(i)

n
f̃dν] = 0.(4.8)

Then we get from the definition of H(i) in (4.7) that ν(H(i)
) = 0 holds if i ∈ {−1,1}.

Further in this point, we assume that (3.13) holds ν-almost everywhere. Then we get
(3.15) as follows

∫H ∣f̂ ∣dν ≤ ∫H(
dµ(+)

dν∣H
+

dµ(−)

dν∣H
)dν = ∫Hf

+dν + ∫Hf
−dν = ∫H ∣f ∣dν.

(ii) Since f, g have ν-projections to H by assumption, we immediately obtain from the
triangle inequality that (∫H ∣f+g∣dν)H∈H is dominated by a sum of two σ-finite measures,

and hence it is also a σ-finite measure. Then as f̂ + ĝ ∈ L(H), we get from (i) that (ii)
holds since

∫H(f + g)dν = ∫Hf dν + ∫Hg dν = ∫H f̂ dν + ∫H ĝ dν = ∫H(f̂ + ĝ)dν, H ∈ Hf ∩Hg.

The equality between both sides can be easily extended with the help of the Dominated

and the Monotone Convergence Theorems to those H ∈ Hf+g such that sign(f̂ + ĝ) = i ∈
{−1,0,1} holds on H and then this last condition can be easily removed.

(iii) Similarly as in the point (i), consider (Hn)
∞
n=1 ∈ (Hf ∩H1)

N with ∪nHn = T s.t. Hn ⊆

Hn+1 holds if n ∈ N. Then as g ∈ L(H) holds by assumption, we get that

Gn+1 ⊇ Gn
def
== {x ∈Hn; ∣g(x)∣ ≤ n} ∈ Hfg ∩Hf ∩H1, ∪nGn = ∪nHn = T.(4.9)

In particular, (∫H ∣fg∣dν)H∈H is a σ-finite measure. If n ∈ N, then there exists a proba-
bility measure Pn such that ν(H ∩Gn) = ν(Gn)Pn(H),H ∈ H. If n ∈ N, we have by (4.9)
that Gn ∈ Hf and hence we also have that Gn ∩G ∈ Hf holds if G ∈ H. Then we get from
(3.14) that

ν(Gn)En[f̂ ;G] = ∫G∩Gn
f̂ dν = ∫G∩Gn

f dν = ν(Gn)En[f ;G] if G ∈ H.

Hence, if ν(Gn) > 0, then f ∈ L1(Pn) and f̂ = En[f ∣H] holds Pn-a.e. Then

∫Gn∩H
f̂g dν = ν(Gn)En[gf̂ ;H] = ν(Gn)En[gEn(f ∣H);H] = ∫H∩Gn

fg dν, H ∈ H,

as g ∈ L(H) holds by assumption, and then the Monotone Convergence Theorem yields

∫Hfg dν = lim
n→∞

∫H∩Gn
fg dν = lim

n→∞
∫H∩Gn

f̂g dν = ∫H f̂g dν, H ∈ H
(i),(4.10)

holds if i ∈ {−1,0,1}, whereH(i) def
== {H ∈ H;∀x ∈H sign[f̂(x)g(x)] = i}. Since f̂g ∈ L(H),

we get that (4.10) holds with H replaced by H(i) def
== H ∩ [sign(f̂g) = i] ∈ H(i) whenever

H ∈ Hfg. If we sum those equalities over i ∈ {−1,0,1} we obtain (4.10) for any H ∈ Hfg,
and then it is sufficient to use point (i) in order to show that (iii) holds.

(iv) Since K ⊆ H, we have that Kf
def
== {K ∈ K; ∫K ∣f ∣dν < ∞} ⊆ Hf . Further, as f̂ is

a ν-projection of f to H, we get from (3.15) that Kf ⊆ Kf̂ . Since f has a ν-projection

to K, there exist Kn ∈ Kf ⊆ Hf ∩ Kf̂ , n ∈ N, such that ∪∞n=1Kn = T and that Kn ⊆ Kn+1.

Then if K̂ ∈ Kf̂ , we have by (i), used twice, that

∫K̂n
f̃dν = ∫K̂n

Pν
K(f)dν = ∫K̂n

fdν = ∫K̂n
Pν
H(f)dν = ∫K̂n

f̂dν, K̂n
def
== K̂ ∩Kn ∈ Kf ,

(4.11)

n ∈ N. If we pass n→∞ in (4.11), we get that ∫K̂ f̃dν = ∫K̂ f̂dν, K̂ ∈ Kf̂ , by the Dominated

Convergence Theorem and then we get by (i) that f̃ is a ν-projection of f to K. This

is correct once we have that Kf̂ ⊆ Kf̃ and it is what remains to show. Let K̂ ∈ Kf̂ . If
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K̂ ⊆ [f̃ ≤ 0] or K̂ ⊆ [f̃ ≥ 0], then we may use the Monotone Convergence Theorem and

(4.11) to get that ∫K̂ f̃dν = ∫K̂ f̂dν. In general, we have this equality with K̂ replaced by

K̂+ def
== K̂ ∩ [f̃ ≥ 0] ∈ Kf̂ and by K̂− def

== K̂ ∩ [f̃ < 0] ∈ Kf̂ , respectively, which gives that

∫K̂ ∣f̃ ∣dν = ∫K̂+ f̃dν − ∫K̂− f̃dν = ∫K̂+ f̂dν − ∫K̂− f̂dν ≤ 2∫K̂ ∣f̂ ∣dν < ∞, i.e., K̂ ∈ Kf̃ . �

4.4. Proof of Proposition 3.22.

Lemma 4.1. Let F be an enriched filtration and let (X (n)
)
∞
n=1 ∈ CA(F)

N satisfy

lim
i,n→∞

E sup
s≤t

∣X (n)
s∧τm −X(i)

s∧τm ∣
2
= 0(4.12)

for some non-decreasing sequence of random times (τm)
∞
m=1 ∈ [0,∞]

N×Ω tending to ∞.
Then there exists X ∈ CA(F) such that (4.12) holds with X(i) replaced by X.

Proof. First, we will show that (X (n)
)
∞
n=1 is a �-Cauchy sequence. Let ε > 0 be given and

consider k0 ∈ N such that 2−k0 < ε. Since τm → ∞ as m → ∞, we get that there exists
m0 ∈ N such that P(τm ≤ k0) < ε holds whenever m ≥m0. Then

E[2−k ∧ ∣X (n)
−X(i)

∣
∗
k] ≤ E[2−k ∧ sup

s≤k
∣X (n)
s∧τm −X(i)

s∧τm ∣] + 2−kε, i, n ∈ N, m ≥m0, k ≤ k0.

Then we obtain from the Dominated Convergence Theorem and (4.12) that

�(X (n),X(i)
) ≤ 2ε + ∑

k∈N

2−k ∧
√

E sup
s≤k

∣X (n)
s∧τm0

−X(i)
s∧τm0

∣
2
→ 2ε, i, n→∞,

as ∑k>k0 2−k = 2−k0 < ε and ∑
k0
k=1 2−k < 1. Since ε > 0 was arbitrary, we have that

(X (n)
)
∞
n=1 is a �-Cauchy sequence and hence �-convergent as � is a complete metric by

Proposition A.10. Then we get from Lemma A.16 (iv) that there exists X ∈ CA(F)

such that limn �(X (n),X) = 0. By Remark A.3 we can select an absolutely �-convergent

subsequence of (X (n)
)
∞
n=1, say (Y (n)

)
∞
n=1, see Definition A.2. Then limn r (Y

(n),X)
as
= 0

holds by Corollary A.9 and then by Fatou Lemma

E sup
s≤t

∣X (n)
s∧τm −Xs∧τm ∣

2
≤ lim inf

i→∞
E sup
s≤t

∣X (n)
s∧τm − Y (i)

s∧τm ∣
2
→ 0

as n→∞ whenever m ∈ N. �

Remark 4.2. If G is a filtration and τ is a G-stopping time, then (1[t≤τ])t≥0 ∈ A(G) is
a G-progressive process, as it is left-continuous and adapted to G. Hence, we have that

{(t, ω) ∈ Ω∞; t ≤ τ(ω)} ∈M(G).

In the following proof, we use Notation 2.11 saying that the result of stochastic integration
is assumed to be adapted to the considered enriched filtration without further remarks.
In particular, we have from Lemma A.28 that if we integrate with respect to a continous
local martingale, the result of the integration is again a continous local martingale.

Proof of Proposition 3.22. 1. First, we will assume that there exists a non-negative �-
progressive projection H̃ of H to G and we will show that there exists M̃ ∈ CMloc(G) s.t.

X
as
= M̃ + ∫ H̃u du,(4.13)

where the right-hand side is allowed to attain also the infinite value +∞ at any (t, ω) ∈ Ω∞.
As X ∈ CS(F) ∩A(G) and as G is an enriched filtration, we get that by Corollary A.17
that the corresponding quadratic variation has a G-adapted version ⟨X⟩ ∈ CA(G), and as

⟨X⟩0
as
= 0, there exists a sequence of G-stopping times (τm)

∞
m=1 tending to ∞ such that

⟨X⟩t∧τm
as
≤m, t ∈ [0,∞), m ∈ N.



PROGRESSIVE PROJECTION AND LOG-OPT INVESTMENT 55

We have that (3.17) holds by assumption and hence there exists a non-decreasing se-
quence Gn, n ∈ N, from M(G)H

def
== {G ∈ M(G); ∫G ∣H ∣d� < ∞} with ∪nGn = Ω∞. By

(3.15) in Lemma 3.18 (i)

∫Gn
∣H̃ ∣d� ≤ ∫Gn

∣H ∣d� < ∞, n ∈ N.(4.14)

Since M ∈ CMloc(F) holds by assumption and as Gn ∈ M(G) ⊆ M(F), we obtain from
Corollary A.17 that

M (n) def
== ∫ 1GndM ∈ CMloc(F), and ⟨M (n)

⟩t∧τm
as
≤ ⟨X⟩t∧τm

as
≤m,(4.15)

X (n) def
== ∫ 1GndX ∈ CS(F) ∩A(G), and M̃ (n) def

== X (n)
− ∫ 1GnH̃ dL̃ ∈ CA(G),(4.16)

where L̃t
def
== t, t ∈ [0,∞). By Lemma A.27 (M (n)

t∧τm
)t≥0 ∈ CM(F), n,m ∈ N. We are going

to show that also (M̃ (n)

t∧τm
)t≥0 ∈ CM(G). From the above stated martingale property, we

immediately get that M (n)

t∧τm
∈ L1 and if we use it again together with (3.19, 4.15, 4.16),

we obtain the equality in

E∣M̃ (n)

t∧τm
−M (n)

t∧τm
∣ = E∣∫

t∧τm
0 1Gn(H − H̃)dL ∣ ≤ 2∫Gn

∣H ∣d� < ∞,

while the inequalities follow from (4.14). Then we conclude that also M̃ (n)

t∧τm
∈ L1

holds whenever t ∈ [0,∞) and m,n ∈ N. Further, let 0 ≤ s < t < ∞ and G ∈ Gs. Then
Gs,t def

== (s, t] ×G ∈ M(G), and we obtain by Remark 4.2 that

Gs,tn,m
def
== Gs,t ∩Gn ∩ {(u,ω) ∈ Ω∞;u ≤ τm(ω)} ∈M(G), ∫G

s,t
n,m

∣H ∣d� ≤ ∫Gn
∣H ∣d� < ∞.

As G ∈ Gs ⊆ Fs and (M (n)
u∧τm)u≥0 ∈ CM(F), Lemma 3.18 (i) and (3.19, 4.16) give that

E[M̃ (n)

t∧τm
− M̃ (n)

s∧τm ;G] = E[∫
t∧τm
s∧τm

1Gn(H − H̃)dL;G] = ∫G
s,t
n
H d� − ∫Gs,t

n
H̃ d� = 0,

which verifies that (M̃ (n)

t∧τm
)t≥0 ∈ CM(G) if m,n ∈ N. As the system {Gn}

∞
n=1 is here con-

sidered to be non-decreasing, i.e., Gi ⊆ Gn if i ≤ n, we get from the Doob inequality that

E sup
s≤t

∣M̃ (n)
s∧τm − M̃ (i)

s∧τm ∣
2
≤ 4E⟨M̃ (n)

− M̃ (i)
⟩t∧τm ≤ 4E∫

t∧τm
0 1Ω∞/Gi

d⟨X⟩, n ≥ i ∈ N,(4.17)

holds if m,n ∈ N and t ≥ 0. Then we get by the Dominated Convergence Theorem and
(4.15) that the expression in (4.17) on the right tends to zero as i →∞ whenever m ∈ N

and t ≥ 0. Further, we obtain from (4.17) and from Lemma 4.1 that there exists a process

M̃ ∈ CA(G) such that

lim
n→∞

E sup
s≤t

∣M̃ (n)
s∧τm − M̃s∧τm ∣

2
= 0, m ∈ N, t ∈ [0,∞).(4.18)

Since the process (M̃t∧τm)t≥0 ∈ CA(G) is a pointwise L1-limit of martingales (M̃ (n)

t∧τm
)t≥0 ∈

CM(G), it is also a G-martingale, and we get that M̃ ∈ CMloc(G). Further, since we assume

that H̃ ≥ 0 in this step of the proof, we get from the Monotone Convergence Theorem
the first equality in

∫

t∧τm
0 H̃ dL = lim

n→∞
∫

t∧τm
0 1GnH̃ dL

as
= P- lim

n→∞
(X (n)

t∧τm
− M̃ (n)

t∧τm
)

as
= Xt∧τm − M̃t∧τm ,(4.19)

m ∈ N. The last equality follows from the properties of continuous integration and from
(4.16,4.18). The middle equality in (4.19) follows from the definition of M̃ (n) in (4.16).
If we let m→∞ in (4.19), we obtain the equality (4.13).

2. In general, the assumptions of the proposition ensure that there exists a �-progressive
projection H̃ of H to G. We will show that H̃+, H̃−

≥ 0 are �-progressive projections of

H (+) def
== H1

[H̃>0] and H (−) def
== −H1

[H̃≤0],

respectively. As H̃ is a �-progressive projection of H to G, Lemma 3.18 (i) first gives that

∫G
H̃+d� = ∫G+ H̃d� = ∫G+Hd� = ∫GH

(+)d�, G ∈ M(G)H ,(4.20)



56 P. DOSTÁL AND T. MACH

holds with G+ def
== {� ∈ G; H̃(�) > 0} and further that H̃+ is a �-progressive projection of

H (+) to G as the measure (∫G
∣H(+)

∣d�)G∈M(G) is dominated by a σ-finite measure

(∫G
∣H ∣d�)G∈M(G).

As the progressive projection is linear by Lemma 3.18 (ii,iii), we get that also H̃−
=

H̃+
− H̃ ∈ L(M(G)) is a �-progressive projection of H (−)

=H (+)

−H to G as follows

P
P
G(H

(−)

)
ae
= P

P
G(H

(+)

−H)
ae
= P

P
G(H

(+)

) − P
P
G(H)

ae
= H̃+

− H̃ = H̃−.

Hence, the assumptions of the first part of the proof are satisfied with (X,M,H, H̃)

replaced by (X (+),M (+),H (+), H̃+
) and the same holds with ’+’ replaced by ’−’, where

X (+) def
== ∫ 1

[H̃>0] dX ∈ CA(G), M (+) def
== ∫ 1

[H̃>0] dM ∈ CMloc(F),

and where X (−) def
== X (+)

−X ∈ CA(G),M (−) def
== M (+)

−M ∈ CMloc(F). So, by the first part

of the proof we get that there exist M̃ (+), M̃ (−)

∈ CMloc(G) such that

X (+) as
= M̃ (+)

+ ∫ H̃
+
udu, X (−) as

= M̃ (−)

+ ∫ H̃
−
udu.(4.21)

Then H̃ = H̃+
− H̃−

∈ M̃
1
(G), M̃ def

== M̃ (+)

− M̃ (−)

∈ CMloc(G) and (4.13) holds. As G is
assumed to be an enriched filtration, we get from Lemma A.15 (2) that N G

∞ ⊆ G0. Then

we have that H̃
ae
= Ĥ def

== (H̃t1Ω/N)t≥0 ∈ M
1
(G), where

N def
== {ω ∈ Ω;∃n ∈ N ∫

n
0 ∣H̃s(ω)∣ds = ∞} ∈ N G

∞ ⊆ G0.

Thus, we have that the process Ĥ is (similarly as H̃) also a �-progressive projection of

H to G, the process M̂ ∈ CA(G) is well-defined by (3.20) and equal to M̃ ∈ CMloc(G) up

to a null set, which means that M̂ ∈ CMloc(G) holds. �

4.5. Proof of Lemma 3.24.

Proof. Denote by bM(G ) the set of all bounded G -progressive processes. We will
show that

X
def
== {X ∈ bM(G ); ∀ t ∈ [0,∞) E[∫

t
0XuHudu] = E[∫

t
0XuĤudu] } = bM(G ),(4.22)

where Ĥ ∈ L(M(G )) is a process satisfying (3.21).

1. First, we will show that X contains processes of the form

X = 1(s,∞)×G, where G ∈ Gs, s ∈ [0,∞).(4.23)

Let t ∈ [s,∞). If u ∈ [s, t], then G ∈ Gs ⊆ Gu and by (3.21) we have that E[Ĥu;G] =

E[Hu;G] holds, which together with the Fubini Theorem gives

E[∫
t

0XuHu du] = ∫
t
s E[Hu;G]du = ∫

t
s E[Ĥu;G]du = E[∫

t
0XuĤu du].

If t ∈ [0, s), the desired equality holds as both sides are equal to zero regardless of H, Ĥ.

2. If X is bounded and so called G -simple process according to Definition A.12, then
X1Ωt is a linear combination of processes of type (4.23) multiplied by 1Ωt . Hence, it is
enough to use simple calculations in order to obtain from the step 1 that X ∈ X holds
also in this case.

3. As E[∫
t

0 ∣Hu∣du] < ∞ holds by assumption if t ∈ [0,∞), we get from the Dominated Con-
vergence Theorem that X is closed under bounded pointwise convergence (and bounded
convergence �-a.e.). If X ∈ CA(G ) is bounded, then the following processes are G -simple,
equally bounded and converging to X almost everywhere

X (n) def
== (∑

∞
k=0Xk/n1[k<tn≤k+1])t≥0

, n ∈ N,(4.24)
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and since {X (n)
}
∞
n=1 ⊆ X holds by step 2, we get that also X ∈ X . Finally, if X ∈ bM(G ),

similar arguments can be used in order to get that X ∈ X holds, this time with

X (n) def
== n(∫

t
(t−1/n)+Xs ds)t≥0 ∈ CA(G ), n ∈ N,

equally bounded and converging to X �-almost everywhere. Hence, we have (4.22).

4. If H ∈ M(G ) and ∫H∣H ∣d� < ∞, then by the Monotone Convergence Theorem and step
3, we have that

∫H
∣Ĥ ∣d� = lim

n→∞
∫H∩Ωn

∣Ĥ ∣d� = lim
n→∞

∫H∩Ωn
sign(Ĥ)H d� ≤ ∫ ∣H ∣d� < ∞.

as sign(Ĥ) ∈ bM(G), and then we get from step 3 and the Dominated Convergence
Theorem that

∫H
H d� = lim

n→∞
∫ X

(n)H d� = lim
n→∞

∫ X
(n)Ĥ d� = ∫HĤ d�, X (n) def

== 1H∩Ωn ∈ bM(G ).

Now, it is enough to use Lemma 3.18 (i) in order to get that Ĥ ∈ L(M(G )) is a �-
progressive projection of H to G , since the measure (∫H

∣H ∣dν)H∈M(G ) is obviously σ-finite
as it is finite on sets Ωn ∈ M(G ), n ∈ N, by assumption that ∫ ∣Hs∣ds is an integrable
process. �

4.6. Proof of Lemma 3.26.

Proof. Let A def
== dom(P) = dom(Q) and put H def

== dP/dQ ∈ L(A) ⊆ M
1
(A ), where

At
def
== A, t ∈ [0,∞). Then Ĥ def

== D̂ ∈ L(M(G )), where

D̂t
as
=

dP∣Gt

dQ∣Gt

as
= EQ[

dP
dQ

∣Gt]
as
= EQ[Ht∣Gt], EQ∫

t
0 ∣Hs∣ds = ∫

t
0 EQ

dP
dQ

dL = t < ∞, t ∈ [0,∞).

Then we get from Lemma 3.24 that D̂ is a �-progressive projection of dP/dQ to G , where
� def
== L⊗Q, and we get from Lemma 3.18 and the Monotone Convergence Theorem that

�(G) = lim
n→∞

�(G ∩Ωn) = lim
n→∞

∫G∩Ωn

d�
d� d�

= lim
n→∞

∫G∩Ωn

dP
dQ

d� = lim
n→∞

∫G∩Ωn
D̂d� = ∫G

D̂d�

holds whenever G ∈ M(G ), since d�
d�

ae
=

dP
dQ

, where � def
== L⊗P, see Remark 3.25. �

4.7. Proof of Lemma 3.27.

Proof. (i) See Remark 3.25 in order to agree that it is enough to verify that D̂ is a �-
progressive projection of D to G . Obviously, �,� are σ-finite measures on B∞ ⊗F∞ as
their measure of Ωn is a finite value n whenever n ∈ N, and similarly we get that their
restrictions toM(G ) are also σ-finite. Then sinceM(G ) ⊆ B∞⊗F∞, we obtain from the

definition of D̂ and from Lemma 3.18 (i) that D̂ is equal to the �-progressive projection
of D to G up to a �-null set.

(ii) First, we get from (i) that

µ(+)

(G)
def
== ∫G

H+ d� = ∫GDH
+ d�, G ∈ M(G ),(4.25)

and that the same holds with + replaced by −. If we sum these two equalities, we get

that PP
G (H) exists if and only if PQG (DH) exists, since both statements are equivalent

to the statement that µ(+)

+µ(−) is a σ-finite measure onM(G ). Then if these statements
hold, we get that

P
Q
G (DH)

ae
=

dµ(+)

d�∣M(G )
−

dµ(−)

d�∣M(G )

ae
= (

dµ(+)

d�∣M(G )
−

dµ(−)

d�∣M(G )
)

d�∣M(G )

d�∣M(G )

ae
= P

P
G (H) D̂.

�



58 P. DOSTÁL AND T. MACH

4.8. Proof of Proposition 3.28.

Proof. As E ∈ L(M(G ) ⊗D) ⊆ L(M(G ⊗D)) ⊆ A(G ⊗D) holds by Lemma A.21, we get
that Et ∈ L(Gt ⊗D) holds if t ∈ [0,∞) and since Y is Q-independent of G∞ ⊇ Gt, we have
by (3.25) that

0 < Ẽt
def
== ∫ E (y)

t dQY (y)
as
= EQ[E (Y )

t ∣Gt]
as
= EQ[

dP∣Ft

dQ∣Ft
∣Gt]

as
=

dP∣Gt

dQ∣Gt
, t ≥ 0,(4.26)

as EQ[E (Y )

t ] = 1 < ∞. Then we get from Lemmas 3.26 and 3.27 and from (3.25, 4.26) that

E (Y ) ae
=

d�∣M(F)

d�∣M(F)
, L(M(G )) ∋ Ê def

== Ẽ 1
[Ẽ<∞]

+ 1
[Ẽ=∞]

ae
= Ẽ

ae
=

d�∣M(G )

d�∣M(G )
(4.27)

are �-progressive projections of the following process to F and to G , respectively,

D def
==

dP∣F∞
dQ∣F∞

, where � def
== L⊗Q.

Then we have from Definition 3.16 and from (4.27) that also Ê is a �-progressive pro-

jection of D to G . Then as M(G ) ⊆ M(F ), we get from Lemma 3.18 (iv) that Ê is
a �-progressive projection of E (Y ) to G .

(i) Note that from the previous step of the proof we have that

P
Q
F (D)

ae
= E (Y ), D̂ def

==
d�∣M(G )

d�∣M(G )

ae
= P

Q
G (D)

ae
= Ê .(4.28)

By assumption H has a �-progressive projection Ĥ to G , which by Lemma 3.27 (ii)
means that there exists a �-progressive projection of HD to G and that it is of the form

P
Q
G (HD)

ae
= ĤD̂. Hence, in order to verify (3.26), we just have to show that

∫ h(y)E
(y)dQY (y)

ae
= P

Q
G (HD).(4.29)

As HD has a �-progressive projection to G and as H ∈ M
1
(F ) holds by assumption, we

get from Lemma 3.18 (iv) and Remark 3.20 and from (4.28) that

P
Q
G (HD)

ae
= P

Q
G P

Q
F (HD)

ae
= P

Q
G [HPQF (D)]

ae
= P

Q
G [HE (Y )

].(4.30)

By Lemma A.21 (i), M(G ) ⊗ D ⊆ M(G ⊗ D). Since Y is Q-independent of G∞ and
1G×DhE ∈ L(M(G )⊗D)⊆ L(M(G ⊗D)) ⊆ A(G ⊗D) holds if G ∈ M(G ), we get from the
Fubini Theorem (similarly as at the beginning of the proof) that

∫G
HE (Y )d� = ∫

∞

0 ∫Ω1G(t)ht(Y )E (Y )

t dQdt = ∫
∞

0 ∫Ω1G(t) ∫Dht(y)E (y)

t dQY (y)dQdt

= ∫G∫Dh(y)E (y)dQY (y)d� if G ∈ M(G ) is s.t. ∫G
∣H ∣E (Y ) d� < ∞.

Then we get from Lemma 3.18 and from (4.30) that (4.29) really holds. �

4.9. Proof of Theorem 3.30.

Remark 4.3. If X is an F -predictable R-valued process and τ an F -stopping time, then
Xτ1[τ<∞] ∈ L(Fτ−). If the process X is left-continuous, it can be seen as follows

Xτ1[τ<∞] =X01[τ=0] + limn→∞∑
∞
k=0Xk/n1[k<nτ≤k+1] ∈ L(Fτ−),

and then it can be easily extended to all F -predictable real-valued processes X.

Proof of Theorem 3.30. 1. First, assume that Xt(ω) = 1A(ω)1[u≤t<v], where A ∈ A and
0 ≤ u < v. From Theorem 6.27 in [13], we get that there exists a P-null set N ∈ A such
that the process Z def

== 1Ω/NY+ is right-continuous with (finite) left-hand limits (rcll),

where Y def
== (P[A∣Fq])Q∋q≥0 and where Y+(ω) is defined as Yt+(ω) at time t ∈ [0,∞) if

the corresponding limit exists. Then, see Notation A.5,

Ũ def
== (∃ lim

n→∞
U

(n+1)
t+2−n )

t≥0
= Y+ = Z on Ω/N, where(4.31)

U (n) def
== ∑

∞
k=0Yk2−n1(k2−n,(k+1)2−n](4.32)
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are F -predictable processes as well as (U
(n)

(t−a)+)t≥0 if a ∈ [0,∞), n ∈ N, since these pro-

cesses are left-continuous and F -adapted. Then we get, with the help of Proposition A.7,
that also the following processes are F -predictable

pX def
== M1[u,v), M

def
== (∃ lim

m→∞
∃ lim
m≤n→∞

U
(n+1)

(t+2−n−2−m)+)t≥0
= (∃ lim

m→∞
Ũ(t−2−m)+)t≥0

.(4.33)

Hence, (i) is satisfied and it remains to show (ii) which is in this case of the form

∀τ F -predictable time (
pX)τ1[τ<∞]

as
= P(A∣Fτ−)1[u≤τ<v].(4.34)

In order to show (4.34), we may assume that the probability space (Ω,A,P) is complete.
Let F stand for the smallest complete and right-continuous extension of F , called aug-
mentation in [13]. From the above mentioned Theorem 6.27 in [13] and its proof, we
have that the process Z is an F-martingale, and then from Theorems 6.23 and 6.29 in
[13] we obtain that

P(A∣Fτ)1[τ<∞]
as
= lim

N∋n→∞
E[Zn∣Fτ ]1[τ<∞]

as
= lim

N∋n→∞
Zn∧τ1[τ<∞]

as
= Zτ1[τ<∞](4.35)

if τ is an F-stopping time. From (4.31,4.33) we get that pX = Z−1[u,v) on Ω/N, where

Z−
def
== (Zt−1[t>0] +Z01[t=0])t≥0.

As in the proof of Theorem I.2.28 in [12], we obtain from Lemma I.2.27 in [12] and from
(4.35) that

(
pX)τ1[τ<∞]

as
= (Z−)τ1[u≤τ<v]

as
= E[Zτ ∣Fτ−]1[u≤τ<v](4.36)

as
= E[P(A∣Fτ)∣Fτ−]1[u≤τ<v]

as
= E[Xτ ∣Fτ−](4.37)

if τ is an F-predictable time. If τ is an F -predictable time, it is also an F-predictable
time, and then as (

pX)τ ∈ L(Fτ−) holds by Remark 4.3, we get from (4.36,4.37) that

(
pX)τ1[τ<∞]

as
= E[(pX)τ ∣Fτ−]1[τ<∞]

as
= E[E[Xτ ∣Fτ−]∣Fτ−]1[τ<∞]

as
= E[Xτ ∣Fτ−]1[τ<∞],

which corresponds to (4.34).
2. In general, see the steps 2,3,4 in the proof of Theorem I.2.28 in [12] in order to

get to know how to obtain the corresponding results first for bounded processes, then for
non-negative ones and finally for any [−∞,∞]-valued process X. �

4.10. Proof of Lemma 3.31.

Proof. (ii) Without loss of generality, we may assume that the process X attains real

values. If it is left-continuous, then also X̃ def
== (Xt1[t>0])t≥0 is a left-continuous process,

and hence to verify that X̃ is F -predictable, it is enough to show that it F -adapted,
which can be seen as follows

X̃t = limn→∞∑
∞
k=0Xk/n1[k<nt≤k+1] ∈ L(Ft), t ∈ [0,∞),

since Xs ∈ L(F
+
s ) = L(Fs+) ⊆ L(Ft) if 0 ≤ s < t < ∞. Hence, the set

X def
== {X ∈ A(F+

); (Xt1[t>0])t≥0 is F -predictable}

contains all left-continuous F+-adapted processes and as X is closed under the pointwise
convergence, it contains all F+-predictable real-valued processes.

(i) Since τ is an F+-predictable time, the process X def
== (1[τ≤t])t≥0 is F+-predictable,

which by (ii) means that X̃ def
== (1[τ≤t,t>0])t≥0 is F -predictable. Further, the process

Y def
== (1[τ>0,t>0])t≥0 is left-continuous and F -adapted, hence it is also F -predictable.

Here, we have used that Y0 = 0 ∈ L(F0) and that Yt ∈ L(F
+
0 ) ⊆ L(Ft) whenever t ∈ (0,∞).

Thus, we have that also the product

Z def
== X̃Y = (1[0<τ≤t])t≥0 = (1[τ̃≤t])t≥0
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is also an F -predictable process which means that τ̃ is an F -predictable time.

(iii) 1. If the filtration F is right-continuous, the statement follows from [12, Propo-
sition I.2.18].
2. In general, since the process X is F -predictable, it is also F+-predictable and to get

that X
as
= 0, it is enough by the first step of this part of the proof to verify that

0
as
= Xτ1[τ<∞](4.38)

holds whenever τ is an F+-predictable time.
Let τ be an F+-predictable time. By (i) we have that τ̃ is an F -predictable time. Then

0
as
= Xτ̃1[τ̃<∞] = Xτ1[0<τ<∞] holds by assumption on X. Hence, to get (4.38) it remains

to show that 0
as
= Xτ1[τ=0] and it follows from X0

as
= 0, which holds by assumption as 0 is

an F -predictable time. �

4.11. Proof of Lemma 3.33.

Remark 4.4. Let (Ω,A,P,F ) be a filtered probability space and let X, X̄ ∈ L(B∞⊗A) be
such that X ≤ X̄, then the corresponding F -predictable projections satisfy the inequality
pX ≤

pX̄ almost surely. It can be seen as follows. If τ is a F -predictable time, by (3.27)
we have that

(
pX)τ1[τ<∞]

as
= lim
m→−∞

lim
n→∞

E[n ∧Xτ ∨m; τ < ∞∣Fτ−]

as
≤ lim
m→−∞

lim
n→∞

E[n ∧ X̄τ ∨m; τ < ∞∣Fτ−]
as
= (

pX̄)τ1[τ<∞],

which gives us that also pX ∨
pX̄ plays the role of an F -predictable projection of X̄,

and then we get from its uniqueness, see Remark 3.32, that pX ∨
pX̄

as
=
pX̄, i.e., pX ≤

pX̄
almost surely.

Definition 4.5. Let G be a filtration, a set G ⊆ Ω∞ is called G -predictable if 1G is a G -
predictable process. Note that the set of all G -predictable sets is a σ-algebra, cf. Defini-
tion 3.29.

Remark 4.6. If G ∈ M(G ), then there exists a G -predictable set Ĝ such that 1G
ae
= 1Ĝ. It

can be seen as follows. Put 0 ≤ H def
== 1G, then H def

== ∫ Ht dt ∈ CI(G ) is a G -predictable
process as well as

Ĥ def
== (∃ lim

n→∞
n[Ht −H(t−1/n)+])t≥0

ae
= H ′ ae

= H = 1G,

see Proposition A.7. Then Ĝ def
== Ĥ−1

{1} is a G -predictable set such that 1Ĝ
ae
= 1G.

Proof of Lemma 3.33. 1. As every left-continuous G -adapted process is G -progressive,
we get that any G -predictable real-valued process is also G -progressive. In particular,

any G -predictable set is inM(G ). Hence, as the G -predictable projection of ∣H ∣, say ̂
∣H ∣,

is G -predictable, we have that

G(n) def
== Ωn ∩ ̂

∣H ∣

−1
[0, n] ∈ M(G ), n ∈ N, G(0) def

== Ω∞/ ∪
∞
n=1 G

(n)
∈ M(G ),

and from Remark 4.3 we have that

G
(n)
t

def
== {ω ∈ Ω; (t, ω) ∈ G(n)

} = [
̂
∣H ∣t ≤ n] ∩ [t ≤ n] ∈ Gt−, t ∈ [0,∞), n ∈ N,

and then as ̂
∣H ∣ is a G -predictable projection of ∣H ∣, we get that

∫G(n) ∣H ∣d� = ∫
∞

0 E[∣Ht∣;G
(n)
t ]dt = ∫

n
0 E[̂∣H ∣t;

̂
∣H ∣t ≤ n]dt ≤ n2

< ∞, n ∈ N.

Hence, if ̂
∣H ∣

ae
< ∞, G(0) is a �-null set, and it gives us that H has a G -progressive

projection.

2. On the other hand, let us assume that H has a G -progressive projection. Then
there are G[n]

∈ M(G ), n ∈ N, that unite to Ω∞ such that we have the first inequality in
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(4.39). Moreover, we have from Remark 4.6 that there are G -predictable sets Ĝ[n] such

that 1Ĝ[n]
ae
= 1G[n] , n ∈ N, which gives us the second equality in

∞ > ∫G[n] ∣H ∣d� = ∫
∞

0 E[∣Ht∣;G
[n]
t ]dt = ∫

∞

0 E[∣Ht∣; Ĝ
[n]
t ]dt(4.39)

= ∫

∞

0 E[̂∣H ∣t; Ĝ
[n]
t ]dt = ∫Ĝ[n]

̂
∣H ∣d�,(4.40)

while the third one follows as ̂
∣H ∣ is a G -predictable projection of ∣H ∣ and as

Ĝ
[n]
t

def
== {ω ∈ Ω; (t, ω) ∈ Ĝ[n]

} ∈ Gt−, t ∈ [0,∞),

holds by Remark 4.3. From (4.39,4.40), we get that ̂
∣H ∣ is finite �-almost everywhere on

∪nĜ
[n] which differs from ∪

∞
n=1G

[n]
= Ω∞ only about a �-null set. Hence, ̂

∣H ∣

ae
< ∞.

3. Let ̂
∣H ∣

ae
< ∞ and let Ĥ be a G -predictable projection of H. Since ∣H ∣ ≥ 0, we obtain

from the corresponding definition that the G -predictable projection of −∣H ∣ equals to

−
̂
∣H ∣ almost surely, and then we have from Remark 4.4 that

−∞

ae
< −

̂
∣H ∣

as
≤ Ĥ

as
≤
̂
∣H ∣

ae
< ∞, i.e., R(Ĥ)

ae
= Ĥ.

Later on, we will need the following property

∀ t ∈ (0,∞) ∀Gt ∈ Gt− (E[∣Ht∣;Gt] < ∞ ⇒ E[Ht;Gt] = E[Ĥt;Gt] ).(4.41)

If the condition in (4.41) is satisfied, then Ht1Gt

as
= L1limm→−∞ L1limn→∞(n∧Ht∨m)1Gt

and as the conditional expectation preserves the convergence in L1, we also have that

E[Ht;Gt∣Gt−]
as
= L1 lim

m→−∞
L1 lim
n→∞

E[n ∧Ht ∨m;Gt∣Gt−]

as
= lim
m→−∞

lim
n→∞

E[n ∧Ht ∨m∣Gt−]1Gt

as
= Ĥt1Gt

as Ĥ is a G -predictable projection of H and as t is a G -predictable time. Then (4.41)
follows immediately.

Let G ∈ M(G ) be s.t. ∫G∣H ∣d� < ∞. As in the previous step, we get from Remark 4.6

a G -predictable set Ĝ, which differs from G about a �-null set. Then Ĝt
def
== {ω ∈ Ω; (t, ω) ∈

Ĝ} ∈ L(Gt−) by Remark 4.3 and ∞ > ∫G
∣H ∣d� = ∫Ĝ∣H ∣d� = ∫

∞

0 E[∣Ht∣; Ĝt]dt. In particular,

E[∣Ht∣; Ĝt] < ∞ holds for almost every t ∈ (0,∞) and then we get from (4.41) that

∫G
H d� = ∫ĜH d� = ∫

∞

0 E[Ht; Ĝt]dt = ∫
∞

0 E[Ĥt; Ĝt]dt = ∫ĜĤ d� = ∫GR(Ĥ)d�.(4.42)

Then we get from Lemma 3.18 that R(Ĥ) is really a G -progressive projection of H. �

4.12. Proof of Lemma 3.37.

Proof. (i) First, we get from Lemma A.15 (3) that X̂ ∈ CA(F̂). As 0
as
= D def

== X̂ − X̂ ∈

CA(F̂), we get immediately from the definition that D ∈ CMloc(F̂). Let Â ∈ CFV (F̂) ⊆

CFV (F̂) and M̂ ∈ CMloc(F̂) ⊆ CMloc(F̂) be such that X̂ = Â + M̂. Then X̂ = M̂ + Â,

where M̂ def
== M̂ +D ∈ CMloc(F̂).

(ii) It follows from Proposition 3.22 once we verify that

�̂H def
== (∫G

∣H ∣d�)
G∈M(F̂)

is a σ-finite measure.(4.43)

First, (4.43) holds with F̂ is replaced by F̂ , since

Ĝn
def
== {� ∈ Ωn; ∣H(�)∣ ≤ n} ∈M(F̂), n ∈ N,

are such that ∫Ĝn
∣H ∣d� < ∞ and they unite to Ω. Then as F̂ = F

Ŝ,F , we get from

Lemmas A.23 and A.24 (applied to 1Cn obtained from Lemma A.23) that there exist
Cn ∈ M(C k

), n ∈ N, such that

∫ ∣1Ĝn
− 1Ĝn

∣d� = 0 holds with Ĝn
def
== Ŝ

−1Cn ∈ M(F̂ ) ⊆M(F̂), n ∈ N.
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Then we get that (4.43) holds as we have a sequence (Ĝn)
∞
n=0 ∈ M(F̂)

N0 of �̂H -finite sets

that unite to Ω∞, where G0
def
== Ω∞/ ∪

∞
n=1 Ĝn is a �-null (and also �̂H -null) set.

(iii) By Lemma A.23 there exist N ∈ N F,P
∞ and h ∈ L(M(Cm+1

)⊗S) such that (A.24)

holds with (X,Z,z) replaced by (Ŝ,H,h). Then we get that the equality in (3.30) on

the right holds with H def
== (h(Ŝ,s))

s∈S
and from Lemma A.24 that H ∈ L(M(F̂ )⊗S) as

obviously Ŝ ∈ CA(F̂ )
m+1.

(iv) It is enough to omit “⊗S” in both its occurrences in the proof of (iii). �

4.13. Proof of Lemma 3.38.

Proof. (ii) By assumption, the measure (∫G
∣H ∣d�)G∈M(F̂)

is σ-finite and our first goal

is to show that the same holds with F̂ replaced by F̂ . Let Ĝn ∈ M(F̂) be such that

∫Ĝn
∣H ∣d� < ∞, n ∈ N, with ∪

∞
n=1Ĝn = Ω∞. From Lemma 3.37 (iv), we obtain that there

are Ĝn ∈ M(F̂ ) ⊆ M(F̂) such that 1Ĝn

ae
= 1Ĝn

, n ∈ N. Then ∫Ĝn
∣H ∣d� < ∞, n ∈ N0, where

Ĝ0
def
== Ω∞/ ∪

∞
n=1 Ĝn ∈ M(F̂) is a �-null set.

Let Ĥ be a �-progressive projection of H to F̂ . By Lemma 3.37 (iv) there exists

Ĥ ∈ L(M(F̂ )) ⊆ L(M(F̂)) such that Ĥ
ae
= Ĥ and then we get from Lemma 3.18 (i) that

∀G ∈ M(F̂) ⊆M(F̂) ( ∫G
∣H ∣d� < ∞ ⇒ ∫G

Ĥ d� = ∫GĤ d� = ∫GH d� ),

and by the second use of Lemma 3.18 (i), Ĥ is a �-progressive projection of H to F̂ .

(i) If H has a �-progressive projection Ĥ to F̂ , then H has also a �-progressive pro-

jection to F̂ , say Ĥ, as a measure extending a σ-finite measure is also σ-finite. From

(ii) we get that H has a �-progressive projection H̃ to F̂ such that H̃
ae
= Ĥ and from

the uniqueness of the projection, we have that Ĥ
ae
= H̃

ae
= Ĥ ∈ L(M(F̂)) ⊆ L(M(F̂)),

which according to the just mentioned uniqueness of the projection shows that Ĥ is really
a �-progressive projection of H to F̂ . �

4.14. Proof of Lemma 3.39.

Proof. Since α(0)
∈ M

1
(F), we get from (3.4) that

CA(F) ∋X def
== ∫ α

(0)
s ds

as
= X̂ def

== ln(S(0)
/S

(0)

0 ) ∈ CA(F̂) ⊆ CA(F̂),

and then from Lemma A.15 (3) that also X ∈ CA(F̂). As X is a process with locally abso-

lutely continuous trajectories equal to X̂ almost surely, we get from Proposition A.7 that

α(0) ae
= α̂ (0) def

== (∃ lim
n→∞

n[Xt −X(t−1/n)+])t≥0 ∈ L(M(F̂)),

α̂ (0) as
= α̃(0) def

== (∃ lim
n→∞

n[X̂t − X̂(t−1/n)+])t≥0 ∈ L(M(F̂)).

Since α(0)
∈ M

1
(F), we get from the definition of α̂ (0) that ∫

t
0 ∣α̃(0)

s ∣ds
as
= ∫

t
0 ∣α̂ (0)

s ∣ds =

∫

t
0 ∣α(0)

s ∣ds < ∞, t ∈ [0,∞). Further, we get from (3.6, 3.7) that ∫ Σsds
as
= ⟨⟨V ⟩⟩

as
= ⟨⟨(lnS(i)

)
m
i=1⟩⟩.

As F̂ is defined as an enriched filtration and S ∈ CS(F̂)
m, we are able to obtain from

Corollary A.17 that there exists

CFV (F̂)
m×m

⊇ CFV (F̂)
m×m

∋ K
as
= (⟨lnS(i), lnS(j)

⟩)
m

ij=1

as
= ∫ Σs ds ∈ CA(F)

m×m,(4.44)

where the last relation comes from the assumption that Σ ∈ M
2
(F)

m×m. From Lem-

ma A.15 (3), we also get that ∫ Σs ds ∈ CA(F̂)
m×m. Then Proposition A.7 gives that

Σ̃ def
== (∃ lim

n→∞
n∫

t
(t−1/n)+Σsds)t≥0

∈ L(M(F̂))
m×m.(4.45)
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Here, Σ̃t(ω) ∈ R
m×m does not have to be positive semidefinite for every t ≥ 0 and ω ∈ Ω,

but as the considered market is assumed to be regular, we get from (4.45) that

0 < σσ
T

= Σ
ae
= Σ̃, and hence 0 < Σ̂ def

== 1m + (Σ̃ − 1m)1
[Σ̃>0]

ae
= Σ̃.(4.46)

Then 0 < Σ̂ ∈ L(M(F̂))
m×m and ∫

t
0 tr{Σ̂s}ds = ∫

t
0 tr{Σs}ds < ∞, t ∈ [0,∞), and this

verifies that Σ̂ ∈ M
1
(F̂)

m×m since Σ̂ > 0 holds by (4.46).

If we replace ∫
t
(t−1/n)+Σsds in (4.45) by Kt − K(t−1/n)+ and if we consider a similar

modification as in (4.46), we obtain with the help of (4.44) that there exists 0 < Σ̃ ∈

L(M(F̂))
m×m such that Σ̃

as
= Σ̂. Finally, it is enough to put

α̂(0) def
== 1Aα̃

(0)
∈ M

1
(F̂), 0 < Σ̂ def

== 1m + 1A(Σ̃ − 1m) ∈ M
1
(F̂)

m×m,

where A def
== [∀n ∈ N ∫

n
0 (∣α̃(0)

s ∣ + tr{Σ̃s})ds < ∞] ∈ σ(N F̂
∞ ) ⊆ F̂0 holds by Lemma A.15 (2).

�

4.15. Proof of Proposition 3.44.

Proof. (i) As mentioned in Definition 3.1, V ∈ CA(F̂)
m. Since α ∈ M

1
(F)

m, we get from
(3.7) that

CA(F)
m
∋M def

== V − ∫ αtdt
as
= ∫ σdB ∈ CMloc(F)

m,

which ensures that also M ∈ CMloc(F)
m. Then since the considered market is assumed

to be filterable, we are allowed to use Proposition 3.22 in order to get that there exists
a �-progressive projection α̂ ∈ M

1
(F̂)

m of α to F̂ such that

M̂ def
== V − ∫ α̂u du ∈ CMloc(F̂)

m, i.e., V ∈ CS(F̂)
m,(4.47)

and then obviously also V̂ ∈ CS(F̂)
m. A similar usage of Proposition 3.22 would give

us with the help of (3.1) that also S ∈ CS(F̂)
m. Just in order to make clear that all

assumptions are satisfied, it is helpful to realize first that S ∈ CA(F)
m and α ∈ M

1
(F)

m

ensure that (S
(i)α(i)

)
m
i=1 ∈ M

1
(F)

m, (which is the vector of drift coefficients of S) and
second, that this process has a �-progressive projection (S

(i)α̂(i)
)
m
i=1 which follows for

example by Lemma 3.18 (iii). Finally, we get from (3.10) that V
as
= V̂ holds as α̂(0) ae

= α(0)

and since V ∈ CA(F)
m, we get from Lemma 3.37 (i) that V ∈ CS(F̂)

m holds.

(ii) Let π̂ be the position of (ϕ̂ (0), ϕ̂ ), π̂
ae
= θ̂ be the position of (ϕ̂(0), ϕ̂) and let α̂ be

as in (3.33). From (3.10) and (4.47), we get that

V
as
= M̂ + ∫ (α̂s − α

(0)
s 1m)ds

as
= M̂ + ∫ Σsθ̂sds

since α̂
ae
= α(0)1m +Σθ̂ as stated in Definition 3.42. From (3.11) we get that

ln (Ŵt/Ŵ0)
as
= ∫

t
0 π̂

T

dV + ∫

t
0 (α(0)

s −
1
2
π̂

T

sΣsπ̂s)ds

and that the same holds with (Ŵ, π̂) replaced by (Ŵ, θ̂). Then we get that

ln (
Ŵt/Ŵ0

Ŵt/Ŵ0
)

as
= ∫

t
0 [(π̂ − θ̂)

T

dV −
1
2 ∫

t
0 (π̂

T

sΣsπ̂s − θ̂s
T

Σsθ̂s)ds]
as
= Lt −

1
2
⟨L⟩t,

where L ∈ CMloc(F̂) is from Corollary A.17 such that L
as
= ∫ (π̃ − θ̂)

T
dM̂. Then similarly

as in the end of the proof of Proposition 3.13, we obtain by Lemma 2.27 in [9] that (3.35)
holds.

(iii) As σ ∈ M
2
(F̂)

m×m has regular values by assumption, we have that H def
== σ−1

∈

L(M(F̂))
m×m. Further note that ⟨⟨M̂⟩⟩

as
= ⟨⟨V ⟩⟩

as
= ∫ σtσ

T

tdt and that ∫
t

0 tr{H
T
Hd⟨⟨M̂⟩⟩}

as
=

tm < ∞, t ∈ [0,∞), and since M̂ ∈ CMloc(F̂)
m by (4.47), we get that from Corollary A.32

that there exists

CMloc(F̂)
m
∋ B̂

as
= ∫ HdM̂, s.t. M̂

as
= ∫ σdB̂, ⟨⟨B̂⟩⟩t

as
= t1m, t ∈ [0,∞).(4.48)
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Then we get by the Lévy Characterization Theorem, see Proposition A.26, that B̂ is really
an m-dimensional standard F̂-Brownian motion. Finally, we get that (3.36) follows from
(4.47,4.48). �

Appendix A.

Lemma A.1. Let X ∶ U → D, Y ∶ V → T be maps and (D,D), (T,T ) measurable spaces.
Then

σ(X ⊙ Y )
def
== {(X ⊙ Y )

−1C;C ∈ D ⊗ T } = σ(X) ⊗ σ(Y ),

where σ(X)
def
== {X−1D;D ∈ D}, σ(Y )

def
== {Y −1T ;T ∈ T }.

Proof. If D ∈ D, T ∈ T , then C def
== D × T ∈ D ⊗ T and X−1D × Y −1T = (X ⊙ Y )

−1C ∈

σ(X ⊙ Y ). Hence, we get that

σ(X) ⊗ σ(Y ) = σ{X−1D × Y −1T ;D ∈ D, T ∈ T } ⊆ σ(X ⊙ Y ).

On the other hand, H def
== {C ∈ D ⊗ T ; (X ⊙ Y )

−1C ∈ σ(X) ⊗ σ(Y )} is a σ-algebra
containing sets of type D × T,D ∈ D, T ∈ T . Hence, H = D ⊗ T which means that also
σ(X ⊙ Y ) ⊆ σ(X) ⊗ σ(Y ). �

A.1. Continuous processes and their convergence. We will now introduce the ab-
solute Cauchy property and absolute convergence in metric spaces, which will soon come
in handy.

Definition A.2. Let (E,d) be a metric space. We say that (xn)
∞
n=1 ∈ E

N is an absolute
d-Cauchy sequence in E if

∑

n∈N

d(xn, xn+1) < ∞.

If such a sequence also converges to x ∈ E, i.e., if d(xn, x) → 0 as n → ∞, we say that
(xn)

∞
n=1 converges in d to x absolutely and we write xn Ð→abs x,n → ∞. If it is clear from

the context, we will omit the link to the considered metric d in the notation introduced
above.

Remark A.3. (i) Every absolutely Cauchy sequence is a Cauchy sequence by the triangle
inequality.
(ii) Every Cauchy sequence has an absolutely Cauchy subsequence.

Proposition A.4. A metric space (E,d) is complete if and only if every absolute Cauchy
sequence is convergent.

Proof. If the metric space (E,d) is complete, use (i) of Remark A.3 in order to verify
that every absolute Cauchy sequence is convergent by the definition of a complete metric
space. On the other hand, in order to show that a metric space is complete, it is enough
to show that every Cauchy sequence has a convergent subsequence.

Now, let us assume that every absolute Cauchy sequence is convergent and consider
a Cauchy sequence. By Remark A.3 (ii), the sequence has an absolutely Cauchy subse-
quence, and we get from assumption that this subsequence is convergent. �

Notation A.5. Let B be a topological vector space with the zero element denoted as 0,
with the topology generated by a metric d and with the corresponding Borel σ-algebra
denoted as B. If {b(n)}∞n=1 ⊆ B, we put

(∃ d-lim
n→∞

b(n)) def
==

⎧
⎪⎪
⎨
⎪⎪
⎩

d-limn b
(n) if the limit in d exists as n→∞,

0 otherwise.

When it is clear from the context, we will suppress the dependence of the limit on the
corresponding metric in the notation.



PROGRESSIVE PROJECTION AND LOG-OPT INVESTMENT 65

Remark A.6. The notation introduced above will be used only in the two following cases.
First, if B = Rk is equipped with the Euclidean metric and second, if (B,B) = (Ck,C k

∞),
where k ∈ N.

Note that if {b(n)}∞n=1 ⊆ C, then (∃ limn b
(n)

) ∈ C, but (∃ limn b
(n)

t )t∈[0,∞) does not have
to be a continuous function. In particular, these two functions do not have to coincide
in general.

Proposition A.7. Let (Ω,A) be a measurable space. (i) Let (I (n)
)
∞
n=1 ∈ L(A,C∞)

N. Then

I def
== ∃ lim

n→∞
I (n)

∈ L(A,C∞).

(ii) Part (i) of the statement holds also with L(A,C∞) replaced by L(A).

Proof. (i) First, we will consider the set of all ω ∈ Ω such that (I (n)
(ω))∞n=1 is a convergent

sequence in C. As r is a complete metric, the corresponding set can be formally defined as

(A.1) A def
== {ω ∈ Ω; ∀k ∈ N ∃n0 ∈ N ∀m,n ≥ n0 r (I (n)

(ω), I (m)

(ω)) < 1/k}.

Since r (X,Y ) ∈ L(A) whenever X,Y ∈ C(Ω,A), as already mentioned at the beginning of
Definition 2.3, we immediately get that A ∈ A. Note that I 1A = I holds by the definition
of A and the definition of I. Further, we obtain from (A.1) and the definition of r that

r (I (n)1A, I 1A) = r (I (n), I)1A → 0 as n→∞.

As every projection pt ∶ C → R is a continuous function, belonging to L(C∞), we get that

It
def
== pt ○ I = pt ○ (I 1A) = lim

n→∞
pt ○ (I

(n) 1A) ∈ L(A), t ≥ 0.(A.2)

Further note that I ∈ CΩ holds by definition, i.e., I(ω) ∈ C whenever ω ∈ Ω. Then we get
from (A.2) that I ∈ C(Ω,A) = L(A,C∞), and then we get that the part (i) is verified.

(ii) The part (ii) can be shown similarly. It is more or less enough to replace L(A,C∞)

by L(A), r by Euclidean metric on R and to omit the part around (A.2). �

Lemma A.8. Let (X (n)
)
∞
n=1 ∈ C(Ω,A)

N be an absolutely �-Cauchy sequence. Then there
exists X ∈ C(Ω,A) such that r (X (n),X) → 0 as n→∞ almost surely.

Proof. By Proposition A.7 X def
== ∃ limnX

(n)
∈ C(Ω,A). By assumption,

∞ > ∑

n∈N

�(X (n),X (n + 1)
) = E∑

n∈N

r (X (n),X (n + 1)
), therefore ∞

as
> ∑

n∈N

r (X (n),X (n + 1)
).

As r is a complete metric, there exists an r -limit Y (ω) of the sequence X (n)
(ω) for P-

a.e. ω ∈ Ω, and then we immediately get X(ω) = Y (ω) holds for P-a.e. ω ∈ Ω by the
definition of X. �

Corollary A.9. Let X (n) abs
↝ X, then r (X (n),X) → 0 almost surely as n→∞.

Proof. By Lemma A.8, there exists Y ∈ C(Ω,A) such that r (X (n), Y ) → 0 as n → ∞

almost surely. Then we get by the Dominated Convergence Theorem, by the definition
of � and by the triangle inequality that �(X,Y ) ≤ �(X (n),X) + E[r (X (n), Y )] → 0 as

n→∞, i.e., �(X,Y ) = 0 which means that X
as
= Y. �

Proposition A.10. Metric � defined by (2.3) on C(Ω,A) is complete.

Proof. By Proposition A.4, it is enough to show that every absolutely �-Cauchy sequence,
say (X (n)

)
∞
n=1, is convergent in �. By Lemma A.8, there exists X ∈ C(Ω,A) such that

r (X (n),X) → 0 as n → ∞ almost surely. Then we get by the Dominated Convergence
Theorem that �(X (n),X) = E[r (X (n),X)] → 0 as n→∞. �

Lemma A.11. Let F ,G be filtrations on a probability space (Ω,A,P) such that Ft ⊆

Gt, t ∈ [0,∞). Let X ∈ CA(F ),Y ∈ CMloc(G ) be such that X
as
= Y, then X ∈ CMloc(F ).
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Proof. As F is a subfiltration of G , we get that X ∈ CA(F ) ⊆ CA(G ) and as X
as
= Y ∈

CMloc(G ), we have that 0
as
= D def

== X − Y ∈ CM(G ) ⊆ CMloc(G ). Then also X = D + Y ∈

CMloc(G ) and as CMloc(G ) ∩ CA(F ) = CMloc(F ) holds by Theorem 1.4.3 (a), we get
that also X ∈ CMloc(F ). �

A.2. Simple processes and elementary integration.

Definition A.12. Let (Ω,A,P,F ) be a filtered probability space. A process H is called
F -simple if there exists an increasing sequence (sn)

∞
n=0 starting from s0 = 0 tending to

limn sn = ∞ as n→∞ such that Hsk ∈ L(Fsk−1) holds for every k ∈ N and that

(A.3) Ht = ∑

k∈N

Hsk1[sk−1<t≤sk], t ∈ [0,∞).

The set of F -simple processes will be denoted as S (F ). Further, let X = (Xt)t≥0 be
a real-valued random process. By

∮H dX def
== (∮

t
0HdX)

t≥0
with ∮

t
0HdX def

== ∑

k∈N

Hsk(Xt∧sk −Xt∧sk−1)(A.4)

we denote the corresponding simple integral of the process H w.r.t. X. If it is helpful,
we are also allowed to emphasize the time variable in the notation as follows ∮HdX =

∮Hs dXs.

Remark A.13. Note that Y def
== ∮HdX ∈ CA(F ) holds if H ∈ S (F ) and X ∈ CA(F ),

and that ∫ HdX
as
= Y ∈ CMloc(F ) holds if additionally X ∈ CMloc(F ) and that the same

holds with CMloc replaced by CS.

A.3. Enriched filtration. Here Ac will stand for the complement of a set A and A△B
will stand for the symmetric difference of sets A and B.

Lemma A.14. Let (Ω,A) be a measurable space, N ⊆ A be a family of sets closed under
countable unions and containing all A-measurable subsets of its elements and let D be
a sub σ-algebra of A. (i) Then D ∨ σ(N) = D

def
== {D△N ;D ∈ D ,N ∈ N}.

(ii) If X ∈ L(D), then there exists Y ∈ L(D) such that [X ≠ Y ] ∈ N .
(iii) Let (S,S) be a measurable space and F ∈S⊗D, then

∃ F ∈S⊗D ∃N ∈ N F△ F ⊆ S ×N.(A.5)

Proof. (i) Since any σ-algebra is closed under the symmetric differences, we immediately
get that D ⊆ D ∨ σ(N). Since our assumptions ensure that ∅ ∈ N ∩ D , we get that
D ∪ N ⊆ D, and hence the only thing we have to show in order to verify (i) is that D
is a σ-algebra. As already stated ∅ ∈ D ⊆ D and D is easily shown to be closed under
complements. Indeed, if D ∈ D and N ∈ N , then (D △N)

c
= Dc

△N ∈ D as Dc
∈ D .

Hence, it is enough to verify that D is closed under countable unions. Let Dn ∈ D ,Nn ∈ N
whenever n ∈ N. We will show that also

D def
== ∪

∞
n=1 Dn ∈ D, where Dn

def
== Dn△Nn, n ∈ N.(A.6)

As D is a σ-algebra containing Dn, n ∈ N, we have that also D def
== ∪

∞
n=1 Dn ∈ D . Put

N def
== D△D. As Nn = Dn △Dn, n ∈ N, we get that A ∋ N ⊆ ∪

∞
n=1Nn and as Nn ∈ N , we

get from assumptions on N that also N ∈ N . Thus, (A.6) is verified since we have that
D =D△N , where D ∈ D and N ∈ N .

(ii) Since X ∈ L(D), we have that [X < c] ∈ D holds whenever c ∈ R, and then from
(i) we get that there exist Dc ∈ D ,Nc ∈ N such that [X < c] △Dc = Nc, c ∈ Q. Then
N def

== ∪c∈Q Nc ∈ N and

Y def
== (Inf{c ∈ Q;ω ∈Dc})ω∈Ω

∈ L(D), where InfA def
== inf A ⋅ 1[infA∈R] if A ⊆ R.

Since also X = Inf{c ∈ Q;X < c} ∈ L(A), we get that A ∋ [X ≠ Y ] ⊆ ∪c∈QNc = N ∈ N ,
which by assumptions on N of the lemma ensures that also [X ≠ Y ] ∈ N .
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(iii) We will just show that S ⊗ D ⊆ F
def
== {F ∈ S ⊗ D; (A.5) holds}. If S ∈ S and

D ∈ D, then we have from (i) that D = D△ N for some D ∈ D and N ∈ N , and then
F def

== S × D ∈ S ⊗ D is such that (S × D) △ F = S × N ⊆ S × N, which verifies that
F def
== S ×D ∈ F . Since this kind of sets generates the σ-algebra S⊗D, it remains to show

that F is also a σ-algebra. We already have that ∅ ∈ F . Further, we will show that F is
closed under complements and finally under countable unions. Let F ∈ F , and let F ,N
be as in (A.5). Then Fc

∈ S ⊗ D, F c
∈ S ⊗D and Fc

△ F c
= F△ F ⊆ S ×N, i.e., Fc

∈ F .
Finally, let Fn ∈S⊗D, Fn ∈S⊗D,Nn ∈ N be s.t. Fn△ Fn ⊆ S ×Nn, n ∈ N, then

F def
== ∪

∞
n=1 Fn ∈S⊗D, F def

== ∪
∞
n=1 Fn ∈S⊗D , N def

== ∪
∞
n=1 Nn ∈ N

and F△ F ⊆ ∪
∞
n=1(Fn△ Fn) ⊆ ∪

∞
n=1S ×Nn = S ×N. Hence, we have that F ∈ F . �

Lemma A.15. In the context of Notation 2.7, whenever t ∈ [0,∞) we have that

(1) Ft
def
== F

F ,G
t is equal to

Gt
def
== {F △N ;F ∈ Ft,N ∈ N G ,P

∞ } = {G;∃F ∈ Ft, F △G ∈ N G ,P
∞ },

(2) N G ,P
t ⊆ Nt

def
== {F ∈ Ft;P(F ) = 0} ⊆ N G ,P

∞ = N F,P
∞ ⊆ F0.

(3) Let F ,G be as in (1) and let the filtration G be enriched, i.e., let σ(N G ,P
∞ ) ⊆ G0.

If CA(G ) ∋X
as
= Y ∈ CA(F), then also X ∈ CA(F).

(4) Let X be a filtration on (Ω,A,P), k ∈ N, X ∈ CA(X)
k. Then for each t ∈ [0,∞)

F
X,X ,P
t = {[X ∈ C] △N ;C ∈ C k

t ,N ∈ N X ,P
∞ }, N X,P

∞ = {[X ∈D];D ∈ C
PX
∞ }.

Proof. (1) Let t ∈ [0,∞) be fixed. The first equality follows from Remark 2.9 and
Lemma A.14 (i) and the second equality from the following simple observation. If A,B,C
are sets, then the following statements are equivalent

A = B△C, B = A△C, C = A△B.(A.7)

(2) Since ∅ ∈ F0, we immediately get from the point (1) that N G ,P
∞ ⊆ F0. As stated in

Remark 2.9, all elements of N G ,P
∞ are P-null sets. Hence, we get that N G ,P

t ⊆ N G ,P
∞ ⊆

N0 ⊆ Nt holds whenever t ∈ [0,∞).
Now, let G ∈ Nt, i.e., G ∈ Ft is a P-null set. By (1) there exists F ∈ Ft ⊆ Gt ⊆ G∞ such

that N def
== G△ F ∈ N G ,P

∞ ⊆ G∞. Then F = G△N is similarly as G and N a P-null set

and as it is also Ft ⊆ Gt-measurable, we get that F ∈ N G ,P
t ⊆ N G ,P

∞ . Since N ∈ N G ,P
∞

and N G ,P
∞ is closed under (countable) unions, we get that also F ∪N ∈ N G ,P

∞ , and as the
system N G ,P

∞ contains also G∞-measurable subsets of its elements and F ∪N ⊇ F △N =

G ∈ G∞, we get that also G ∈ N G ,P
∞ .

Since the last relation in (2) has already been shown, it remains to verify that N G ,P
∞ =

N F,P
∞ . Since N G ,P

∞ ⊆ σ(F0 ∪ N G ,P
∞ ) = F0, we get that each N ∈ N G ,P

∞ is a P-null

set from F0, which by definition ensures that N ∈ N F,P
0 ⊆ N F,P

∞ , and we have that

N G ,P
∞ ⊆ N F,P

∞ .

On the other hand, let M ∈ N F,P
∞ . Then there are Mn ∈ N F,P

n such that M = ∪
∞
n=0Mn,

and by definition there are P-null sets Gn ∈ Fn such that Mn ⊆ Gn. By Lemma A.15
point (1) there are Fn ∈ Fn and Nn ∈ N G ,P

∞ such that Gn = Fn △ Nn, n ∈ N0. Then
Gn ⊇ Fn ∋ Fn = Gn △Nn is also a P-null set (similarly as Gn and Nn), and we get that
Fn ∈ N G ,P

n ⊆ N G ,P
∞ . Since also Nn ∈ N G ,P

∞ , we have that

G∞ ⊇ F∞ ∋M ⊆ ∪
∞
n=1(Fn ∪Nn) ∈ N G ,P

∞ ,

which by Remark 2.9 ensures that also M ∈ N G ,P
∞ . Hence N G ,P

∞ ⊆ N F,P
∞ ⊆ N G ,P

∞ .

(3) Since F is a subfiltration of G which is already enriched, we get from (2) that also

Ft = F
F ,G
t = Ft ∨ σ(N

G ,P
∞ ) ⊆ Gt ∨ σ(N

G ,P
∞ ) = Gt, t ∈ [0,∞).(A.8)
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We just have to show that X ∈ A(F), i.e., that [Xt < c] ∈ Ft holds whenever t ∈ [0,∞)

and c ∈ R. Since CA(G ) ∋X
as
= Y ∈ CA(F) ⊆ CA(G ) by (A.8), we have by (2) that

N (c)

t
def
== [Xt < c] △ [Yt < c] ∈ N G ,P

∞ ⊆ Ft, i.e., [Xt < c] = [Yt < c] △N (c)

t ∈ Ft.

(4) See point (1) of the lemma and (2.9) in order to agree that it is enough to show that

N X,P
∞ = {[X ∈D];D ∈ C

PX
∞ }.(A.9)

If t ∈ [0,∞), we get immediately from the definition that

N X,P
t = {N = [X ∈D];N ⊆ [X ∈ C],PX(C) = 0,C ∈ C k

t ,D ∈ C k
∞}

⊇ {[X ∈D];C k
∞ ∋D ⊆ C ∈ C k

t ,PX(C) = 0} = {[X ∈D];D ∈ C
PX
t }

and then the “ ⊇ ” relation in (A.9) follows immediately from the definition of CPX
∞ and

N X,P
∞ . On the other hand, let N ∈ N X,P

∞ ⊆ FX
∞ , then it is of the form

N = [X ∈D] = ∪
∞
n=0Nn, where D ∈ C k

∞, Nn ∈ N X,P
n .

Then there exist P-null sets FX
n ∋ Fn ⊇ Nn, n ∈ N0, of the form Fn = [X ∈ Cn],Cn ∈ C k

n ,
and as 0 = P(Fn) = PX(Cn), we get that Cn ∈ C

PX
n and that C def

== ∪
∞
n=0 Cn ∈ C

PX
∞ ⊆ C k

∞.
Finally, we get that N = [X ∈ C∩D], where C∩D ∈ C

PX
∞ , as [X ∈ C] = ∪nFn ⊇ ∪nNn = N.

Hence, also the “ ⊆ ” relation in (A.9) is verified. �

In the next lemma, we will see that the enrichment of a filtration is independent of
a locally equivalent change of measure, and that the measures remain locally equivalent
also after enrichment of the filtration.

Lemma A.16. In the context of Notation 2.7, let P,Q be locally G -equivalent probability
measures.

(i) Then N def
== N G ,P

∞ = N G ,Q
∞ ,F def

== F
F ,G ,P

= F
F ,G ,Q.

(ii) The measures P,Q are also locally F-equivalent.

(iii) If X,Y ∈ CA(F) and X = Y holds P-a.s., then also X = Y holds Q-almost surely.

(iv) Whenever {X (n)
}
∞
n=1 ⊆ CA(F) is a sequence convergent in the metric �, there exists

a process X ∈ CA(F) such that �(X (n),X) → 0 as n→∞.

Proof. (i) If n ∈ N, then P∣Gn ∼ Q∣Gn holds by assumption, and therefore N G ,P
n = N G ,Q

n .
Then we get that also

N G ,P
∞ = N G ,Q

∞ and F
F ,G ,P
t = Ft ∨ σ(N

G ,P
∞ ) = Ft ∨ σ(N

G ,Q
∞ ) = F

F ,G ,Q
t , t ≥ 0.

(ii) Let G ∈ Ft be such that P(G) = 0, where t ∈ [0,∞). We will show that also Q(G) = 0.
By Lemma A.15 point (1), we get that there exist F ∈ Ft,N ∈ N G ,P

∞ such that G = F△N,
i.e., G△ F = N . As N is a P-null set, we get that P(F ) = P(G) = 0, and as F ∈ Ft and
P∣Ft ∼ Q∣Ft, we get that also Q(F ) = 0. By the point (i) N G ,Q

∞ = N G ,P
∞ ∋ N , and we

get that Q(N) = 0 and then also that Q(G) = Q(F ) = 0. From the symmetry between P

and Q, we obtain that these measures are really locally F-equivalent.

(iii) Let t ∈ [0,∞). By assumption Nt
def
== [Xt ≠ Yt] ∈ Ft is a P-null set and as

P∣Ft ∼ Q∣Ft holds by the point (ii), we get that Q(Nt) = 0. Then we get from the
continuity of X − Y that also Q(X ≠ Y ) = 0.

(iv) First, we may assume that (X (n)
)
∞
n=1 is an absolutely �-Cauchy sequence as other-

wise we replace it by a suitable subsequence and use triangle inequality in the end. Then
we have that

∞ > ∑n�(X
(n),X (n + 1)

) = EP∑nr(X
(n),X (n + 1)

) ≥ EP∑n2−k ∧ ∣X (n)
−X (n + 1)

∣
∗
k, k ∈ N.



PROGRESSIVE PROJECTION AND LOG-OPT INVESTMENT 69

Hence, Nk
def
== [∑n ∣X (n)

−X (n + 1)
∣
∗
k = ∞] ∈ Fk is a P-null set and then Nk ∈ Nk ⊆ N G ,P

∞ ⊆ F0

holds by Lemma A.15 point (2) whenever k ∈ N. Then

X def
== lim

n→∞
X (n)1Ω/N ∈ CA(F), where N def

== ∪
∞
k=1 Nk ∈ N G ,P

∞ ⊆ F0.

Obviously, P(N) = 0 and it ensures that r(X (n),X) → 0 a.s. and hence also �(X (n),X) → 0
as n→∞ by the Dominated Convergence Theorem. �

Corollary A.17. Let F be an enriched filtration. (i) If X ∈ CS(F), then there exists

a non-decreasing process K ∈ CA(F
X
) ⊆ CA(F) starting from K0 = 0 s.t. K

as
= ⟨X⟩.

(ii) Let X ∈ CS(F) and H ∈ L(M(F)) be such that the following Itô stochastic integral
is well defined Y def

== ∫ HdX. If G is an enriched subfiltration of F such that X ∈ CA(G)

and H ∈ L(M(G)), then there exists Z ∈ CA(G) such that Z
as
= Y.

Remark A.18. Note that if X,Y,H are as in (ii) of the corollary, then ∫ H
(n) dX ↝ Y as

n→∞ holds with H (n) def
== H1[∣H ∣≤n] in general, and in case when H,H (n)

∈ L(M(F)), n ∈

N, are equally bounded, it is enough that H (n)

t → Ht as n → ∞ holds for almost every
t ∈ [0,∞).

Proof of Corollary A.17. (i) Put S(n) def
== {s(n)

k }
∞
k=0, where s(n)

k
def
== k2−n. By Theorem (1.8)

in [24, Chapter IV]

∣⟨X⟩ − V
(2)

(X;S(n)
)∣
∗
t

P
→ 0, where V

(2)

t (X;S(n)
) =

∞

∑

k=1

(X
t∧s

(n)
k

−X
t∧s

(n)
k−1∶

)
2,(A.10)

as n→∞, t ∈ [0,∞). From (A.10) and Remark 2.4, we get that

lim
n→∞

�(⟨X⟩,V(2)
(X;S(n)

)) = 0

and since V(2)
(X;S(n)

) ∈ CA(FX
) ⊆ CA(F

X
) holds whenever n ∈ N, we get from the

point (iv) of the previous lemma that there exists K ∈ CA(F
X
) starting from K0

as
= 0

s.t. Kt
as
= ⟨X⟩t if t ∈ [0,∞). Further, we get from the last equality in Lemma A.15 (2) that

N K
t ⊆ N F

X

∞ = N X
∞ ⊆ F

X
0 , t ∈ [0,∞),

as K ∈ CA(F
X
), and whenever 0 ≤ s ≤ t < ∞ we get that

N0
def
== [K0 ≠ 0] ∈ N K

0 ⊆ N X
∞ ⊆ F

X
0 , Ns,t

def
== [Ks > Kt] ∈ N K

t ⊆ N X
∞ ⊆ F

X
0 .

Then ⟨X⟩
as
= K def

== K1Ω/N ∈ CA(F
X
) is a non-decreasing process starting from K0 = 0,

where

N def
== [K0 ≠ 0,∃ 0 ≤ s ≤ t < ∞ Ks > Kt] = N0 ∪ ∪Q+∋s<t∈QNs,t ∈ N X

∞ ⊆ F
X
0 .

(ii) First, we define certain maps

κ[n]
(h) def

== h ⋅ 1[∣h∣≤n], κ(n)
(h) def

== (n∫
t
(t−1/n)+hsds)t≥0

, κ⟨n⟩
(h) def

== ∑
∞
k=0h k

n
1[ k

n<t≤
k+1
n ]

and their composition κ(n,k,j) def
== κ⟨j⟩

○ κ(k)
○ κ[n] which is obviously well defined on

L(B∞). Since

∫ κ
[n]

(H)dX → Y, ∫ κ
(n)

(M)dX → ∫ M dX, ∮ κ
⟨n⟩

(N)dX → ∫ N dX

in � as n→∞ holds by Remark A.18 whenever N ∈ CA(F),M ∈ L(M(F)) are bounded
processes, we get that there exists a sequence (ni, ki, ji)

∞
i=1 ∈ N

N×3 such that

Y (i) def
== ∮ κ

(ni,ki,ji)
(H)dX → Y in � as i→∞.

Note that κ(ni,ki,ji)
(H) ∈ S (G) holds as H ∈ L(M(G)) and that X ∈ CA(G) holds by

assumption. Then we get from Remark A.13 that also Y (i)
∈ CA(G) and then from

Lemma A.16 (iv) that there exists CA(G) ∋ Z
as
= � limi Y

(i) as
= Y

as
= ∫ HdX. �
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Further, ⟨X⟩ will stand for the FX -adapted version of ⟨X⟩ as mentioned in Notation 2.11.

Lemma A.19. Let D be a filtration on a set D and let f ∈ A(D). Then (i)

f (n) def
== (∑

∞
k=0fk2−n1[k≤t2n<k+1])t≥0

∈ L(M(D)), n ∈ N, y def
== ∃ lim

n→∞
f (n)

∈ L(M(D)),

(A.11)

(ii) z ∈ L(M(D)), where

zt(x)
def
== ∃ lim

n→∞
n[yt(x) − y(t−1/n)+(x)], x ∈ D, t ∈ [0,∞).(A.12)

Proof. (i) By Proposition A.7, it is enough to verify the first relation in (A.11) as follows

{(u,x) ∈ [0, t] ×D; f (n)
u (x) < c} = ⋃

k∈[0,2nt]∩Z

U
(n)
k,t × {x ∈ D; fk2−n(x) < c} ∈ Bt ⊗Dt,

c ∈ R, where U
(n)
k,t

def
== {u ∈ [0, t];k ≤ u2n < k + 1} = [0, t] ∩ [

k
2n ,

k+1
2n ).

(ii) If we use Proposition A.7 again, we get that the only thing we have to verify is that

y [s] def
== (y(u−s)+)u≥0 ∈ L(M(D)), s ∈ [0,∞),(A.13)

i.e., to show that

B def
== {(u,x) ∈ [0, t] ×D; y [s]

u (x) < c} ∈ Bt ⊗Dt, s, t ∈ [0,∞), c ∈ R.(A.14)

If s ≥ t, then B = [0, t] × {x ∈ D; y0(x) < c} ∈ Bt ⊗D0 ⊆ Bt ⊗Dt. Let s, t, c from (A.14) be
such that s < t. If D is a σ-algebra on D, it is easy to verify that the sets D ∈ Bt−s ⊗D

satisfying

D ∈ Bt−s ⊗D ⇒ D[s] def
== {(u,x) ∈ [0,∞) ×D; ((u − s)+, x) ∈ D} ∈ Bt ⊗D(A.15)

form a σ-algebra which contains a generator of Bt−s⊗D. Indeed, if D = [0, r] ×D, where
r ∈ [0, t− s] and D ∈ D, then D[s]

= [0, r + s] ×D ∈ Br+s ⊗D ⊆ Bt ⊗D. Hence, we get that
(A.15) holds whenever D is a σ-algebra on D. By (i), we get that

D def
== {(u,x) ∈ [0, t − s] ×D; yu(x) < c} ∈ Bt−s ⊗Dt−s

and then by (A.14, A.15) that B = {(u,x) ∈ [0, t] ×D; y(u−s)+(x) < c} = D[s]
∈ Bt ⊗Dt−s ⊆

Bt ⊗Dt. �

A.4. Additional parameter.

Lemma A.20. Let F be a filtration, D be a σ-algebra, then CA(F⊗D) ⊆ L(M(F )⊗D).

Proof. 1. First, we will show that S (F ⊗D) ⊆ L(M(F ) ⊗D). Let s ∈ [0,∞) be fixed.

(a) We will show that

Fs
def
== {Φ ∈ Fs ⊗D; (s,∞) ×Φ ∈ M(F ) ⊗D} = Fs ⊗D.(A.16)

Obviously, Fs is a σ-algebra, and therefore in order to verify that (A.16) holds, it is
sufficient to show that it contains the sets of type F ×D, where F ∈ Fs and D ∈ D. If
F ∈ Fs, then F def

== (s,∞) × F ∈ M(F ) holds as

F ∩Ωt = ((s,∞) ∩ [0, t]) × F =

⎧
⎪⎪
⎨
⎪⎪
⎩

∅ if t ≤ s

(s, t] × F if s < t

⎫
⎪⎪
⎬
⎪⎪
⎭

∈ Bt ⊗Ft, t ∈ [0,∞),

and hence we get that (s,∞)×F ×D = F ×D ∈ M(F )⊗D, which verifies that F ×D ∈ Fs
holds whenever D ∈ D. As mentioned above, this gives the equality in (A.16).

(b) Now, we will show that

Xs
def
== {X ∈ L(Fs ⊗D); (X 1[s<t])t≥0 ∈ L(M(F ) ⊗D)} = L(Fs ⊗D).(A.17)
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Obviously, Xs is a linear set closed under pointwise convergence, and hence in order to
verify the equality in (A.17), it is sufficient to show that

1Φ ∈ Xs holds whenever Φ ∈ Fs ⊗D.(A.18)

Let X = 1Φ and Φ ∈ Fs⊗D. Then we get by the first step of the proof that Φ ∈ Fs⊗D = Fs
and then we get from the definition of Fs that

(X 1[s<t])t≥0 = 1(s,∞)×Φ ∈ L(M(F ) ⊗D).

Hence, we have shown (A.18) and as mentioned above, we obtain (A.17).

(c) Let H ∈ S (F ⊗ D), then there exists an increasing sequence (sn)
∞
n=0 ∈ [0,∞)

N

starting from s0 = 0 and tending to infinity, and a sequence Yn ∈ L(Fsn ⊗D), n ∈ N0, s.t.

H = ∑
∞
n=1X

(n), where X (n)
= (Yn1[sn<t])t≥0.(A.19)

By point (b) of this proof, Yn ∈ L(Fsn⊗D) = Xsn which means that X (n)
∈ L(M(F )⊗D)

holds whenever n ∈ N. As the sum of measurable random variables is again measurable,
we get that also H ∈ L(M(F ) ⊗ D). Hence, we have that S (F ⊗D) ⊆ L(M(F ) ⊗ D)

holds.

2. Finally, if H ∈ CA(F ⊗D), then there are H (n)
∈ S (F ⊗D) ⊆ L(M(F )⊗D), n ∈ N,

tending to H −H0 pointwise, and we get that also H −H0 ∈ L(M(F )⊗D). For a suitable
choice of (H (n)

)
∞
n=1 see for example (4.24) with X replaced by H −H0.

Hence, it remains to show that H0 ∶ (t, ω, y) ↦ H0(ω, y) is in L(M(F ) ⊗ D), i.e.,
that H−1

0 (−∞, c) = [0,∞) ×H−1
0 (−∞, c) ∈ M(F ) ⊗ D holds whenever c ∈ R. Since H ∈

CA(F ⊗D), we have that H0 ∈ L(F0 ⊗D) which gives that

{0} ×H−1
0 (−∞, c) ⊆ B0 ⊗F0 ⊗D ⊆M(F ) ⊗D, c ∈ R.

Then it is enough to verify that (0,∞)×H−1
0 (−∞, c) ∈ M(F )⊗D, but this follows from

H−1
0 (−∞, c) ∈ F0 ⊗D = F0, see (A.16). �

Lemma A.21. Let F = (Ft)t≥0 be a filtration on (Ω,A,P) and let (D,D) be a measur-
able space. (i) Then M(F ) ⊗D ⊆M(F ⊗D).

(ii) If H ∈ L(M(F⊗D)), then there exists H̃ ∈ L(M(F )⊗D) such that ∫
∞

0 1
[Ht≠H̃t]

dt = 0

and

∀ω ∈ Ω, y ∈ D H(ω, y) ∈ C ⇒ H̃(ω, y) ∈ C.(A.20)

(iii) Let X ∶ Ω∞ × D → R and τ be an F -stopping time such that H def
== (Xt1[t<τ])t≥0 ∈

L(M(F ⊗D)), then there exists Z ∶ Ω ×D→ R such that

X̃ def
== (Xt1[t<τ] +Z1[τ≤t])t≥0 ∈ L(M(F ⊗D))(A.21)

and that (A.20) holds with (H, H̃) replaced by (X, X̃).

Proof. (i) It is enough to show that F ×D ∈ M(F ⊗D) holds whenever F ∈ M(F ) and
D ∈ D. Let F ,D be as above. Then F ∩Ωt ∈ Bt ⊗Ft holds if t ∈ [0,∞) and we get that

{(s,ω, y) ∈ F ×D; s ≤ t} = (F ∩Ωt) ×D ∈ Bt ⊗Ft ⊗D, t ∈ [0,∞),

which verifies that F ×D ∈ M(F ⊗D).

(ii) Note that arctan(H) ∈ L(M(F ⊗D)) is bounded. We get from Lemma A.20 that

H
def
== ∫ arctan(Ht)dt ∈ CA(F ⊗D) ⊆ L(M(F ) ⊗D).(A.22)

Note that ∣Ht −Hs∣ <
π
2
∣t − s∣ holds if s ≠ t are from [0,∞). Then we get from Proposi-

tion A.7 (ii) that

H̃ def
== ∃ lim

n→∞
tan(n[Hs −H(s−1/n)+]) ∈ L(M(F ) ⊗D)(A.23)

and we have that H̃t = tan(H′
t) =Ht for almost every t ≥ 0 and (A.20) clearly holds.
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(iii) Let H be as in (A.22) and H̃ as in (A.23). Then we use (i) in order to conclude
that

Z def
== H̃� ∈ L(G�), where G

def
== F ⊗D, and where � def

== (τ(ω))(ω,y)∈Ω×D.

It follows from the definition of Z that (A.20) holds with (H, H̃) replaced by (X, X̃),
and hence it remains to verify (A.21). As Z ∈ L(G�), we get that

U (c)

t
def
== {(ω, y) ∈ Ω ×D;Z(ω, y) < c, τ(ω) ≤ t} ∈ Gt = Ft ⊗D, t ∈ [0,∞), c ∈ R,

i.e., U(c)

t
def
== [0, t]×U (c)

t ∈ Bt⊗Gt. As � is a G-stopping time, 1T = (1[�>t])t≥0 ∈ A(G), where

T def
== {(t, ω, y) ∈ Ω∞ ×D; t < �(ω, y)} = {(t, ω) ∈ Ω∞; t < τ(ω)} ×D,

and since the process 1T is also right-continuous, it is G-progressive, i.e., T ∈ M(G) =

M(F ⊗D). Then we obtain (A.21) from the definition of X̃ as follows

{(�, y) ∈ Ωt ×D; X̃(�, y) < c} = ({(�, y) ∈ Ωt ×D;H(�, y) < c} ∩ T ) ∪ (U
(c)

t /T ) ∈ Bt ⊗ Gt,

t ∈ [0,∞), c ∈ R, since H = (Xt1[t<τ])t≥0 ∈ L(M(F ⊗D)) = L(M(G)) by assumption. �

Remark A.22. In the proof of the subsequent lemma, we will need the following simple
observation. Let (D,D) be a measurable space, X ∶ Ω → D and let (Cq)q∈Q ∈ D

Q be
a family of D-measurable sets. Put R(x) def

== x1[x∈R] if x ∈ [−∞,∞], then

R ○ f ∈ L(D), where f(y) def
== inf{q ∈ Q; y ∈ Cq} ∈ [−∞,∞], y ∈ D,

and [q < f(X)] ⊆ [X /∈ Cq] and [f(X) < q] ⊆ ∪c∈Q∩(−∞,q)[X ∈ Cc] whenever q ∈ Q.

Lemma A.23. Let X be a filtration on (Ω,A,P) and X ∈ CA(X)
k, k ∈ N. (i) If Z ∈

L(M(F
X,X ,P

)), then there exist z ∈ L(M(C k
)) and N ∈ N X ,P

∞ such that

0 = 1Ω/N∫
∞

0 1[Zt≠zt(X)]dt.(A.24)

(ii) If (S,S) is a measurable space and Z ∈ L(M(F
X,X ,P

)⊗S), then there exist N ∈ N
X ,P
∞

and z ∈ L(M(C k
) ⊗S) such that (A.24) holds with zt(X)

def
== zt(X,s)s∈S.

Proof. (i,a) Let Z ∈ L(M(F
X,X ,P

)) first attain values within [−n,n], where n ∈ N is
fixed. Then

W def
== ∫ Ztdt ∈ CA(F

X,X ,P
) and 0 = ∫

∞

0 ∣W ′
t −Zt∣dt.(A.25)

Then we use Lemma A.15 (4) in order to get that for each t ∈ [0,∞) and c ∈ R, there

exist C(c)

t ∈ C k
t and N (c)

t ∈ N X ,P
∞ such that [Wt < c] = [X ∈ C(c)

t ]△N (c)

t . By Remark A.22

Ft
def
== R ○ ft ∈ L(C

k
t ), where ft

def
== (inf{q ∈ Q; y ∈ C(c)

t })
y∈Ck ,(A.26)

[Wt < ft(X)] = ∪
c∈Q

[Wt < c < ft(X)] ⊆ ∪
c∈Q

[Wt < c,X /∈ C(c)

t ] ⊆ Nt
def
== ∪

c∈Q
N (c)

t ,(A.27)

[Wt > ft(X)] = ∪
q∈Q

[Wt > q > ft(X)] ⊆ ∪
c∈Q

[Wt ≥ c,X ∈ C(c)

t ] ⊆ Nt ∈ N X ,P
∞ .(A.28)

Since F def
== (Ft)t≥0 ∈ A(C k

), we get from Lemma A.19 that there exists y ∈ L(M(C k
)) ⊆

A(C k
) such that (A.11) holds with f replaced by F. As W has continuous trajectories,

we get that

[W ≠ y(X)] ⊆ ∪
q∈Q+

[Wq ≠ Fq(X)] ⊆ ∪
q∈Q+

[Wq ≠ fq(X)] ⊆ N def
== ∪

q∈Q+
Nq ∈ N X ,P

∞ .(A.29)

Further, consider z ∈ L(M(C k
)) from (A.12) in Lemma A.19 (ii) with D def

== Ck. Then

[W = y(X),W ′
t = Zt] ⊆ [zt(X) = y ′t(X) = Zt], t ∈ (0,∞),(A.30)

and we get (A.24) from (A.25,A.29,A.30).
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(i,b) For n ∈ N, put Z(n) def
== Z1[∣Z∣≤n] ∈ L(M(F

X,X ,P
)). By step (i,a) there exist z(n)

∈

L(M(C k
)) and N (n)

∈ N X ,P
∞ such that (A.24) holds with (z,N) replaced by (z(n),N (n)

).
Then

N def
== ∪

∞
n=1 N

(n)
∈ N X ,P

∞ and z def
== ∃ lim

n→∞
z(n)

∈ L(M(C k
)),

(see Proposition A.7) satisfy (A.24) as

1Ω/N∫
∞

0 1[Zt≠zt(X)]dt ≤ ∑
n

1Ω/N(n)∫

∞

0 1
[Z

(n)
t ≠z

(n)
t (X)]

dt = 0.

(ii) The exact proof of (ii) would be very similar to the proof of (i) and for this reason,
we only suggest what should be changed hoping that the reader will be able to modify
the proof of (i) carefully in order to obtain the correct proof of (ii). First, replace
F
X,X ,P by FX,X ,P ⊗S at the beginning of the proof until (A.25). Then instead of using

Lemma A.15 (4) in case (i), we recommend to use Lemma A.14 (iii) in order to get that

∀ t ∈ [0,∞) ∀ c ∈ R ∃ F
(c)

t ∈ FX
t ⊗S ∃N (c)

t ∈ N X ,P
∞(A.31)

{(ω,s) ∈ Ω × S;Wt(ω,s) < c}△ F
(c)

t ⊆ N (c)

t × S.(A.32)

Then we obtain from Lemma A.1 that there are C(c)

t ∈ C k
t ⊗S s.t. F (c)

t = (X ⊙ 1S)
−1C(c)

t ,
c ∈ R, t ∈ [0,∞). Further, as in (A.26) we obtain f,F , but this time with F ∈ A(C k

⊗S),
and similarly as in (A.27,A.28), we obtain that

{(ω,s) ∈ Ω × S;Wt(ω,s) ≠ ft(X(ω),s)} ⊆ Nt × S, Nt
def
== ∪c∈Q N

(c)

t ∈ N X ,P
∞ .(A.33)

Note that the relation in (A.33) on the left can be also read as follows [Wt ≠ ft(X)] ⊆ Nt.
Then by Lemma A.19 there exist

y ∈ L(M(C k
⊗S)) ⊆ A(C k

⊗S) and z ∈ L(M(C k
⊗S))

such that (A.29) holds in the sense of the notation mentioned just below (A.33). Then the
part of (a) from (A.30) can remain as it is in (i). If z /∈ L(M(C k

)⊗S), use Lemma A.21
in order to obtain z̃ ∈ L(M(C k

) ⊗ S) such that ∫
∞

0 1[zt≠z̃t] dt = 0. The process z̃ can
obviously play the role of z from the statement of the lemma in part (ii). (b) We leave
modifying of the point (i,b) in order to get the point (ii,b) of the proof to the reader as
we believe that it is straightforward. �

Lemma A.24. Let (D,D) be a measurable space. (i) Let g, h be C k and C k
⊗ D-

progressive processes, respectively, i.e., g ∈ L(M(C k
)), h ∈ L(M(C k

⊗D)), and let X ∈

CA(F )
k, k ∈ N, then

G def
== g(X)

def
== (gt(X))

t≥0
∈ L(M(F )), H def

== (h(X,y))
y∈D

∈ L(M(F ⊗D)).(A.34)

In particular, whenever p ∈ [1,∞), we have that H ∈ M
p
(F ⊗D) if h ∈ Mp

(C k
⊗D) and

that G ∈ M
p
(F ) if g ∈ Mp

(C k
). (ii) If even h ∈ L(M(C k

)⊗D), then H ∈ L(M(F )⊗D).

(iii) The points (i,ii) of the lemma hold also with C replaced by C̃ if X attains values in
(0,∞)

k. (iv) If h ∈ L(M(A ) ⊗D), and X ∈ A(F ,A ), where A is a filtration, then

H def
== (h(X,y))

y∈D
∈ L(M(F ) ⊗D).

Proof. (i) Let h ∈ L(M(C k
⊗D)). Then h∣t

def
== (hs)s≤t ∈ L(Bt⊗C k

t ⊗D) holds if t ∈ [0,∞).
Since 1[0,t] ∈ L(Bt,Bt),1D ∈ L(D,D) and X ∈ L(Ft,C

k
t ) if t ∈ [0,∞), we get from

Lemma A.1 that

X∣t
def
== 1[0,t] ⊙X ⊙ 1D ∈ L(Bt ⊗Ft ⊗D,Bt ⊗C k

t ⊗D), t ∈ [0,∞).

Hence, we finally get that H ∣t
def
== (Hs)s≤t = h∣t ○X∣t ∈ L(Bt⊗Ft⊗D) whenever t ∈ [0,∞),

which verifies that H ∈ L(M(F ⊗ D)). The property in (A.34) on the left can be
obtained similarly, and then the next part can be verified easily from the definition of
M

p
(C k

⊗D),Mp
(C k

).
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(ii) This is a special case of (iv) with A def
== C k, since CA(F )

k
= A(F ,C k

).
(iv) 1. First, we will show that f(X)

def
== (fs(X))s≥0 ∈ L(M(F )) holds whenever

f ∈ L(M(A )) attains values in {0,1}. Put C def
== f−1

{1} ∈ L(M(A )), then

C ∣t
def
== {(s, x) ∈ C; s ≤ t} ∈ Bt ⊗At, t ∈ [0,∞).

Since X ∈ A(F ,A ) ⊆ L(Ft,At), we get from Lemma A.1 that 1[0,t]⊙X ∈ L(Bt⊗Ft,Bt⊗

At), and then {(s,ω) ∈ Ωt; fs(X(ω)) = 1} = (1[0,t] ⊙X)
−1

(C ∣t) ∈ L(Bt ⊗Ft), t ∈ [0,∞),
which verifies that f(X) ∈ L(M(F )).

2. Again from Lemma A.1, we obtain that H = f(X) ⊙ 1D ∈ L(M(F ) ⊗D),D ∈ D.

3. By point 2, D def
== {C ×D;C ∈ M(A ),D ∈ D} is a subset of the following set

X def
== {D ∈ M(A ) ⊗D; (1D(X,y))y∈D ∈ L(M(F ) ⊗D)},

which is obviously a σ-algebra. Hence, also the σ-hull of D is a subset of X , which
means that X =M(A ) ⊗D. Hence, we have shown (iv) for h attaining values in {0,1}
and the extension of this result to all h ∈ L(M(A ) ⊗ D) is left to the reader. (iii) Just

replace C by C̃ in the proof. �

A.5. Enriched filtration continued.

Lemma A.25. Let F be an enriched filtration, L,X ∈ CS(F) and Y ∈ L(F0) be s.t.

(A.35) Xt
as
= Y + ∫

t
0XdL, t ∈ [0,∞).

Then Xt
as
= Y exp{Lt −L0 −

1
2
⟨L⟩t}, t ∈ [0,∞).

Proof. Put R def
== X exp{−L +L0 +

1
2
⟨L⟩} and use the Itô rule in order to obtain that its

paths are constant almost surely. Then we get that Rt
as
= R0

as
= Y, t ∈ [0,∞). �

Proposition A.26 (Lévy Characterization Theorem). Let L ∈ CMloc(F )
n, n ∈ N. If

L0 = 0 and ⟨⟨L⟩⟩t
as
= t ⋅ 1n, t ∈ [0,∞), then L is an n-dimensional standard F -Brownian

motion.

Proof. Let (Ω,A,P) be the underlying probability space. Then we get that

L ∈ CMloc(F )
n
⊆ CMloc(F)

n

by Theorem 1.4.3 (c) in [10, part III], where F def
== (Ft ∨ {A ∈ A;P(A) ∈ {0,1}})t≥0.

Then we are allowed to use the Lévy Characterization Theorem (3.6) in [24, Chapter
IV] in order to conclude that L is a standard n-dimensional F-Brownian motion, but as
L ∈ CMloc(F )

n
⊆ CA(F )

n, we get from the definition of a standard Brownian motion,
for example, that the same holds with F replaced by a weaker filtration F . �

Lemma A.27. Let F be a filtration and let L ∈ CMloc(F ) start from L0
as
= 0. If ⟨L⟩ is

an integrable process, then L ∈ CM(F ).

Proof. If F0 contains all null sets from F∞, then it follows from Corollary (1.25) [24,
Chapter IV]. If this is not the case, we consider another filtration, say F , as in the proof
of Proposition A.26 in order to get that L ∈ CMloc(F ) ⊆ CMloc(F) ensuring by the first
step of the proof and by assumption that L ∈ CM(F)∩CA(F ) = CM(F ). Note that the
last “⊆” and “=” here follow from Theorems 1.2.9 and 1.4.3 in [10, part III] which give
us the conditions for the stability of (local) martingale property. �

Lemma A.28. Let F be an enriched filtration, let X ∈ CMloc(F) and let H ∈ M
2
K(F)

hold with K def
== ⟨X⟩ ∈ CI0(F), then there exists Y ∈ CMloc(F) such that Y

as
= ∫ HdX.



PROGRESSIVE PROJECTION AND LOG-OPT INVESTMENT 75

Proof. If the filtration F satisfies the usual conditions, then the statement follows from
Proposition 3.2.24 in [19]. Otherwise, let G be the smallest super-filtration of F satisfying
the usual conditions, i.e., we put Gt

def
== Ft+ ∨ {A ∈ A;P(A) ∈ {0,1}}, t ∈ [0,∞). Then we

get that X ∈ CMloc(F) ⊆ CMloc(G) holds by Theorem 1.4.3 (b,c) in [10, part III] and
obviously also H ∈ M

2
K(F) ⊆ M

2
K(G). Then as stated at the beginning of the proof,

there exists Z ∈ CMloc(G) such that Z
as
= ∫ HdX. Since X ∈ CA(F) and H ∈ M

2
(F) ⊆

L(M(F)) hold by assumption, we get from Corollary A.17 that there exists Y ∈ CA(F)

such that Y
as
= Z

as
= ∫ HdX. Then we get from Lemma A.11 that Y ∈ CMloc(F). �

Remark A.29. Later on, we will use the so called Continuity Theorem on continuous
local martingales. It can be found as Theorem 1.7.7 in [10, part III], where the complete
filtration is assumed and it can be reformulated in the view of Remark 2.4 in terms of
convergence in metric � denoted as ↝ as follows. If M (n),M ∈ CMloc(F), n ∈ N, start

from M (n)

0
as
= M0

as
= 0, then

M (n)
↝M if and only if ⟨M (n)

−M⟩ ↝ 0, n→∞.(A.36)

Note that the assumption that the underlying probability space is complete is not es-
sential here, and therefore it can be simply omitted as we will do. We will also use the
following simple consequence of (A.36). Under the same assumptions, we have that

M (n)
↝M ⇒ [⟨M (n)

⟩ ↝ ⟨M⟩, ⟨M (n),N⟩ ↝ ⟨M,N⟩, N ∈ CMloc(F)],(A.37)

since ∣⟨M (n)
−M,N⟩∣

∗
t

as
≤ (⟨M (n)

−M⟩t ⋅ ⟨N⟩t)
1/2 and

∣⟨M (n)
⟩ − ⟨M⟩∣

∗
t

as
≤ f(⟨M (n)

−M⟩t, ⟨M⟩t), where f(x, y) def
== x + 2

√

xy.

Finally note that (A.36) obviously holds also with M ≡ 0 and with n replaced by (n, i)
giving that

M (n, i) def
== M (n)

−M (i)
↝ 0 iff ⟨M (n)

−M (i)
⟩

as
= ⟨M (n, i)

⟩ ↝ 0, n, i→∞,(A.38)

which help us characterize a �-Cauchy sequence of continuous local F-martingales start-
ing from zero in terms of quadratic variation.

Remark A.30 (On convergence of local martingales). Note that a process M ∈ CA(F) is
in CMloc(F) if and only if ℵc(M) ∈ CM(F) holds for every c ∈ (0,∞), where

ℵc(x)
def
== (xt∧τx

c
− x0)t≥0, where τxc

def
== inf{t ∈ [0,∞); ∣xt − x0∣ ≥ c}.

Then it easily follows from Theorem 1 in [8] that

CMloc(F) ∋M (n) as
→M ∈ CA(F) ⇒ M ∈ CMloc(F).(A.39)

In order to clarify the convergence of local martingales completely, it is helpful to mention
Theorem 3 from the same paper which states that M ∈ C(ℵc) almost surely if M is
a local martingale and c ∈ (0,∞), where C(ℵc) stands for the points of continuity of ℵc.
In particular and with the use of (A.39), we have that

CM(F) ∋ ℵc(M
(n)

)
as
→ ℵc(M), n→∞, c ∈ (0,∞),

if the assumption of (A.39) is satisfied. Then we easily get from the Dominated Conver-
gence Theorem and the definition of a martingale that ℵc(M) ∈ CM(F), c ∈ (0,∞), i.e.,
that M ∈ CMloc(F) again, but this time the conclusion is perhaps clearer.

Lemma A.31. Let F be an enriched filtration and let M ∈ CMloc(F)
k and H ∈ L(M(F))

k,
k ∈ N, satisfy the condition in (2.12) on the right. Then the integral in (2.12) on

the left is well defined and there exists L ∈ CMloc(F) s.t. L
as
= ∫ H

T
dM . Further,

⟨L,N⟩
as
= ∫ H

T
d⟨M,N⟩ if N ∈ CMloc(F). Moreover, if G ∈ L(M(F))

k, then

∫

t
0 tr{GG

T

d⟨⟨M⟩⟩}

as
< ∞, t ∈ [0,∞) ⇒ ⟨∫ H

T

dM, ∫ G
T

dM⟩
as
= ∫ tr{GH

T

d⟨⟨M⟩⟩}.(A.40)
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Proof. We get from Lemma A.28 that there are L(n)
∈ CMloc(F) such that L(n) as

=

∫ 1[HTH≤n]H
T
dM, n ∈ N. Note that if the condition in (2.12) on the right holds, then

⟨L(n)
− L(i)

⟩ ↝ 0 as i, n → ∞, which by (A.38) means that (L(n)
)
∞
n=1 is a �-Cauchy se-

quence and since � is a complete metric by Proposition A.10, we get that the integral

∫ H
T
dM is well defined by (2.12). Further, we get from Lemma A.16 (iv) that there

exists L ∈ CA(F) such that

L
as
= �- lim

n→∞
L(n) as

= ∫ H
T

dM.(A.41)

We can then find a subsequence of (L(n)
)
∞
n=1 converging to L in � absolutely, which means

by Corollary A.9 that we have convergence almost surely in (A.41) for such a subsequence,
and since L ∈ CA(F) is a limit of local martingales almost surely, we get that from
Remark A.30 that L ∈ CMloc(F). Let N ∈ CMloc(F). It follows from Remark A.29 that

⟨L,N⟩
as
= �- lim

n→∞
⟨L(n),N⟩

as
= r - lim

n→∞
∫ 1[HTH≤n]H

T

d⟨M,N⟩
as
= ∫ H

T

d⟨M,N⟩.(A.42)

Let G ∈ L(M(F))
k satisfy the property in (A.40) on the left. By the already proved

part of the statement, there exists N ∈ CMloc(F) s.t. N
as
= ∫ G

T
dM and ⟨N,M (i)

⟩
as
=

∫ G
T
d⟨M,M (i)

⟩, i ≤ k, hold together with (A.42). Then

⟨L,N⟩
as
= ∫ H

T

d⟨M,N⟩
as
= ∫ H

T

{d⟨⟨M⟩⟩G}
as
= ∫ tr{GH

T

d⟨⟨M⟩⟩}.

�

Corollary A.32. Let F be an enriched filtration, k ∈ N, M ∈ CMloc(F)
k and H ∈

L(M(F))
k×k. If ∫

t
0 tr{H

T
Hd⟨⟨M⟩⟩}

as
< ∞, t ∈ [0,∞), then there exists L ∈ CMloc(F)

k s.t.

L
as
= ∫ HdM def

== (∫ 1
T

{i}HdM)
k
i=1, and ⟨⟨∫ HdM⟩⟩

as
= ∫ {Hd⟨⟨M⟩⟩H

T

}.

Moreover, if G ∈ L(M(F))
1×k is such that ∫

t
0 tr{G

T
Gd⟨⟨L⟩⟩}

as
< ∞, t ∈ [0,∞), then

∫ GdL
as
= ∫ GHdM.(A.43)

Proof. The first part of the statement follows from Lemma A.31. Further, we get that

∫

t
0 tr{(GH)

T

GHd⟨⟨M⟩⟩}
as
= ∫

t
0 tr{G

T

GHd⟨⟨M⟩⟩H
T

}
as
= ∫

t
0 tr{G

T

Gd⟨⟨L⟩⟩}
as
< ∞, t ∈ [0,∞),

which verifies that also the integral in (A.43) on the right is well defined. The one

on the left is well defined by the assumption that ∫
t

0 tr{G
T
Gd⟨⟨L⟩⟩}

as
< ∞, t ∈ [0,∞).

By Lemma A.31 there are N,R ∈ CMloc(F) s.t. N
as
= ∫ GdL and R

as
= ∫ GHdM and that

⟨N,R⟩
as
= ∫ Gd⟨L,R⟩

as
= ∫ GH d⟨M,R⟩

as
= ∫ tr{(GH)

T

GHd⟨⟨M⟩⟩}
as
= ⟨R⟩

as
= ⟨N⟩.(A.44)

From (A.44) we get that the difference D def
== N −R ∈ CMloc(F) has ⟨D⟩

as
= 0. As D0

as
= 0

holds by the definition of D,R,N , we get from Remark A.29 that D
as
= 0, i.e., that N

as
= R

which verifies (A.43). �
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