
Theory of Stochastic Processes
Vol. 25 (41), no. 1, 2020, pp. 1–24

SALIM BOUZEBDA AND MOHAMED CHERFI

GENERAL INFERENCE IN SEMIPARAMETRIC MODELS

THROUGH DIVERGENCES AND THE DUALITY TECHNIQUE

WITH APPLICATIONS

In this paper, we extend the dual divergence approach to general semiparametric

models and study dual divergence estimators for semiparametric models. Asymp-
totic properties such as consistency, asymptotic normality of the proposed estima-

tors are deeply investigated by mean the sophisticated modern empirical theory. We
investigate the exchangeably weighted estimators in this setting and establish the

consistency. We finally consider the functional M -estimator and obtain its weak

convergence result.

1. Introduction

The φ-divergence modeling has proved to be a flexible tool and provided a powerful sta-
tistical modeling framework in a variety of applied and theoretical contexts [refer to [15],
[42] and [33, 32] and the references therein]. For good recent sources of references to re-
search literature in this area along with statistical applications consult [5] and [42]. The
main aim in the parametric estimation are efficiency when the model has been appropri-
ately chosen and to attain robustness (against model misspecification) when it has not.
Notice that the major practical problem of maximum likelihood estimators is the lack of
robustness, while many robust estimators achieve robustness at some cost in first-order
efficiency. The appeal of dual divergences method is that in addition to the statistical
efficiency of the estimators when the parametric model is correctly specified, these es-
timators are also robust to contamination, for a deep investigation regarding this issue
we may refer to [45]. Efficiency combined with robustness properties dual divergences
estimators appealing in practice and form a desirable class of estimators. In general, [45]
proved that the dual divergence estimators have excellent robustness properties for para-
metric models, such as resistance to outliers as well as robustness with respect to model
misspecification. Furthermore, an appropriate choice of divergence may of special attrac-
tion that it is dimensionless, such is the case for Hellinger divergence. Application of dual
representation of φ-divergences have been considered by many authors, we cite among
others, [30] for semi-parametric two-sample density ratio models, robust tests based on
saddlepoint approximations in [46], [45] have proved that this class contains robust and
efficient estimators and proposed robust test statistics based on divergences estimators.
An extension of dual φ-divergences estimators to right censored data are introduced in
[23], for estimation and tests in copula models we refer to [11] and the references therein.
Performances of dual φ-divergence estimators for normal models are studied in [22]. Un-
fortunately in the preceding paper, in general, the limiting distribution of the estimators,
or their functionals, based on φ-divergences depend crucially on the unknown distribu-
tion, which is a serious problem in practice. To circumvent this matter, [10] propose a
general bootstrap of φ-divergence based estimators. Throughout the available literature,
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investigations on the asymptotic properties of dual divergence estimators, as well as the
relevant test statistics, have privileged the parametric case. However, in practice, we
need more flexible models that contain both parametric and nonparametric components
with are the semiparamtric models, i.e., statistical models where at least one parameter
of interest is not Euclidean. This paper concentrates on this specific problem. We aim,
namely, to investigate semiparametric inference procedures by introducing a semipara-
metric inference procedure based on divergence and duality technique and derive general
theorems on the asymptotic behavior of the proposed estimators. To the best of our
knowledge, the results, presented in this paper, are believed to be novel and the problem
of semi parametric inference by the mean of dual divergence have not been tackled in
the literature.

The layout of the present article is structured as follows. Section 2 is devoted to
the definitions and notations needed to state our main results as well as the estimators
that we are interested in. In Section 3, give our main theoretical results including the
consistency and the asymptotic distribution of the semiparametric φ-divergence estimate.
Some examples are given in Section 4. In Section 5, we investigate the bootstrapped
estimators. We consider a class of functional M -estimator processes in Section 6. To
prevent from interrupting the flow of the presentation, all proofs are gathered in Section 8.

2. Model and estimation procedures

2.1. Model and mathematical backgrounds

To formulate the problem that we will treat in this paper, we need the following
notation. Let µ be fixed σ-finite measure on (X ,A), where X is the sample space and A
is a σ-algebra of subsets of X . Suppose that the unknown probability measure Pθ,η on
(X ,A) is dominated by µ. In our framework, θ is the parameter of primary interest while
η is needed only to describe the model. Consider a set of independent random variables
X1, . . . , Xn to be observed from probability density function Pθ,η. In the sequel, we
assume that the common density Pθ,η is a member of the semiparametric model

(2.1) P := {Pθ,η : Pθ,η := dPθ,η/dµ, θ ∈ Θ, η ∈ H} ,

where θ is a Euclidean parameter in Θ ∈ Rp and η belongs to an infinite-dimensional
set H. In our framework, θ, commonly called Euclidean parameter, is the parameter
of primary interest while η is a nuisance parameter needed only to describe the model.
Throughout this paper, the true value (θ, η) ∈ Θ ×H is denoted by (θ0, η0). Numerous
examples fall into the class (2.1), well-known examples include semiparametric mixture
models [47], errors-in-variables models [6] and [39], regression models [50]. More examples
and theory can be found in the monographs of [7], [50], [48] and [31] and in the references
therein. First, we shall introduce some notation and definitions which will be used for the
statement of our forthcoming results. Recall that the φ-divergence between a bounded
signed measure Q, and a probability measure P on D , when Q is absolutely continuous
with respect to P, is defined by

Dφ(Q,P) :=

∫
X
φ

(
dQ
dP

)
dP,

where φ(·) is a convex function from ]−∞,∞[ to [0,∞] with φ(1) = 0. We will consider
only φ-divergences for which the function φ is strictly convex and satisfies: the domain
of φ,

domφ := {x ∈ R : φ(x) <∞}
is an interval with end points aφ < 1 < bφ,

φ(aφ) = lim
x↓aφ

φ(x)
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and

φ(aφ) = lim
x↑bφ

φ(x).

The Kullback-Leibler, modified Kullback-Leibler, χ2, modified χ2 and Hellinger di-
vergences are examples of φ-divergences; they are obtained respectively for φ(x) =

x log x − x + 1, φ(x) = − log x + x − 1, φ(x) = 1
2 (x − 1)2, φ(x) =

1

2

(x− 1)2

x
and

φ(x) = 2(
√
x − 1)2. All these divergences, belong to the class of the so called “power

divergences” introduced in [24] (see also [32] chapter 2). They are defined through the
class of convex functions

(2.2) x ∈]0,+∞[7→ φγ(x) :=
xγ − γx+ γ − 1

γ(γ − 1)
,

if γ ∈ R \ {0, 1}, φ0(x) := − log x + x − 1 and φ1(x) := x log x − x + 1. (For all γ ∈ R,
we define φγ(0) := limx↓0 φγ(x)). So, the KL-divergence is associated to φ1, the KLm
to φ0, the χ2 to φ2, the χ2

m to φ−1 and the Hellinger distance to φ1/2. We refer to [32]
for an overview on the origin of the concept of divergences in statistics.
Let φ be a function of class C2, strictly convex and satisfies

(2.3)

∫ ∣∣∣∣φ′(Pθ,η(x)

Pα,η(x)

)∣∣∣∣ dPθ,η(x) <∞.

As it is mentioned in [15], if the function φ(·) satisfies the following conditions

(2.4)
there exists 0 < δ < 1 such that for all c in [1− δ, 1 + δ],
we can find numbers c1, c2, c3 such that
φ(cx) ≤ c1φ(x) + c2|x|+ c3, for all real x,

then the assumption (2.3) is satisfied whenever Dφ(θ, α) <∞, where Dφ(θ, α) stands for
the φ-divergence between Pθ and Pα, refer to [14, Lemma 3.2]. Also the real convex func-
tions φ(·) (2.2), associated with the class of power divergences, all satisfy the condition
(2.3), including all standard divergences.
According to [33], under the strict convexity and the differentiability of the function φ,
it holds

(2.5) φ(t) ≥ φ(s) + φ′(s)(t− s),
where the equality holds only for s = t. Let θ, θ0, η and η0 be fixed and put t =
Pθ,η(x)/Pθ0,η0(x) and s = Pθ,η(x)/Pα,η(x) in (2.5) and then integrate with respect to
Pθ0,η0 . Under (2.3), this gives

Dφ(θ, θ0) =

∫
φ

(
Pθ,η(x)

Pθ0,η0(x)

)
dPθ0,η0(x)

= sup
α∈Θ

∫
m(θ, α, η) dPθ0,η0 ,(2.6)

where m(θ, α, η) : x 7→ m(θ, α, η, x) and

m(θ, α, η, x) :=

∫
φ′
(
Pθ,η
Pα,η

)
dPθ,η

−
[
Pθ,η(x)

Pα,η(x)
φ′
(
Pθ,η(x)

Pα,η(x)

)
− φ

(
Pθ,η(x)

Pα,η(x)

)]
.(2.7)

The supremum in (2.6) is unique and is attained in α = θ0, independently upon the value
of θ. In the sequel we use the notation

Pnψ(γ) :=
1

n

n∑
i=1

ψ(Xi),
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where ψ(·) is a deterministic measurable function and Pn is the empirical measure as-
sociated with these random variables is defined as placing mass 1/n on each of the
observations Xi, i = 1, . . . , n, i.e.,

Pn :=
1

n

n∑
i=1

δXi ,

where δx denotes Dirac measure at point x ∈ X . An estimator of (θ0, η0) has the form

(2.8) (α̂φ(θ), η̂) = arg maxPnm(θ, α, η),

where m(θ, α, η) is the function defined in (2.7).
Formula (2.8) defines a family of M -estimators indexed by the function φ specifying
the divergence and by some instrumental value of the parameter θ, called here escort
parameter. The term “M -estimation” refers to a general method of estimation, where
the estimators are obtained by maximizing (or minimizing) certain criterion functions.
The most widely used M -estimators include maximum-likelihood (MLE), ordinary least-
squares (OLS), and least absolute deviation estimators. The choices of φ and θ represent
a major feature of the estimation procedure, since they induce efficiency and robustness
properties. Asymptotic properties of the above estimators can be handled through the
general theory of M -estimators for semiparametric models, see for instance [31].

2.2. Estimation procedures

Estimation in general semiparametric models by Hellinger distance was studied in [56].
Naturally, extension of theses results, is the class of estimators of θ0, called “profile dual
φ-divergence estimators” (pDφDE’s), is defined by

(2.9) α̂φ(θ) := arg sup
α∈Θ

Pnm(θ, α, η̂), θ ∈ Θ,

The class of estimators α̂φ(θ) satisfies

(2.10) Pn
∂

∂α
m(θ, α̂φ(θ), η̂) = 0.

The theory developed in this paper is general enough to deal with the case that (α̂φ(θ), η̂)
is not the exact maximizer. Instead of (2.10), we can only assume the following “nearly-
maximizing” condition

(2.11) Pn
∂

∂α
m(θ, α̂φ(θ), η̂) = oP∗(n

−1/2).

We will use the following notation

(2.12) Ψ(θ, α, η) = Pθ0,η0
∂

∂α
m(θ, α, η)

where Pθ0,η0ψ is the customary operator notation defined as
∫
X ψ(x)dPθ0,η0(x), and

(2.13) Ψn(θ, α, η) = Pn
∂

∂α
m(θ, α, η).

The true value θ0 of θ then satisfies Ψ(θ, θ0, η0) = 0, and

α̂φ(θ) = arg min
α∈Θ
‖Ψn(θ, α, η̂n)‖ ,

where ‖·‖ denotes the Euclidean norm.
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3. Asymptotics

3.1. Consistency

The consistency of a semiparametric M -estimator α̂φ(θ) can be obtained using general
results available in the literature. The consistency of general M -estimators have been
investigated at length by a number of authors, among whom we may cite [41, Theorem
2.1.], [51, Corollary 3.2.3.] and [19, Theorem 1.]. In particular, we will use the results of
[19] who proposed conditions under which a parameter estimator that is defined via an
estimating equation depending on some nonparametric nuisance functions, is consistent
and asymptotically normal, which plays an instrumental role in proving consistency of
our estimators. We now state some general conditions that will be used throughout the
whole paper.

(C.1) θ0 is the unique solution to Ψ(θ, α, η0(·;α)) = 0 in the parameter space Θ;
(C.2) η̂n is an estimator of η0 such that

‖η̂n − η0‖ = oP∗(1);

(C.3) for every sequence {δn} ↓ 0

sup
α∈Θ,‖η−η0‖≤δn

|Ψn(θ, α, η(·; θ))−Ψ(θ, α, η0(·;α))|
1 + |Ψn(θ, α, η(·; θ))|+ |Ψ(θ, α, η0(·;α))|

= oP∗(1).(3.1)

Theorem 1. Assume that conditions (C.1-3) hold. Then, α̂φ(θ) satisfying

Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ))) = oP∗(1),

converges in outer probability to θ0.

We need the following definitions, refer to [50] and [51] among others. If F is a class
of functions for which, we have almost surely,

‖Pn − P‖F = sup
f∈F
|Pnf − Pf | → 0,

then we say that F is a P-Glivenko-Cantelli class of functions. If F is a class of functions
for which

Gn =
√
n(Pn − P)→ G in `∞(F),

where G is a mean-zero P-Brownian bridge process with (uniformly-) continuous sample
paths with respect to the semi-metric ρP(f, g), defined by

ρ2
P(f, g) = V arP(f(X)− g(X)),

then we say that F is a P-Donsker class of functions. Here

`∞(F) =

{
v : F 7→ R

∣∣∣‖v‖F = sup
f∈F
|v(f)| <∞

}
and G is a P-Brownian bridge process on F if it is a mean-zero Gaussian process with
covariance function

E(G(f)G(g)) = Pfg − (Pf)(Pg).

Condition (C.3) of Theorem 1 is implied by the following condition

(C.3)’ sup
θ∈Θ,‖η−η0‖≤δn

|Ψn(θ, α, η(·; θ))−Ψ(θ, η0(·;α))| = oP∗(1).

Observe that

Ψn(θ, α, η)−Ψ(θ, α, η) = (Pn − Pθ0,η0)ϕ (θ, α, η),

with

(3.2) ϕ (θ, α, η) =
ṗα,η
Pα,η

(
Pθ,η
Pα,η

)2

φ′′
(
Pθ,η
Pα,η

)
.
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Let θ be fixed,
Fθ = {ϕ (θ, α, η) : α ∈ Θ, η ∈ H}

denotes the class of measurable functions indexed by (α, η). By modern empirical process
theory presented in [51] for example, condition (C.3)’ will be satisfied when Fθ is P -
Glivenko-Cantelli. In the case of power divergence the class Fθ will reduce to

Fθ =

{
ṗα,η
Pα,η

(
Pθ,η
Pα,η

)γ
: α ∈ Θ, η ∈ H

}
.

By application of the Glivenko-Cantelli preservation properties, we can show that Fθ
is P -Glivenko-Cantelli, by showing first, that the classes {ṗα,η}, {Pα,η} and {Pθ,η} are
P -Glivenko-Cantelli, for more details on the subject refer to [49].

3.2. Asymptotic normality

Let
H0 = {η(x; θ) : x ∈ X , θ ∈ Θ0}

be a collection of functions that are continuously differentiable in θ for all x ∈ X with
bounded derivative matrices {η̇(·; θ)}, where Θ0 ⊂ Θ is a neighborhood of θ0. Suppose
that α̂φ(θ) satisfying

Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ))) = oP∗(n
−1/2),

is a consistent estimator of θ0 that is the unique solution to the equation

Ψ(θ, α, η0(·;α)) = 0

in Θ, and that η̂n ∈ H0 is an estimator of η0 ∈ H0 satisfying

‖η̂n − η0‖ = oP∗(n
−β),

for some β > 0. Suppose the following four conditions are satisfied:

(A.1) (Stochastic equicontinuity.)

|n1/2(Ψn −Ψ)(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))− n1/2(Ψn −Ψ)(θ, θ0, η0(·; θ0))|
1 + n1/2|Ψn(α̂φ(θ), η̂n(·; α̂φ(θ)))|+ n1/2|Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

= oP∗(1) .

(A.2) n1/2Ψn(θ, θ0, η0(·; θ0)) = oP∗(1).
(A.3) (Smoothness.) (a) If β = 1/2, the function Ψ(θ, α, η(·; θ)) : Θ0 × H0 → Rd is

Fréchet differentiable at (θ0, η0(·; θ0)), i.e., there exists a continuous d×d matrix

Ψ̇1(θ0, η0(·; θ0)) and a continuous linear functional Ψ̇2(θ, θ0, η0(·; θ0)) such that

|Ψ(θ, α, η(·; θ))−Ψ(θ, θ0, η0(·; θ0))

− {Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]}(α− θ0)

− Ψ̇2(θ, θ0, η0(·; θ0))[(η − η0)(·; θ0)]|
= o(|α− θ0|) + o(‖η − η0‖) ;(3.3)

or (b) if 0 < β < 1/2, for some ξ > 1 satisfying ξβ > 1/2 we have

|Ψ(θ, α, η(·; θ))−Ψ(θ, θ0, η0(·; θ0))

− {Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]}(α− θ0)

− Ψ̇2(θ, θ0, η0(·; θ0))[(η − η0)(·; θ0)]|
= o(|α− θ0|) +O(‖η − η0‖ξ) .(3.4)

Here the subscripts 1 and 2 correspond to the first and the second arguments in
Ψ(·, ·), respectively, and we assume that the matrix

A = −Ψ̇1(θ, θ0, η0(·; θ0))− Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]

is nonsingular.
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(A.4)

n1/2Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)] = oP∗(1).

The main result of the present paper is given in the following theorem.

Theorem 2. Suppose that conditions (A.1-4) hold. Then α̂φ(θ) is n1/2-consistent and
further we have

n1/2(α̂φ(θ)− θ0) = A−1n1/2
{

(Ψn −Ψ)(θ, θ0, η0(·; θ0))

+ Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
}

+ oP∗(1).(3.5)

4. Examples

In this section, we consider three examples of the semiparametric models (2.1): the
symmetric location model, generalized logistic models and a scale mixture model. In
each case, we will demonstrate the construction of the pDφD estimator defined by (2.10)
for the parameters of interest. In all the following we will consider the class of “power
divergences” defined in (2.2).

4.1. Symmetric location

Assume that the data X1, . . . , Xn ∈ R are i.i.d. and satisfy the model

X = θ + ε,

where the center θ is the parameter to be estimated, and the error ε has a symmetric
(about zero) continuous bounded density η. Then the semiparametric model under our
consideration here is

P = {Pθ,η(x) = η(x− θ) : θ ∈ R, η ∈ H}
where

H =

{
η : η > 0,

∫
η(x) dx = 1, η(−x) = η(x),

η is absolutely continuous a.e. with

∫
(η′(x))2

η(x)
dx <∞

}
.

Since η(x) = Pθ,η(x+ θ), intuitively we can construct an estimator of η as

p̂(x+ θ̃) :=
1

nhn

n∑
i=1

K

(
x+ θ̃ −Xi

hn

)
,

where p̂ is the kernel density estimator of Pθ,η based on X1, . . . , Xn and θ̃ is a preliminary
estimator of θ. See [55]. Suppose that the model consists of all densities x 7→ η(x − θ)
with θ ∈ R and the density η(·) symmetric about 0 with finite Fisher information.

(4.1) Fθ =

{
−η
′(x− α)

η(x− α)

(
η(x− θ)
η(x− α)

)γ
: α ∈ Θ

}
.

4.2. Regression

Consider the regression model Y = m(X) + ε where the regression function is param-
eterized such that

(4.2) Y = g(X, θ0) + ε,

where X is a q × 1 vector of covariates, g is the regression function of known form,
θ0 is a vector of unknown parameters, and ε is the error independent of X with mean
zero and finite variance. The model is semiparametric in the sense that the regression
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function is parametric and the error term distribution is nonparametric. Let X and ε be
independent random vectors with densities g(·) and f(·) respectively and suppose that

(4.3) Y = r(θ,X) + ε,

for function r(θ,X) that is known up to θ. Semiparametric versions are obtained by
letting the distribution of ε range over all distributions on the real line with mean zero, or,
alternatively, over all distributions that are symmetric about zero. Thus, the observation
(X,Y ) has a density

η0(x, y − r(θ, x)) = g(x)f(y − r(θ, x)).

(4.4) Fθ =

{
− ∂

∂α
r(α, x)

f ′(y − r(α, x))

f(y − r(α, x))

(
f(y − r(θ, x))

f(y − r(α, x))

)γ
: α ∈ Θ

}
.

4.3. Generalized logistic models

Following [55], suppose Y is a binary response variable and X is the associated co-
variate; then the (prospective) logistic regression model is of the form

P(Y = 1|X = x) =
exp[a′ + bx]

1 + exp[a′ + bx]
,

where a′ and b are parameters and the marginal distribution of X is not specified. In case-
control studies, data are collected retrospectively in the sense that for samples of subjects
having Y = 1 (’case’) and having Y = 0 (’control’), the value x of X is observed. More
specifically, suppose X1, . . . , Xn is a random sample from F (x|Y = 1) and, independently
of the Xi’s, suppose Z1, . . . , Zm is a random sample from F (x|Y = 0). If π = P(Y =
1) = 1− P(Y = 0) and f(x|Y = i) is the conditional density of X given Y = i, i = 0, 1,
then it follows from Bayes rule that

f(x|Y = 1) = f(x|Y = 0) exp[a+ bx],

where
a = a′ + log[(1− π)/π].

In other words, we observe two independent samples

Z1, . . . , Zm i.i.d. ∼ η(x),

X1, . . . , Xn i.i.d. ∼ f(x) = fθ,η(x) = η(x) exp[a+ r(x)b].(4.5)

We are concerned with estimation of parameter θ = (a, b) when η is unknown (the
nuisance parameter).

5. Exchangeably weighted bootstraps of minimum profile divergence

Bootstrap samples were introduced and first investigated in [25]. Since this seminal
paper, bootstrap methods have been proposed, discussed, investigated and applied in a
huge number of papers in the literature. Being one of the most important ideas in the
practice of statistics, the bootstrap also introduced a wealth of innovative probability
problems, which in turn formed the basis for the creation of new mathematical theories.
The asymptotic theory of the bootstrap with statistical applications has been reviewed
in the books among others [26], [28] and [31]. A major application for an estimator is
in the calculation of confidence intervals. By far the most favored confidence interval
is the standard confidence interval based on a normal or a Student t-distribution. Such
standard intervals are useful tools, but they are based on an approximation that can be
quite inaccurate in practice. Bootstrap procedures are an attractive alternative. One
way to look at them is as procedures for handling data when one is not willing to make
assumptions about the parameters of the populations from which one sampled. The
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most that one is willing to assume is that the data are a reasonable representation of the
population from which they come. One then resamples from the data and draws infer-
ences about the corresponding population and its parameters. The resulting confidence
intervals have received the most theoretical study of any topic in the bootstrap analysis.
Roughly speaking, it is known that the bootstrap works in the i.i.d. case if and only if
the central limit theorem holds for the random variable under consideration. For further
discussion we refer the reader to the landmark paper by [27]. In this section, we shall
establish the consistency of bootstrapping under general conditions in the framework of
dual divergence estimation. Define, for a measurable function f(·),

P∗nf :=
1

n

n∑
i=1

Wnif(Xi),

where Wni’s are the bootstrap weights defined on the probability space (W,Ω,PW ).
Following [21], assume there exists an

H(θ, η) = (h1(θ, η), . . . , hp(θ, η))>,

where each hj(θ, η) ∈ H, such that for any h ∈ H
Eθ,η[m12(θ, α, η)[h]−m22(θ, α, η)[H,h]] = 0,

where

m12(θ, α, η)[h] =
∂

∂t
m1(θ, α, η(t))[h]

∣∣∣∣
t=0

,

and

m22(θ, α, η)[h] =
∂

∂t
m2(θ, α, η(t))[h]

∣∣∣∣
t=0

.

We define the function

m̃(θ, α, η) = m1(θ, α, η)−m2(θ, α, η)[H(θ, η)].

In view of (2.9), the bootstrap estimator can be rewritten as

(5.1) (α̂∗φ(θ), η̂∗n) := arg sup
α∈Θ,η∈H

P∗nm(θ, α, η).

The definition of α̂∗φ(θ), defined in (5.1), implies that

(5.2) P∗n
∂

∂α
m(θ, α̂∗φ(θ), η̂∗n) = 0.

One can see also that

(5.3) P∗nm̃(θ, α̂∗φ(θ), η̂∗n) = 0.

The bootstrap weightsWni’s are assumed to belong to the class of exchangeable bootstrap
weights introduced in [43]. In the sequel, the transpose of a vector x will be denoted by
x>. We shall assume the following conditions.

W.1 The vector Wn = (Wn1, . . . ,Wnn)> is exchangeable for all n = 1, 2, . . ., i.e., for
any permutation π = (π1, . . . , πn) of (1, . . . , n), the joint distribution of

π(Wn) = (Wnπ1 , . . . ,Wnπn)>

is the same as that of Wn.
W.2 Wni ≥ 0 for all n, i and

∑n
i=1Wni = n for all n.

W.3
lim sup

n→∞
‖Wn1‖2,1 ≤ C <∞,

where

‖Wn1‖2,1 =

∫ ∞
0

√
PW (Wn1 ≥ u)du.
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W.4

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2PW (Wn1 > t) = 0.

W.5

(1/n)

n∑
i=1

(Wni − 1)2 PW−→ c2 > 0.

In Efron’s nonparametric bootstrap, the bootstrap sample is drawn from the nonpara-
metric estimate of the true distribution, i.e., empirical distribution. Thus, it is easy to
show that

Wn ∼ Multinomial(n;n−1, . . . , n−1)

and conditions W.1–W.5 are satisfied. In general, conditions W.3-W.5 are easily satisfied
under some moment conditions on Wni, see [43, Lemma 3.1]. In addition to Efron’s
nonparametric boostrap, the sampling schemes that satisfy conditions W.1–W.5, include
Bayesian bootstrap, Multiplier bootstrap, Double bootstrap, and Urn boostrap. This list is
sufficiently long to indicate that conditions W.1–W.5, are not unduely restrictive. Notice
that the value of c in W.5 is independent of n and depends on the resampling method,
e.g., c = 1 for the nonparametric bootstrap and Bayesian bootstrap, and c =

√
2 for the

double bootstrap. A more precise discussion of this general formulation of the bootstrap
can be found in [43], [51] and [31].

There exist two sources of randomness for the bootstrapped quantity, i.e., α̂∗φ(θ): the
first comes from the observed data and the second is due to the resampling done by the
bootstrap, i.e., random Wni’s. Therefore, in order to rigorously state our main theoretical
results for the general bootstrap of φ-divergence estimates, we need to specify relevant
probability spaces and define stochastic orders with respect to relevant probability mea-
sures. Following [21] and [53], we shall view Xi as the i-th coordinate projection from
the canonical probability space (X∞,A∞,P∞θ0,η0) onto the i-th copy of X . For the joint
randomness involved, the product probability space is defined as

(X∞,A∞,P∞θ0,η0)× (W,Ω,PW ) = (X∞ ×W,A∞ × Ω,P∞θ0,η0 × PW ).

Throughout the paper, we assume that the bootstrap weights Wni’s are independent of
the data Xi’s, thus

PXW = Pθ0,η0 × PW .
Given a real-valued function ∆n defined on the above product probability space, e.g.
α̂∗φ(θ), we say that ∆n is of an order oPW (1) in Pθ0,η0-probability if, for any ε, η > 0, as
n→ 0,

Pθ0,η0{PW |X(|∆n| > ε) > η} −→ 0,(5.4)

and that ∆n is of an order OPW (1) in Pθ0,η0-probability if, for any η > 0, there exists a
0 < M <∞ such that, as n→ 0,

Pθ0,η0{PW |X(|∆n| ≥M) > η} −→ 0.(5.5)

We shall say a class of functions H ∈M(Pθ0,η0) if H possesses enough measurability for
randomization with i.i.d. multipliers to be possible, i.e., Pn can be randomized, in other
word, we can replace

(δXi − Pθ0,η0)

by

(Wni − 1)δXi .

It is known that H ∈ M(Pθ0,η0), e.g., if H is countable, or if {Pn}∞n are stochastically
separable in H, or if H is image admissible Suslin; see [27, pages 853 and 854].
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For any fixed δn > 0, define a class of function Sn as

Sn := Sn(δn) =

{
m̃(θ, θ0, η)− m̃(θ, θ0, η0)

‖η − η0‖H
: ‖η − η0‖H ≤ δn

}
.

We define a

Cn(δn) := Θδ ×Hδn .
To state our result concerning the asymptotic normality, we shall assume the following
additional conditions.

(A.8) The tail probability condition:

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2P(Sn(X1) > t) = 0,

where Sn(x) is the envelop function of the class Sn, that is,

Sn(x) = sup
‖η−η0‖H≤δn

∣∣∣∣m̃(θ0, η)− m̃(θ0, η0)

‖η − η0‖H

∣∣∣∣ ;
(A.9) The class İn ∈M(Pθ0,η0) ∩ L2(Pθ0,η0) is P-Donsker, where

İn := {∂m̃(θ, α, η)/∂α : (α, η) ∈ Cn};

(A.10)

‖η̂∗n − η0‖H = oPW (n−1/4),

in Pθ0,η0 -probabbility.

Conditions (A.4) and (A.5) ensure that the “size” of the function class İn is reasonable

so that the bootstrapped empirical processes G∗n ≡
√
n(P∗n − Pn) indexed by İn, has

a limiting process conditional on the original observations, we refer for instance to [43,
Theorem 2.2]. The main result to be proved here may now be stated precisely as follows.

Theorem 3. Assume that α̂φ(θ) and α̂∗φ(θ) fullfil (2.10) and (5.2), respectively. In
addition suppose that

α̂φ(θ)
Pθ0,η0−→ θ0 and α̂∗φ(θ)

PW−→ θ0 in Pθ0,η0 -probability.

Assume that conditions (A.1–9) and W.1–W.5 hold. Then we have

‖α̂∗φ(θ)− θ0‖ = OPW (n−1/2)(5.6)

in Pθ0,η0 -probability. Furthermore,
√
n(α̂∗φ(θ)− α̂φ(θ)) = −Γ−1

1 G∗nm̃(θ, θ0, η0) + oPW (1)(5.7)

in Pθ0,η0 -probability. Consequently,

sup
x∈Rd

∣∣PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ x)− P(N(0,Σ) ≤ x)

∣∣ = oPθ0,η0 (1),(5.8)

where “≤” is taken componentwise and “c” is given in W.5, whose value depends on the
used sampling scheme, and

Σ ≡ Γ−1
1 V1Γ−1

1 .

Thus, we have

sup
x∈Rd

∣∣PW |Xn((
√
n/c)(α̂∗φ(θ)− α̂φ(θ)) ≤ x)− Pθ0,η0(

√
n(α̂φ(θ)− θ0) ≤ x)

∣∣
Pθ0,η0−→ 0.(5.9)

For application of this result, one can refer to [13], [12], [8, 9] and [1, 2, 3].
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Remark 5.1. Notice that the choice of weights depends on the problem at hand : accuracy
of the estimation of the entire distribution of the statistic, accuracy of a confidence
interval, accuracy in large deviation sense, accuracy for a finite sample size, we may
refer to [35] and the references therein for more details. [4] indicate that the area where
the weighted bootstrap clearly performs better than the classical bootstrap is in term of
coverage accuracy.

Remark 5.2. Note that an appropriate choice of the the bootstrap weights Wni’s im-
plicates a smaller limit variance, that is, c2 is smaller than 1. For instance, typical
examples are i.i.d.-weighted bootstraps and the multivariate hypergeometric bootstrap,
refer to [43, Examples 3.1 and 3.4].

Remark 5.3. In order to extract methodological recommendations for the use of an appro-
priate divergence, it will be interesting to conduct an extensive Monte Carlo experiments
for several divergences or investigate theoretically the problem of the choice of the di-
vergence which leads to an “optimal” (in some sense) estimate in terms of efficiency
and robustness, which would go well beyond the scope of the present paper. An other
challenging task is how to choose the bootstrap weights for a given divergence in order
to obtain, for example, an efficient estimator.

Bootstrap weights

Let us present some examples of the bootstrap weights satisfying the conditions W.1-
W.5, we can refer to [43] and [20] for further details. More precisely, the following
examples are provided in this compressed form in [20], we have included some minor
changes necessary for our setting.

Example 5.1 (i.i.d.-Weighted Bootstraps). In this example, the bootstrap weights are
defined as

Wni = ωi/ωn,

where ω1, ω2, . . . , ωn are i.i.d. positive r.v.s. with ‖ω1‖2,1 <∞, where

‖Wn1‖2,1 =

∫ ∞
0

√
PW (Wn1 ≥ u)du,

ωn =

n∑
i=1

ωi.

Thus, we can choose ωi ∼ Exponential(1) or ωi ∼ Gamma(4, 1). The former corresponds
to the Bayesian bootstrap. The multiplier bootstrap is often thought to be a smooth
alternative to the nonparametric bootstrap; see [34]. The value of c2 is calculated as

V ar(ω1)/(Eω1)2.

Example 5.2 (Efron’s bootstrap). As already mentioned, the weights for the Efron
bootstrap satisfy the conditions W.1-W.5 with c2 = 1 and are

Wn ∼ Multinomial(n;n−1, . . . , n−1).

Example 5.3 (The delete-h Jackknife). In the delete-h jackknife, see [57], the bootstrap
weights are generated by permuting the deterministic weights

wn =

{
n

n− h
, . . . ,

n

n− h
, 0, . . . , 0

}
with

n∑
i=1

wni = n.

Specifically, we have Wnj = wnRn(j) where Rn(·) is a random permutation uniformly

distributed over {1, . . . , n}. In Condition W.5, c2 = h/(n − h). Thus, we need to
choose h/n → α ∈ (0, 1) such that % > 0. Therefore, the usual jackknife with h = 1 is
inconsistent for estimating the distribution.
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Let us recall some examples from [36].

Example 5.4. The m(n) out of n-bootstrap weights

Wni = m(n)1/2

(
1

m(n)
Mni −

1

n

)
are given by a multinomial distributed random variable (Mn1, . . . ,Mn,n) with sample
size

m(n) =

n∑
i=1

Mni

and equal success probability. In this case, the conditions W.1-W.5 are valid, (details of
the proof are given in [37, (8.37)-(8.46)]).

Example 5.5. The m(n)-double bootstrap can be described by the weights

Wni =
m(n)1/2

√
2

(
1

m(n)
M ′ni −

1

n

)
Here (M ′n1, . . . ,M

′
nn) denotes a conditional multinomial distributed variable with sample

size

m(n) =

n∑
i=1

Mni

and success probability Mni/m(n) for the i-th cell given by the first example, (details of
this example are discussed in Lemma 6.2 of [36]).

Remark 5.4. As was pointed out in [43], the aforementioned bootstraps are “smoother”
in some sense than the multinomial bootstrap since they put some (random) weight at
all elements in the sample, whereas the multinomial bootstrap puts positive weight at
about

1− (1− n−1)n → 1− e−1 = 0.6322

proportion of each element of the sample, on the average. Notice that when ωi ∼
Gamma(4, 1) so that the Wni/n are equivalent to four-spacings from a sample of 4n− 1
Uniform(0,1) random variables. In [54] and [52], it was noticed that, in addition to be-
ing four times more expensive to implement, the choice of four-spacings depends on the
functional of interest and is not universal.

6. Class of Functional M-Estimator processes

Let `∞(H) denote the set of bounded functions from H to the real line R, for some
set H, and let ‖ · ‖H denote the uniform norm on `∞(H). Let ψ(γ; ·) be a γ-indexed
operator from H to some subset F(γ) of L2(Pγ) for each γ ∈ Θ. Define the set

F(Θ) =
⋃
γ∈Θ

F(γ).

For simplicity of notation, we omit Θ in F(Θ) and simply write F . A functional Z-

estimator for θ0 is a sequence of estimates θ̂n which makes the “scores” Pnψ(γ; ·)(h), h ∈
H, approximately zero, that is,

(6.1) ‖Pnψ(θ̂n; ·)‖H = oP∗(n
−1/2),

where P∗ denotes the outer probability of P∞ (see, e.g., [51] and [31] for more details

on outer probability measures). According to equation (6.1) the estimator θ̂n depends

on the underlying function ψ(·) and therefore it can be denoted by θ̂n;ψ. Varying the
function ψ(·) over a class of measurable functions Ψ leads to a collection of estimators
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{θ̂n;ψ : ψ ∈ Ψ} indexed by ψ(·), where each θ̂n;ψ is an M -estimator of θ associated with
the function ψ(·). The collection of M -estimators

{θ̂n;ψ : ψ ∈ Ψ}

is called functional M -process as in [16], where the parametric M -process was investi-
gated. In this study, the case of intrinsic functional parameter is considered, namely θ0

is a the common value that minimize for all the functions ψ(·) in a class Ψ, that is,

Pψ(θ0; ·) = 0, for all ψ ∈ Ψ.

For convenience the centered process

{θ̂n;ψ − θ0 : ψ ∈ Ψ}

is considered. The main goal in the present paper is to provide a tool in order to construct

estimators of θ̂n using the contribution of the whole class Ψ rather than only one function
from this class. More precisely, let T be a real-valued regular functional defined on the
space `∞(Ψ) of bounded functions defined on Ψ. By applying the functional T to a
functional M -process, new kind of estimators can be defined which combine all the M -
estimators in the class. This functional estimator of θ0 is defined, in a natural way,
by

θ̃n := T ({θ̂n;ψ : ψ ∈ Ψ}) = T (θ̂n,•).

The uniform convergence in probability on the class Ψ is established as well as the weak

convergence of the processes {θ̂n;ψ − θ0 : ψ ∈ Ψ} in the following section.

6.1. The large sample theory

Our large sample theory is a direct extension of the results given in [16]. We need the
following definitions. For fixed γ ∈ Θ, the function

ϕ(θ,Pγ) = Pγψ(θ; ·),

as a map from Θ to `∞(H), is Fréchet differentiable with respect to the norm ‖ · ‖ at a
point θ ∈ Θ if there is a bounded linear operator ϕ̇(γ,Pγ)(·) mapping from (lin(Θ), ‖·‖),
where lin(Θ) denote the linear span of Θ (all linear combinations of elements in Θ), to
(`∞(H), ‖ · ‖H) such that

‖ϕ(θ,Pγ)− ϕ(γ,Pγ)− ϕ̇(γ,Pγ)(θ − γ)‖H = o(‖θ − γ‖).

Denote the operator ϕ̇(γ,Pγ)(·) by ϕ̇(γ) :

ϕ̇(γ) := ϕ̇(γ,Pγ).

Suppose that for a fixed θ ∈ Θ, the operator ψ(θ; ·) is bounded in the sense that

‖Pγψ(θ; ·)‖H <∞

for all γ ∈ Θ. Thus for a fixed θ ∈ Θ, the probability measure Pγ induces a mapping
γ 7→ Pγψ(θ; ·) from Θ to `∞(H). The map Pγψ(θ; ·), as a function of γ, is Fréchet
differentiable with respect to the norm ‖ · ‖ at a point γ ∈ Θ if there is a linear operator

Ṗγ(·) such that Ṗγ(·)ψ(θ; ·) is bounded and

‖Pγψ(θ; ·)− Pθψ(θ; ·)− Ṗθ(γ − θ)ψ(θ; ·)‖H = o(‖γ − θ‖).
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7. 6.2. Weak convergence

We need the following assumptions for the weak convergence theorem.

A.1 For all γ ∈ Θ, Pγψ(γ; ·) = 0 in `∞(H) independently of ψ.
A.2 As n→∞, for any decreasing δn ↓ 0, the stochastic equicontinuity condition

sup
ψ∈F

sup
γ
{‖Gn(ψ(γ; ·)− ψ(θ0; ·))‖H : ‖γ − θ0‖ ≤ δn} = oP∗(1)

holds at the point θ0, where Gn is the empirical process indexed by F .
A.3 At the point θ0,

{Gnψ(θ0; ·) : ψ ∈ F} {Z0(ψ) : ψ ∈ F} in `∞(H),

where  indicates weak convergence in `∞(H) to a tight Borel measurable ran-
dom element Z0.

A.4 For a fixed θ ∈ Θ, the operator Pγψ(θ; ·) as a function of γ is Fréchet differentiable
with respect to the norm ‖·‖ at γ. Furthermore, the function θ → Pγψ(θ; ·) from
Θ to `∞(H) is Fréchet differentiable with respect to the norm ‖ · ‖ for all ψ ∈ F .
The operator ϕ̇(γ) is continuous as a function of γ in the following sense

sup
ψ∈F
‖ϕ̇(γ)− ϕ̇(θ)‖ := sup

ψ∈F
sup
‖a‖≤1

‖ϕ̇(γ)(a)− ϕ̇(θ)(a)‖H → 0, as ‖γ − θ‖ → 0.

A.5 For every fixed γ ∈ Θ and all ψ ∈ F , the operator ϕ̇(γ) from (lin(Θ), ‖·‖), where

lin(Θ) the closure of lin(Θ), to (`∞(H, ‖ · ‖H) has a bounded inverse ϕ̇−1(γ) on

a fixed subspace R(ϕ̇) ⊂ `∞(H). Furthermore ϕ̇−1(γ) as an operator sequence
converges to ϕ̇−1(θ0) as ‖γ − θ0‖ → 0:

sup
ψ∈F
‖ϕ̇−1(γ)(f)− ϕ̇−1(θ0)(f)‖ → 0,

for all f ∈ R(ϕ̇).

Let us state our main result of this section.

Theorem 4. Let ‖θ̂n,ψ − θ0‖ →P∗ 0, for all ψ ∈ Ψ, be a sequence of consistent Z-
estimator. Assume A.1 through A.5. Then we have

{n1/2(θ̂n;ψ − θ0) : ψ ∈ Ψ} {ϕ̇−1(θ0)(Z0(ψ)) : ψ ∈ Ψ},

where ϕ̇−1(θ0)(Z0(ψ)) is a centred Gaussian processes with covariance

σ(k, k′) := ϕ̇−1
k (θ0)ϕ̇−1

k′ (θ0)

∫
ψk(θ0; ·)ψk′(θ0; ·)dP,

for ψk(θ0; ·) and ψk′(θ0; ·) in Ψ.

An application of the continuous mapping theorem gives the following corollary.

Corollary 7.1. Under the condition of Theorem 4, we have

max
ψ∈Ψθ0

{n1/2(θ̂n;ψ − θ0) : ψ ∈ Ψ} max
ψ∈Ψθ0

{ϕ̇−1(θ0)(Z0(ψ)) : ψ ∈ Ψ},

and

inf
ψ∈Ψθ0

{n1/2(θ̂n;ψ − θ0) : ψ ∈ Ψ} inf
ψ∈Ψθ0

{ϕ̇−1(θ0)(Z0(ψ)) : ψ ∈ Ψ}.

8. Mathematical developpments

This section is devoted to the proofs of our results. The previously presented notation
continues to be used in the following.
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Proof of Theorem 1.

The proof is similar to that of Lemma 1 [40]. Since θ0 is the unique solution to

Ψ(θ, α, η0(·; θ)) = 0,

this implies that for any fixed ε > 0, there exists a δ > 0 such that

P [|α̂φ(θ)− θ0| > ε] ≤ P [|Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))| > δ] .

If we can prove

|Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))| →P∗ 0,

then the consistency of α̂φ(θ) will follow immediately. To do this, first note that since

||η̂n − η0|| = oP∗(1),

there exists a sequence {δn} ↓ 0 such that

||η̂n − η0|| ≤ δn,

with probability tending to one. Hence taking η = η̂n in equation (3.1), we have the
following inequalities:

|Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))|
≤ |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

+|Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))−Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

≤ |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|+ oP∗
(

1 + |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

+ |Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))|
)

≤ oP∗(1) + oP∗ (1 + oP∗ (1) + |Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))|) ,

which implies

|Ψ(θ, α̂φ(θ), η0(·; α̂φ(θ)))| = oP∗(1).

So we have proved the consistency of pseudo Z-estimators α̂φ(θ). �

Proof of Theorem 2.

We first show a result that we will use in the proof: under Conditions (A.1) and (A.2),

n1/2 |Ψ(θ, α̂φ(θ), η̂n(·, α̂φ(θ)))| = oP∗(1).(8.1)

By Condition (A.1), we have the following inequality:

n1/2 |(Ψn −Ψ)(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))− (Ψn −Ψ)(θ, θ0, η0(·; θ0))|

= oP∗(1) + oP∗
(
n1/2 |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

)
+oP∗

(
n1/2 |Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

)
.

By the triangle inequality

−|a|+ |b| − |c| ≤ |a− b− c|

and the fact that

Ψ(θ, θ0, η0(·; θ0)) = 0,
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we readily infer

n1/2 |Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))| − n1/2 |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|
−n1/2 |Ψn(θ0, η0(·; θ0))|

≤ n1/2 |(Ψn −Ψ)(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))− (Ψn −Ψ)(θ0, η0(·; θ0))|

= oP∗(1) + oP∗
(
n1/2 |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

)
+ oP∗

(
n1/2 |Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

)
,

which implies

n1/2 |Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))| [1− oP∗(1)]

≤ oP∗(1) + n1/2 |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))| [1 + oP∗(1)]

+n1/2 |Ψn(θ0, η0(·; θ0))|
= oP∗(1) + oP∗(1) + oP∗(1).

Hence (8.1) holds. We then show the root-n consistency of α̂φ(θ). Since

|α̂φ(θ)− θ0| = oP∗(1),

and

||η̂n − η0|| = oP∗(n
−β),

with β > 0, there exists a sequence {δn} ↓ 0 and c > 0 such that

|α̂φ(θ)− θ0| ≤ δn
and

||η̂n − η0|| ≤ cn−β ,
with probability approaching one. Hence taking (α, η) = (α̂φ(θ), η̂n) in the smoothness
condition (3.4):∣∣∣n1/2 {Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))−Ψ(θ0, η0(·; θ0))}

− n1/2
{

Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]
}

(α̂φ(θ)− θ0)

− n1/2Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
∣∣∣

= oP∗
(
n1/2|α̂φ(θ)− θ0|

)
+ oP∗

(
n1/2‖η̂n − η0‖ξ

)
= oP∗

(
1 + n1/2|α̂φ(θ)− θ0|

)
,(8.2)

since

n1/2oP∗(||η̂n − η0||ξ) = oP∗(1)

by ξβ > 1/2. Same result can be obtained by using the smoothness condition (3.3)
for β = 1/2. By equation (8.1), the fact that Ψ(θ, θ0, η0(·; θ0)) = 0, and the triangle
inequality

−|a|+ |b| − |c| ≤ |a− b− c|,
equation (8.2) implies

−oP∗(1) +
∣∣∣n1/2

{
Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(α̂φ(θ)− θ0)

∣∣∣
−
∣∣∣n1/2Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]

∣∣∣
≤ oP∗

(
1 + n1/2 |α̂φ(θ)− θ0|

)
.(8.3)
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Since the d × d matrix Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)] is nonsingular,
there exist a constant c1 > 0 such that∣∣∣{Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(α− θ0)

∣∣∣ ≥ c1|α− θ0|

for

|α− θ0| → 0.

On the other hand, by Condition (A.4), combination with inequality (8.3) yields

oP∗(1) ≥
∣∣∣n1/2

{
Ψ̇1(θ, θ0, η0(·; θ0)) + Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]

}
(α̂φ(θ)− θ0)

∣∣∣
−
∣∣∣n1/2Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]

∣∣∣
− oP∗

(
1 + n1/2 |α̂φ(θ)− θ0|

)
≥ c1n

1/2 |α̂φ(θ)− θ0| − oP∗(1)− oP∗
(

1 + n1/2 |α̂φ(θ)− θ0|
)

= {oP∗(1)− oP∗(1)}n1/2 |α̂φ(θ)− θ0| − oP∗(1).

Hence the sequence n1/2 |α̂φ(θ)− θ0| must be bounded in outer probability. Now we
are ready to prove equation (3.5). Because

n1/2 [Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))−Ψ(θ0, η0(·; θ0))]

= n1/2 [Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))−Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))

+ Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))−Ψ(θ0, η0(·; θ0))]

= n1/2(Ψ−Ψn)(θ, α̂φ(θ), η̂n(·; α̂φ(θ))) + oP∗(1)− 0

= − n1/2(Ψn −Ψ)(θ, θ0, η0(·; θ0))± oP∗
(

1 + n1/2 |Ψn(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|

+ n1/2 |Ψ(θ, α̂φ(θ), η̂n(·; α̂φ(θ)))|
)

(by Condition (A.1))

= − n1/2(Ψn −Ψ)(θ, θ0, η0(·; θ0))± oP∗(1), (by equation (8.1)),(8.4)

after replacing equation (8.4) into the first term in the first line of equation (8.2) we
obtain ∣∣∣−n1/2(Ψn −Ψ)(θ, θ0, η0(·; θ0))± oP∗(1)− n1/2

{
Ψ̇1(θ, θ0, η0(·; θ0))

+ Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]
}

(α̂φ(θ)− θ0)

− n1/2Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
∣∣∣

= oP∗
(

1 + n1/2 |α̂φ(θ)− θ0|
)

= oP∗(1),

which implies

n1/2(α̂φ(θ)− θ0) =
{
− Ψ̇1(θ0, η0(·; θ0))− Ψ̇2(θ, θ0, η0(·; θ0))[η̇0(·; θ0)]

}−1

× n1/2
{

(Ψn −Ψ)(θ, θ0, η0(·; θ0))

+ Ψ̇2(θ, θ0, η0(·; θ0))[(η̂n − η0)(·; θ0)]
}

+ oP∗(1) .

Hence the proof is complete. �

Remark 8.1. Note that the proof techniques of Theorem 3 are largely inspired from that
of [21] and changes have been made in order to adapt them to our purpose.
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Proof of Theorem 3

Keep in mind the following definitions

Gn :=
√
n(Pn − Pθ0,η0)

and
G∗n :=

√
n(P∗n − Pn).

In view of the fact that

Pθ0,η0
∂

∂α
m̃(θ, θ0, η0) = 0,

then a little calculation shows that

G∗nm̃(θ, θ0, η0) + Gnm̃(θ, θ0, η0)

+
√
nPθ0,η0

[
m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, θ0, η0)

]
= G∗n

[
m̃(θ, θ0, η0)− m̃(θ, α̂∗φ(θ), η̂∗n)

]
+Gn

[
m̃(θ, θ0, η0)− m̃(θ, α̂∗φ(θ), η̂∗n)

]
+
√
nP∗nm̃(θ, α̂∗φ(θ), η̂∗n).

Consequently, we have following inequality∥∥√nPθ0,η0 [m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, θ0, η0)
]∥∥

≤ ‖G∗nm̃(θ, θ0, η0)‖+ ‖Gnm̃(θ, θ0, η0)‖
+
∥∥G∗n [m̃(θ, θ0, η0)− m̃(θ, α̂∗φ(θ), η̂∗n)

]∥∥
+
∥∥Gn [m̃(θ, θ0, η0)− m̃(θ, α̂∗φ(θ), η̂∗n)

]∥∥
+
∥∥√nP∗nm̃(θ, α̂∗φ(θ), η̂∗n)

∥∥
:= G1 +G2 +G3 +G4 +G5.(8.5)

According to Theorem 2.2 in [43], under condition (A.9), we have

G1 = OPW (1)

in Pθ0,η0 -probability. In view of the CLT, we have

G2 = OPθ0,η0 (1).

By condition (A.10), we have
‖η̂∗n − η0‖ = oPW (1)

in Pθ0,η0 -probability. This implies that

G3 = oPW (1)

in Pθ0,η0-probability, by using Lemma 3 in [21]. Similarly, we have

G4 = oPW (1)

in Pθ0,η0-probability. Finally we have,

G4 = oPW (1)

in Pθ0,η0-probability, by (5.3). Then we have∥∥√nPθ0,η0 [m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, θ0, η0)
]∥∥ ≤ OPW (1) +OPθ0,η0 (1)(8.6)

in Pθ0,η0-probability.
On the other hand, by a Taylor series expansion, we can write

Pθ0,η0 [m̃(θ, α, η̂n)− m̃(θ, θ0, η0)]

= −(α− θ0)>Γ1 +O
(
‖α− θ0‖2 ∨ n−1/2

)
.(8.7)
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Clearly it is straightforward to combine (8.7) with (8.6), to infer the following
√
n
∥∥Γ1‖α̂∗φ(θ)− θ0‖

∥∥ ≤ OoPW (1) +OoPθ0,η0
(1)

+OoPW
(√
n‖α̂∗φ(θ)− θ0‖2

)
(8.8)

in Pθ0,η0-probability. By considering again the consistency of α̂∗φ(θ) and condition (A.2)

and (A.6) and making use (8.8) to complete the proof of (5.6).
We next prove (5.7). Introduce

H1 := −G∗n
[
m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, θ0, η0)

]
,

H2 := Gn [m̃(θ, α̂φ(θ), η̂n)− m̃(θ, θ0, η0)] ,

H3 := −Gn
[
m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, θ0, η0)

]
,

H4 :=
√
nP∗nm̃(θ, α̂∗φ(θ), η̂∗n)−

√
nPnm̃(θ, α̂φ(θ), η̂n).

By some algebra, we obtain

√
nPθ0,η0

(
m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, α̂φ(θ), η̂n)

)
+ G∗nm̃(θ, θ0, η0) =

4∑
j=1

Hj .

Using similar arguments to that of [21], to obtain
√
nPθ0,η0

(
m̃(θ, α̂∗φ(θ), η̂∗n)− m̃(θ, α̂φ(θ), η̂n)

)
= −G∗nm̃(θ, θ0, η0) + oPθ0,η0 (1)

+oPW (1)(8.9)

in Pθ0,η0 -probability. To analyze the left hand side of (8.9), we rewrite it as
√
nPθ0,η0

[
m̃(θ, α̂∗φ(θ), η̂n

∗
)− m̃(θ, θ0, η0)

]
−
√
nPθ0,η0 [m̃(θ, α̂φ(θ), η̂n)− m̃(θ, θ0, η0)] .

By a Taylor expansion, we obtain
√
nPθ0,η0(m11(θ, α, η)−m21(θ, α, η)[H(θ0, η0)])(α̂∗φ(θ)− α̂φ(θ))

= G∗nm̃(θ, θ0, η0) + oPθ0,η0 (1) + ooPW (1)

+OPθ0,η0 (n−1/2) +OoPW (n−1/2)

= G∗nm̃(θ, θ0, η0) + oPθ0,η0 (1) + ooPW (1)(8.10)

in Pθ0,η0 -probability. Keep in mind that, under condition (A.2) and (A.6), the matrix Γ1

is nonsingular. Multiply both sides of (8.10) by Γ−1
1 to obtain (5.7). An application of

[43, Lemma 4.6], under the bootstrap weight conditions, thus implies (5.8). Using [15,
Theorem 3.2] and [50, Lemma 2.11], it easily follows that

(8.11) sup
x∈Rd

∣∣Pθ0,η0(
√
n(α̂φ(θ)− θ0) ≤ x)− P(N(0,Σ) ≤ x)

∣∣ = oPθ0,η0 (1).

By combining (5.8) and (8.11), we readily obtain the desired conclusion (5.9).

�

Proof of Theorem 4.

By the Fréchet differentiability of Pγψ(θ; ·) at γ, for all ψ ∈ F , we have

Pγψ(θ; ·)− Pθψ(θ; ·)− Ṗθ(γ − θ)ψ(θ; ·) = o(‖γ − θ‖).
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Substituting θ̂n,ψ for θ and θ0 for γ, we obtain

Ṗθ̂n,ψ (θ̂n,ψ − θ0)ψ(θ̂n,ψ; ·)

= Pθ̂n,ψψ(θ̂n,ψ; ·)− Pθ0ψ(θ̂n,ψ; ·) + oP∗(‖θ̂n,ψ − θ0‖)

= −Pθ̂n,ψψ(θ̂n,ψ; ·) + oP∗(‖θ̂n,ψ − θ0‖).

Note that, for ψ ∈ F ,

ϕ̇(θ̂n,ψ) = ϕ̇(θ̂n,ψ,Pθ̂n,ψ ),

and by the identity (2.2) in Lemma 2.1 of [58] we have

ϕ̇(θ̂n,ψ)(n1/2(θ̂n,ψ − θ0))

= −n1/2Ṗθ̂n,ψ (θ̂n,ψ − θ0)ψ(θ̂n,ψ; ·)

= −n1/2Pθ0ψ(θ̂n,ψ; ·) + oP∗(n
1/2‖θ̂n,ψ − θ0‖)

= n1/2Pθ0ψ(θ̂n,ψ; ·) + oP∗(1).

The last equality follows from the consistency of θ̂n,ψ, A.1 through A.5 and Lemma 2.4
of [58]. Note that by A.5, for ψ ∈ F , the operator sequence ϕ̇−1(γ) converges to ϕ̇−1(θ0)
on as

‖γ − θ0‖ → 0.

Hence the Banach-Steinhaus Theorem and the consistency of θ̂n,ψ imply that the operator

norm of ϕ̇−1(θ̂n,ψ) is uniformly bounded in P∗-probability when n is sufficiently large. It
maps a term of oP∗(1) in the ‖ · ‖H-norm into a term of oP∗(1) in ‖ · ‖-norm:

ϕ̇−1(θ̂n,ψ)(oP∗(1)) = oP∗(1).

Making use of Lemma 2.3. of [58], this means that, for ψ ∈ F ,

n1/2(θ̂n,ψ − θ0)

= ϕ̇−1(θ̂n,ψ)(n1/2Pθ0ψ(θ̂n,ψ; ·) + oP∗(1))

= ϕ̇−1(θ̂n,ψ)(Gnψ(θ0; ·) + oP∗(1))

= −ϕ̇−1(θ̂n,ψ)(Gnψ(θ0; ·)) + oP∗(1).

By the triangle inequality and Lemma 2.2 of [58] we obtain

ϕ̇−1(θ̂n,ψ)(Gnψ(θ0; ·)) = ϕ̇−1(θ0)(Gnψ(θ0; ·)) + oP∗(1).

By assumption (A.3), we have

{n1/2(θ̂n;ψ − θ0) : ψ ∈ Ψ}
= {ϕ̇−1(θ0)(Gnψ(θ0; ·)) : ψ ∈ Ψθ0}+ oP∗(1)

 {ϕ̇−1(θ0)(Z0(ψ)) : ψ ∈ Ψθ0},

where ϕ̇−1(θ0)(Z0(ψ)) is a centered Gaussian process with covariance given in Theorem 4,
this complete the proof. �
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