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I. S. STAMATIOU AND N. HALIDIAS

CONVERGENCE RATES OF THE SEMI-DISCRETE METHOD FOR

STOCHASTIC DIFFERENTIAL EQUATIONS

We study the convergence rates of the semi-discrete (SD) method originally proposed
in Halidias (2012), Semi-discrete approximations for stochastic differential equations

and applications, International Journal of Computer Mathematics, 89(6). The SD

numerical method was originally designed mainly to reproduce qualitative properties
of nonlinear stochastic differential equations (SDEs). The strong convergence prop-

erty of the SD method has been proved, but except for certain classes of SDEs, the

order of the method was not studied. We study the order of L2-convergence and
show that it can be arbitrarily close to 1/2. The theoretical findings are supported

by numerical experiments.

1. Introduction

We are interested in the following class of scalar stochastic differential equations
(SDEs),

(1) dxt = a(t, xt)dt+ b(t, xt)dWt, t ∈ [0, T ],

where a, b : [0, T ]×R→ R are measurable functions such that (1) has a unique solution
and x0 is independent of all {Wt}t≥0. SDE (1) has non-autonomous coefficients, i.e.
a(t, x), b(t, x) depend explicitly on t. SDEs of the type (1), apart from certain cases, c.f
[15], do not have explicit solutions. Therefore the need for numerical approximations for
simulations of the paths xt(ω) is apparent. We are interested in strong approximations
(mean-square) of (1), in the case of nonlinear drift and diffusion coefficients. In the same
time we want to reproduce some qualitative properties of the solution process such as
domain preservation.

In this direction, we study the semi-discrete (SD) method originally proposed in [3]
and further investigated in [7], [4], [5], [6], [8] and recently in [21] and [22]. The main
idea behind the semi-discrete method is freezing on each subinterval appropriate parts
of the drift and diffusion coefficients of the solution at the beginning of the subinterval
so as to obtain explicitly solved SDEs. Of course the way of freezing (discretization) is
not unique.

The SD method is a fixed-time step explicit numerical method which strongly con-
verges to the exact solution and also preserves the domain of the solution; if for instance
the solution process xt is nonnegative then the approximation process yt is also nonneg-
ative.

Our main goal is to establish the L2-convergence of the SD method and show that it
can be arbitrarily close to 1/2.

Explicit fixed-step Euler methods fail to strongly converge to solutions of (1) when the
drift or diffusion coefficient grows superlinearly [11, Theorem 1]. Tamed Euler methods
were proposed to overcome the aforementioned problem, cf. [10, (4)], [23, (3.1)], [20] and
references therein; nevertheless in general they fail to preserve positivity. We also mention
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the method presented in [19] where they use the Lamperti-type transformation to remove
the nonlinearity from the diffusion to the drift part of the SDE. Moreover, adaptive time-
stepping strategies applied to explicit Euler method are an alternative way to address
the problem and there is an ongoing research on that approach, see [2], [13] and [14].
Our approach is motivated by the truncated Euler-Maruyama method, see [17], [18]. At
this point, we would like to refer to a different approach in solving stochastic differential
equations where the main idea is to reduce, even eliminate in cases, the systematic error
that appears in the computation of the mean value of a function of the solution of the
SDE, c.f. the recent work [1] or [24].

The outline of the article is the following. In Section 2 we present the setting and the
assumptions, Section 3 includes among other results our main result, that is Theorem 3.1,
with their proofs. Section 4 provides a numerical illustration and Section 5 concluding
remarks.

2. Setting and Assumptions

Throughout, let T > 0 and (Ω,F , {Ft}0≤t≤T ,P) be a complete probability space,
meaning that the filtration {Ft}0≤t≤T satisfies the usual conditions, i.e. is right contin-
uous and F0 includes all P-null sets. Let Wt,ω : [0, T ] × Ω → R be a one-dimensional
Wiener process adapted to the filtration {Ft}0≤t≤T . Consider SDE (1), which we rewrite
here in its integral form

(2) xt = x0 +

∫ t

0

a(s, xs)ds+

∫ t

0

b(s, xs)dWs, t ∈ [0, T ],

which admits a unique strong solution. In particular, we assume the existence of a
predictable stochastic process x : [0, T ]× Ω→ R such that ([16, Def. 2.1]),

{a(t, xt)} ∈ L1([0, T ];R), {b(t, xt)} ∈ L2([0, T ];R)

and

P
[
xt = x0 +

∫ t

0

a(s, xs)ds+

∫ t

0

b(s, xs)dWs

]
= 1, for every t ∈ [0, T ].

Assumption 2.1. Let f(s, r, x, y), g(s, r, x, y) : [0, T ]2 × R2 → R be such that

f(s, s, x, x) = a(s, x), g(s, s, x, x) = b(s, x),

where f, g satisfy the following condition (φ ≡ f, g)

|φ(s1, r1, x1, y1)− φ(s2, r2, x2, y2)| ≤ CR
(
|s1 − s2|+ |r1 − r2|+ |x1 − x2|+ |y1 − y2|

)
for any R > 0 such that |x1| ∨ |x2| ∨ |y1| ∨ |y2| ≤ R, where the quantity CR depends on
R and x ∨ y denotes the maximum of x, y.

Let us now recall the SD scheme. Consider the equidistant partition 0 = t0 < t1 <
... < tN = T and ∆ = T/N. We assume that for every n ≤ N − 1, the following SDE

(3) yt = ytn +

∫ t

tn

f(tn, s, ytn , ys)ds+

∫ t

tn

g(tn, s, ytn , ys)dWs, t ∈ (tn, tn+1],

with y0 = x0 a.s., has a unique strong solution.
In order to compare with the exact solution xt, which is a continuous time process,

we consider the following interpolation process of the semi-discrete approximation, in a
compact form,

(4) yt = y0 +

∫ t

0

f(ŝ, s, yŝ, ys)ds+

∫ t

0

g(ŝ, s, yŝ, ys)dWs,
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where ŝ = tn when s ∈ [tn, tn+1). Process (4) has jumps at nodes tn. The first and third
variable in f, g denote the discretized part of the original SDE. We observe from (4) that
in order to solve for yt, we have to solve an SDE and not an algebraic equation, thus
in this context, we cannot reproduce implicit schemes, but we can reproduce the Euler
scheme if we choose f(s, r, x, y) = a(s, x) and g(s, r, x, y) = b(s, x).

In the case of superlinear coefficients the numerical scheme (4) converges to the true
solution xt of SDE (2) and this is stated in the following, cf. [7],

Theorem 2.1 (Strong convergence). Suppose Assumption 2.1 holds and (3) has a unique
strong solution for every n ≤ N − 1, where x0 ∈ Lp(Ω,R). Let also

E( sup
0≤t≤T

|xt|p) ∨ E( sup
0≤t≤T

|yt|p) < A,

for some p > 2 and A > 0. Then the semi-discrete numerical scheme (4) converges to
the true solution of (2) in the L2-sense, that is

(5) lim
∆→0

E sup
0≤t≤T

|yt − xt|2 = 0.

Relation (5) does not reveal the order of convergence. We choose a strictly increasing
function µ : R+ → R+ such that for every s, r ≤ T

(6) sup
|x|≤u

(|f(s, r, x, y)| ∨ |g(s, r, x, y)|) ≤ µ(u)(1 + |y|), u ≥ 1.

The inverse function of µ, denoted by µ−1, maps [µ(1),∞) to R+. Moreover, we choose

a strictly decreasing function h : (0, 1]→ [µ(1),∞) and a constant ĥ ≥ 1∨µ(1) such that

(7) lim
∆→0

h(∆) =∞ and ∆1/6h(∆) ≤ ĥ for every ∆ ∈ (0, 1].

Now, we are ready to define the truncated versions of f, g. Let ∆ ∈ (0, 1] and f∆, g∆

defined by

(8) φ∆(s, r, x, y) := φ

(
s, r, (|x| ∧ µ−1(h(∆)))

x

|x|
, y

)
,

for x, y ∈ R where we set x/|x| = 0 when x = 0.
It follows that the truncated functions f∆, g∆ are bounded in the following way for a

given step-size 0 < ∆ ≤ 1,

|f∆(s, r, x, y)| ∨ |g∆(s, r, x, y)| ≤ µ(µ−1(h(∆)))(1 + |y|)
≤ h(∆)(1 + |y|),(9)

for all x, y ∈ R.
For the equidistant partition of [0, T ] with ∆ < 1 consider now the following SDE

(10) y∆
t = y∆

tn +

∫ t

tn

f∆(tn, s, y
∆
tn , y

∆
s )ds+

∫ t

tn

g∆(tn, s, y
∆
tn , y

∆
s )dWs, t ∈ (tn, tn+1],

with y0 = x0 a.s. We assume that (10) admits a unique strong solution for every n ≤ N−1
and rewrite it in compact form,

(11) y∆
t = y0 +

∫ t

0

f∆(ŝ, s, y∆
ŝ , y

∆
s )ds+

∫ t

0

g∆(ŝ, s, y∆
ŝ , y

∆
s )dWs.

Assumption 2.2. Let the truncated versions f∆(s, r, x, y), g∆(s, r, x, y) of f, g satisfy
the following condition (φ∆ ≡ f∆, g∆)

|φ∆(s1, r1, x1, y1)−φ∆(s2, r2, x2, y2)| ≤ h(∆)
(
|s1− s2|+ |r1− r2|+ |x1− x2|+ |y1− y2|

)
for all 0 < ∆ ≤ 1 and x1, x2, y1, y2 ∈ R, where h(∆) is as in (7).
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Let us also assume that the coefficients a(t, x), b(t, x) of the original SDE satisfy the
Khasminskii-type condition.

Assumption 2.3. We assume the existence of constants p ≥ 2 and CK > 0 such that
x0 ∈ Lp(Ω,R) and

xa(t, x) +
p− 1

2
b(t, x)2 ≤ CK(1 + |x|2)

for all (t, x) ∈ [0, T ]× R.

A well-known result follows (see e.g. [16]) when the SDE (2) satisfies the local Lipschitz
condition plus the Khasminskii-type condition.

Lemma 2.1. Under Assumptions 2.1 (for the coefficients a(t, x), b(t, x)) and 2.3 the
SDE (2) has a unique global solution and for all T > 0, there exists a constant A > 0
such that

sup
0≤t≤T

E|xt|p < A.

3. Main results

In this section we provide the proof of our main result Theorem 3.1. We split the
proof is two steps. First, we prove a general estimate of the error of the SD method for
any p̂ > 0. Then, we establish the L2-convergence (14). We denote the indicator function
of a set A by IA. The quantity C may vary from line to line but it remains independent
of the step-size ∆.

For ease of notation in the following we will avoid the superscript ∆ of the approxi-
mation process and simply write (yt).

Let us define the following stopping time for the solution process (y∆
t ),

(12) ρ∆,R = inf{t ∈ [0, T ] : |y∆
t | > R or |y∆

t̂
| > R}.

Lemma 3.1 (Error bound for the semi-discrete scheme). Let Assumptions 2.1 and 2.2
hold. Let R > 1, and ρ∆,R as in (12). Then the following estimate holds

E|ys∧ρ∆,R
− y ̂s∧ρ∆,R

|p̂ ≤ C(∆1/2h(∆)R)p̂,

for any p̂ > 0, where C does not depend on ∆.

Proof of Lemma 3.1. We fix a p̂ ≥ 2. Let ns integer such that s ∈ [tns , tns+1). It holds
that

|ys∧ρ∆,R
− y ̂s∧ρ∆,R

|p̂ =

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

f∆(û, u, yû, yu)du+

∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂

≤ 2p̂−1

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

f∆(û, u, yû, yu)du

∣∣∣∣∣
p̂

+ 2p̂−1

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂

≤ 2p̂−1|s ∧ ρ∆,R − t ̂ns∧ρ∆,R
|p̂−1

∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

|f∆(û, u, yû, yu)|p̂du

+ 2p̂−1

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂

≤ C∆p̂−1(h(∆))p̂
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

(1 + |yu|p̂)du+ 2p̂−1

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂
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≤ C∆p̂(h(∆))p̂ + C∆p̂(h(∆)R)p̂ + 2p̂−1

∣∣∣∣∣
∫ s∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂

,

where we have used the Hölder inequality and the bound (9) for the function f∆. Taking
expectations in the above inequality gives

E|ys∧ρ∆,R
− y ̂s∧ρ∆,R

|p̂ ≤ C∆p̂(h(∆)R)p̂ + 2p̂−1E

∣∣∣∣∣
∫ tns+1∧ρ∆,R

t ̂ns∧ρ∆,R

g∆(û, u, yû, yu)dWu

∣∣∣∣∣
p̂

≤ C∆p̂(h(∆)R)p̂ + 2p̂−1

(
p̂p̂+1

2(p̂− 1)p̂−1

)p̂/2
︸ ︷︷ ︸

Cp̂

E

∣∣∣∣∣
∫ tns+1∧ρ∆,R

t ̂ns∧ρ∆,R

|g∆(û, u, yû, , yu)|2du

∣∣∣∣∣
p̂/2

≤ C∆p̂(h(∆)R)p̂ + 2p̂−1Cp̂∆
p̂−2

2 E
∫ tns+1∧ρ∆,R

t ̂ns∧ρ∆,R

|g∆(û, u, yû, yu)|p̂du

≤ C∆p̂(h(∆)R)p̂ + C∆p̂/2−1(h(∆))p̂E
∫ tns+1∧ρ∆,R

t ̂ns∧ρ∆,R

(1 + |yu|p̂)du ≤ C(∆1/2h(∆)R)p̂,

where in the third step we have used the Burkholder-Davis-Gundy (BDG) inequality [16,
Th. 1.7.3], [12, Th. 3.3.28] on the diffusion term and in the last step the bound (9) for
the function g∆. Now for 0 < p̂ < 2 we have that

E|ys∧ρ∆,R
− y ̂s∧ρ∆,R

|p̂ ≤
(
E|ys∧ρ∆,R

− y ̂s∧ρ∆,R
|2
)p̂/2

≤ C(∆1/2h(∆)R)p̂,

where we have used Jensen inequality for the concave function φ(x) = xp̂/2. �

Let us know provide a moment bound for the approximation process (y∆
t ).

Lemma 3.2 (Moment bound for the semi-discrete scheme). Let Assumptions 2.2 and
2.3 hold. Then for any R ≤ h(∆)

(13) sup
0≤∆≤1

sup
0≤t≤T

E|y∆
t |p ≤ C,

for all T > 0.

Proof of Lemma 3.2. We fix a ∆ ∈ (0, 1] and a T > 0. Application of the Itô formula
and (11) yield

E|yt|p ≤ E|y0|p+E
(∫ t

0

(
p|ys|p−1f∆(ŝ, s, yŝ, ys) +

p(p− 1)

2
|ys|p−2g2

∆(ŝ, s, yŝ, ys)

)
ds

)
≤ E|y0|p + E

(∫ t

0

p|ys|p−1 (f∆(ŝ, s, yŝ, ys)− f∆(s, s, ys, ys) + a∆(s, ys)) ds

)
+ E

(∫ t

0

p(p− 1)

2
|ys|p−2 (g∆(ŝ, s, yŝ, ys)− g∆(s, s, ys, ys) + b∆(s, ys))

2
ds

)
≤ E|y0|p + E

(∫ t

0

(
p|ys|p−1 +

p(p− 1)

2
|ys|p−2

)
h(∆)(|ŝ− s|+ |yŝ − ys|)ds

)
+ E

(∫ t

0

p|ys|p−2

(
ysa∆(s, ys) +

p− 1

2
b2∆(s, ys)

)
ds

)
,

where we have used Assumption 2.2 and a∆, b∆ denote the truncated EM approxima-
tions, see [17], [18]. These functions preserve the Khasminskii-type condition, with a
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slightly different constant, see [17, Lemma 2.4]. Bearing this property in mind and using
repeatedly the Young inequality

αp−jβ ≤ p− j
p

αp +
j

p
βp/j ,

for every α, β ≥ 0 and j = 1, 2 we have

E|yt|p ≤ C1+C2

∫ t

0

(
∆h(∆)E|ys|p−1 + h(∆)E|yŝ − ys||ys|p−1 + E|ys|p−2(1 + |ys|2)

)
ds

≤ C1 + C2

∫ t

0

sup
0≤u≤s

E|yu|pds,

where we have used (7) and Lemma 3.1 with R ≤ h(∆). The inequality above holds for
any t ∈ [0, T ] and the right-hand side in non-decreasing in t suggesting that

sup
0≤u≤t

E|y∆
u |p ≤ C1 + C2

∫ t

0

sup
0≤u≤s

E|y∆
u |pds

≤ C1e
C2T ≤ C,

by the Gronwall inequality. Since C is independent of ∆ inequality (13) follows. �

Theorem 3.1 (Order of strong convergence). Suppose Assumption 2.2 and Assumption
2.3 hold and (10) has a unique strong solution for every n ≤ N − 1, where x0 ∈ Lp(Ω,R)
for some p ≥ 14 + 2γ. Let ε ∈ (0, 1/3) and define for γ > 0

µ(u) = Cu1+γ , u ≥ 0 and h(∆) = C +
√

ln ∆−ε, ∆ ∈ (0, 1].

where ∆ ≤ 1 and ĥ are such that (7) holds. Then the semi-discrete numerical scheme
(11) converges to the true solution of (2) in the L2-sense with order arbitrarily close to
1/2, that is

(14) E sup
0≤t≤T

|y∆
t − xt|2 ≤ C∆1−ε.

Proof of Theorem 3.1. Denote the difference E∆
t := y∆

t − xt and define the following
stopping times

(15) τR = inf{t ∈ [0, T ] : |xt| > R}, θ∆,R := τR ∧ ρ∆,R,

for some R > 1 big enough. Let the events Ω be defined by

ΩR := {ω ∈ Ω : sup
0≤t≤T

|xt| ≤ R, sup
0≤t≤T

|y∆
t | ≤ R}.

We have that

E sup
0≤t≤T

|Et|2 = E sup
0≤t≤T

|Et|2IΩR + E sup
0≤t≤T

|Et|2I(ΩR)c

≤ E sup
0≤t≤T

|Et∧θ∆,R |2 +

(
E sup

0≤t≤T
|Et|p

)2/p (
E(I(ΩR)c)

2p/(p−2)
)(p−2)/p

≤ E sup
0≤t≤T

|Et∧θ∆,R |2 +

(
E sup

0≤t≤T
|Et|p

)2/p

(P(ΩR)c)
(p−2)/p

≤ E sup
0≤t≤T

|Et∧θ∆,R |2 +

(
2p−1E sup

0≤t≤T
(|yt|p + |xt|p)

)2/p

(P(ΩR)c)
(p−2)/p

≤ E sup
0≤t≤T

|Et∧θ∆,R |2 + 4 ·A2/p (P(ΩR)c)
(p−2)/p

,(16)
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where p > 2 is as is Assumption 2.3. We want to estimate each term of the right hand
side of (16). It holds that

P(ΩcR) ≤ P( sup
0≤t≤T

|yt| > R) + P( sup
0≤t≤T

|xt| > R)

≤ (E sup
0≤t≤T

|yt|k)R−k + (E sup
0≤t≤T

|xt|k)R−k,

for any k ≥ 1 where the first step comes from the subadditivity of the measure P and
the second step from Markov inequality. Thus for k = p we get

P(ΩcR) ≤ 2AR−p.

We estimate the difference |Et∧θ∆,R |2 = |yt∧θ∆,R − xt∧θ∆,R |2. Itô’s formula implies that

|Et∧θ∆,R |2 =

∫ t∧θ∆,R

0

2|Es| (f∆(ŝ, s, yŝ, ys)− f(s, s, xs, xs)) ds

+

∫ t∧θ∆,R

0

(g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs))
2
ds

+

∫ t∧θ∆,R

0

2|Es| (g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs)) dWs

≤
∫ t∧θ∆,R

0

|f∆(ŝ, s, yŝ, ys)− f(s, s, xs, xs)|2ds+

∫ t∧θ∆,R

0

|Es|2ds+Mt

+

∫ t∧θ∆,R

0

|g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs)|2ds,

where Mt := 2
∫ t∧θ∆,R

0
|Es| (g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs)) dWs. It holds that

E sup
0≤t≤T

|Mt| ≤ 2
√

32 · E

√∫ T∧θ∆,R

0

|Es|2 (g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs))
2
ds

≤ E

√
sup

0≤s≤T
|Es∧θ∆,R |2 · 128

∫ T∧θ∆,R

0

(g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs))
2
ds

≤ 1

2
E sup

0≤s≤T
|Es∧θ∆,R |2 + 64E

∫ T∧θ∆,R

0

(g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs))
2
ds,

thus we get that

E sup
0≤t≤T

|Et∧θ∆,R |2 ≤ 2E sup
0≤t≤T

∫ t∧θ∆,R

0

|f∆(ŝ, s, yŝ, ys)− f(s, s, xs, xs)|2ds

+130 · E
∫ T∧θ∆,R

0

|g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs)|2ds

+2

∫ t∧θ∆,R

0

E sup
0≤l≤s

|El|2ds.(17)

Note that

|f∆(ŝ, s, yŝ, ys)− f(s, s, xs, xs)|2

= |f∆(ŝ, s, yŝ, ys)− f∆(s, s, xs, xs) + f∆(s, s, xs, xs)− f(s, s, xs, xs)|2.

If µ−1(h(∆)) ≥ R then f∆(s, s, xs, xs) = f(s, s, xs, xs) and by Assumption 2.2 we get
that∫ t∧θ∆,R

0

|f∆(ŝ, s, yŝ, ys)−f(s, s, xs, xs)|2ds ≤ 3h2(∆)

∫ t∧θR

0

(
|ys−yŝ|2+|Es|2+|ŝ−s|2

)
ds
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Moreover, it holds that∫ t∧θ∆,R

0

|ŝ− s|2ds ≤
[t/∆−1]∑
k=0

∫ tk+1∧θ∆,R

tk

|tk − s|2ds.

Taking the supremum over all t ∈ [0, T ] and then expectation we have

E sup
0≤t≤T

∫ t∧θ∆,R

0

|f∆(ŝ, s, yŝ, ys)− f(s, s, xs, xs)|2ds ≤ 3CTh2(∆)∆h2(∆)R2

+3h2(∆)

∫ T

0

E sup
0≤l≤s

|El∧θ∆,R |2ds+ 3T∆2h2(∆)

≤ C∆h4(∆)R2 + 3h2(∆)

∫ T

0

E sup
0≤l≤s

|El∧θ∆,R |2ds,(18)

where in the first step we have used Lemma 3.1 for p̂ = 2. An analogue estimate of type
(18) holds for the second integral in (17), that is

E sup
0≤t≤T

∫ t∧θ∆,R

0

|g∆(ŝ, s, yŝ, ys)− g(s, s, xs, xs)|2ds

≤ C∆h4(∆)R2 + 3h2(∆)

∫ T

0

E sup
0≤l≤s

|El∧θ∆,R |2ds.(19)

Plugging the estimates (18), (19) into (17) gives

E sup
0≤t≤T

|Et∧θ∆,R |2 ≤ C∆h6(∆) + (132 · 3h2(∆) + 2)

∫ T

0

E sup
0≤l≤s

(El∧θ∆,R)2ds

≤ C∆h6(∆)e396Th2(∆)+2T ≤ C∆h6(∆)eh
2(∆),

where we have applied the Gronwall inequality and used the fact that 1 < R ≤ h(∆).
Relation (16) becomes,

(20) E sup
0≤t≤T

|Et|2 ≤ C∆h6(∆)eh
2(∆) + CR2−p.

Recall that µ(u) = Cu1+γ and h(∆) = C +
√

ln ∆−ε, for ε > 0 to be specified later on.
We bound the first term on the right-hand side of (20) in the following way

C∆h6(∆)eh
2(∆) ≤ C∆(ln ∆−ε)3∆−ε ≤ C∆1−3ε,

by choosing ε < 1/3, where we used the fact that 0 ≤ z(ln z)3 ≤ z3 for big enough z.
Moreover, by (7)

ĥ > ∆1/6h(∆) > C∆1/6 > ∆
(1+γ)(1−ε)

p−2 ,

whenever 1 + γ < p− 2, which implies

h(∆) ≥ ∆
(1+γ)(1−ε)

p−2 − 1
6 .

By the monotone property of µ−1 we have

µ−1(h(∆)) ≥ C−
1

1+γ ∆
(1−ε)
p−2 −

1
6(1+γ) = R,

for p big enough. Estimate (20) becomes

(21) E sup
0≤t≤T

|Et|2 ≤ C∆1−2ε + C∆−(1−ε)+ p−2
6(1+γ) .

Since p ≥ 14 + 12γ inequality (14) is true. �
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4. Numerical illustration

We will use the numerical example of [18, Example 4.7], that is we take a(x) =
ax(b − x2) and b(x) = cx, with a, b, c positive and with initial condition x0 ∈ R in (2),
i.e.

(22) xt = x0 +

∫ t

0

axs(b− x2
s)ds+

∫ t

0

cxsdWs, t ≥ 0.

The above equation, known as the scalar stochastic Ginzburgh-Landau equation, c.f.
[15], has a solution that remains positive (actually there is an explicit solution of xt).

Assumption 2.3 holds for any p > 2. We choose the auxiliary functions f, g in the
following way

f(s, r, x, y) = a(b− x2)y, g(s, r, x, y) = cy,

thus (3) becomes

(23) yt = ytn + a(b− y2
tn)

∫ t

tn

ysds+ c

∫ t

tn

ysdWs, t ∈ (tn, tn+1],

with y0 = x0 a.s., which admits an exponential unique strong solution. In particular,

(24) yn+1 = yn exp

{(
a(b− y2

n)− c2

2

)
∆ + c∆Wn

}
, n ∈ N,

Note that (6) holds with µ(u) = (a(b+ 1) ∨ c)|u|3 since

sup
|x|≤u

(
|a(b− x2)y| ∨ |cy|

)
≤ (a(b+ 1) ∨ c)|u|2(1 + |y|), u ≥ 1.

Therefore, in the notation of Theorem 3.1, γ = 2 and C = (a(b + 1) ∨ c). Finally,

h(∆) = C +
√

ln ∆−ε1 for any ∆ ∈ (0, 1]. Clearly h(1) ≥ µ(1) and

∆1/6h(∆) ≤ ∆1/6C +
√

∆1/3 ln ∆−ε1 ≤ C +
√

∆1/3−ε1 ≤ C + ∆1/6−ε1/2 ≤ C + 1

for any ∆ ∈ (0, 1] and 0 < ε1 ≤ 1/3. Therefore we take ĥ = C+1. The truncated versions
of the semi-discrete method (TSD) read,

(25) y∆
n+1 = y∆

n exp

{(
a(b−

(
y∆
n ∧ µ−1(h(∆))

)2
)− c2

2

)
∆ + c∆Wn

}
,

for n ∈ N. We perform computer simulations for the case a = 0.1, b = 1, c = 0.2 and
x0 = 2 as in [18, Example 4.7] with ε1 = 1/3 and compare with the truncated Euler
Maruyama method (TEM), which reads

(26) yTEMn+1 = yn + a

(
|yn| ∧ µ−1(h̄(∆))

yn
|yn|

)
∆ + b

(
|yn| ∧ µ−1(h̄(∆))

yn
|yn|

)
∆Wn,

for n ∈ N, where h̄(∆) = ∆−ε2/2 with ε2 = 1/2, and ∆̄∗ ≤ (8C)−
2
ε2 . Figure 1 shows

sample simulations paths of x(t) by TSD and TEM respectively with sample size ∆ =
10−3. Note that TSD works for all ∆ < 1 and TEM works for ∆ ≤ 0.1526 as proved in
[18]. (in an updated version of TEM in [9] it is shown that it works for all ∆ < 1)

We also perform 10000 sample paths of the TSD and TEM respectively for stepsizes
10−3, 10−4, 10−5 and 10−6. Figure 3 shows the log-log plot of the strong errors between
TSD and TEM which is close to 1 TSD has order 1/2 in L2-sense thus our TSD has the
order 1/2 in L2-sense too. Nevertheless, the approximation process TEM (26) does not
always produce positive values, while TSD (25) is positive by construction.
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Figure 1. Trajectories of (25)-(26) for different paths of the Wiener
process with ∆ = 0.001.
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Figure 2. Trajectories of (25)-(26) for different paths of the Wiener
process with ∆ = 0.1.

5. Conclusion and Future Work

In this paper we study the convergence rates of the semi-discrete (SD) method, orig-
inally proposed in [3]. Using a truncated version of the SD method, we show that the
order of L2-convergence can be arbitrarily close to 1/2. The advantage of our method,
over other useful numerical methods (such as the tamed Euler method, the implicit Euler
method, the truncated Euler method) applied to nonlinear problems, is that it can repro-
duce qualitative properties of the solution process. The main qualitative property that
has been investigated in all the works so far concerning the SD method is the domain
preservation of the solution process. In a future work, we aim to study other qualitative
properties relevant with the stability of the method and answer questions of the following
type: Is the SD method able to preserve the asymptotic stability of the underlying SDE?
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