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O. O. PRYKHODKO

THE LIMIT BEHAVIOUR OF RANDOM WALKS WITH ARRESTS

Let S̃ be a random walk which behaves like a standard centred and square-integrable

random walk except when hitting 0. Upon the i-th hit of 0 the random walk is
arrested there for a random amount of time ηi ≥ 0; and then continues its way

as usual. The random variables η1, η2, . . . are assumed i.i.d. We study the limit

behaviour of this process scaled as in the Donsker theorem. In case of Eηi <∞, weak
convergence towards a Wiener process is proved. We also consider the sequence of

processes whose arrest times are geometrically distributed and grow with n. We

prove that the weak limit for the last model is either a Wiener process, a Wiener
process stopped at 0 or a Wiener process with a sticky point.

1. Introduction

Let {S(n)}n∈N0 be a random walk on Z with S(0) = 0 and centred jumps of finite
variance σ2. We define S(t) for t ≥ 0 by linear interpolation. Set

Xn(t) =
S(nt)

σ
√
n
, n ∈ N.

The well-known Donsker theorem (e.g. [2]) states the weak convergence of stochastic
processes in C[0,∞)

Xn(t)
w→W (t), n→∞,

where W is a Wiener process.
Upon changing transition probabilities at one point or a set of points (e.g. [7, 8, 12])

one obtains limit processes related to Brownian motion, for example, a skew Brownian
motion, a Brownian motion with a sticky point, a Brownian motion with jump-exit from
0 (cf. [12]).

In this work we are concerned with the scaling limit of random walks with arrests. By
arrest we mean adding a random delay at 0. Semi-Markov random walks with continuous-
time and non-exponential arrests give rise to equations with fractional derivatives [10, 11].
For example, a process with jumps in R and lagged at each point for a random amount
of time with a “heavy tail” distribution constitutes a sub-diffusion model. As remarked
in [1] the processes with a sticky point could be used for modelling a financial market
with governmental control. Sticky Brownian motion also arises while discussing storage
processes that have different intensities in and out of zero, [6].

We consider a modified discrete random walk which is arrested for a random amount
of time upon each visit to zero. It is shown that its scaling limit is a Brownian motion
whenever the arrest time has a finite expectation. We also look at a triangular array of
random walks with geometrically distributed times of arrest whose expectations depend
on n. This model gives rise to a Brownian motion with a sticky point. For further
discussion of this process see [1, 4, 5, 6, 9].
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2. Problem statement and results

Let {S(n)}n∈N0
be a random walk generated by integer-valued i.i.d. random variables

{ξn}n≥1

S(n) =

n∑
i=1

ξi, n ∈ N and S(0) = 0.

Assume that Eξ1 = 0 and Eξ2
1 = σ2 ∈ (0,∞).

Extend S by linearity:

S(t) = S(n) + (t− n)(S(n+ 1)− S(n)), t ∈ [n, n+ 1],

for all t ≥ 0.
Let also {ηn}n≥1 be a sequence of non-negative i.i.d. random variables that is inde-

pendent of {ξi}n≥1.

We construct a modified random walk {S̃(n)}n∈N0
as follows. While keeping the

excursions of S̃ to be the same as those of S, we introduce a random delay ηi between
the i − 1-th and i-th excursions of S. See Fig. 1 and 2. Although ξi may be equal to
0, we still define the excursion of S to be the interval between consecutive visits to zero:
e0 = 0, e1 = inf{t > e0 : S(t) = 0}, e2 = inf{t > e1 : S(t) = 0}, ...

Figure 1. A plot of S where for simplicity ξi ∈ {−1, 0, 1}. Here it visits
0 at times 0, 2, 15 and 16.

The modification {S̃(n)}n∈N0
can be defined formally. To this end, we put

α(t) = t+

τ0(t)∑
i=1

ηi, t ≥ 0.

where τ0(t) = #{k ≤ t : S(k) = 0} for t ≥ 0 is the number of visits to zero of the random
walk S up to and including time t.

Denote by

α(−1)(t) = Inv[α(·)](t) = inf{x : α(x) ≥ t}, t ≥ 0,

a generalised inverse function of α. Observe that α(−1) is continuous because α is non-
decreasing.

The process (S̃(t))t≥0 is then defined by

S̃(t) = S(α(−1)(t)), t ≥ 0.
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Figure 2. A plot of S̃ which corresponds to Fig. 1. Here η1 = 6, η2 =
0, η3 = 7, η4 = 20.

Figure 3. Plots of α and α(−1) which correspond to Fig. 1 and 2.

Our goal is to study the limit behaviour of the sequence of processes
(
S̃(nt)√
n

)
t≥0

as

n → ∞. Denote by C[0,∞) the space of continuous functions on [0,∞) endowed with
the topology of uniform convergence on finite intervals.

Theorem 1. Let {S̃(n)}n∈N0 be a modified random walk and Eη1 <∞. For the sequence

of processes {X̃n(·) = S̃(n·)
σ
√
n
, n ≥ 1} weak convergence in C[0,∞) holds:

X̃n(·) w→W (·), n→∞,
where W is a Wiener process.

Remark 1. For p ∈ (0, 1] and an integer-valued random variable ξ with Eξ = 0 and
Eξ2 <∞, put pij = P{ξ = i− j} for i ∈ N and j ∈ N0, p0j = (1− p)P{ξ = j} for j ∈ N
and p00 = p + P{ξ = 0}. The distribution of a Markov chain which starts at 0 and has
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transition probabilities (pij , i ∈ N, j ∈ N) is the same as the distribution of S̃ in which

η1 has a geometric distribution with mean 1−p
p . Thus Theorem 1 can be applied to this

Markov chain.

Let us consider more closely the random walk from Remark 1. Denote it by S(p). We

will show that the sequence of processes
{
X

(pn)
n

}
n≥1

, where

X(pn)
n (t) =

S(pn)(nt)

σ
√
n

, t ≥ 0,

and
pn =

ρ

nγ
, n ≥ 1

has different weak limits with respect to γ as n → ∞. Theorem 2 below describes all
possible modes.

Denote by (Wβ-sticky(t))t≥0 a Brownian motion with a sticky point defined by

Wβ-sticky(t) = W (A
(−1)
β (t)), t ≥ 0

where
Aβ(t) = t+ βL(t), A

(−1)
β is a generalised inverse of Aβ

and

L(t) = P- lim
ε→0

1

2ε

∫ t

0

1{W (s)∈[−ε,ε]}ds

is a local time of a Brownian motion W at zero. As opposed to a usual Brownian motion,
this one spends a positive amount of time at zero, yet there is no interval of positive length
that it remains there.

Theorem 2. The weak convergence in C[0,∞) holds:

if 0 ≤ γ < 0.5, then X(pn)
n (t)

w→W (t), n→∞,

if γ > 0.5, then X(pn)
n (t)

w→ 0, n→∞,

if γ = 0.5, then X(pn)
n (t)

w→Wρ−1-sticky(t), n→∞.

3. Proofs

The following two lemmas can be found in [13] (Proposition 3.2).

Lemma 1. Let {ξn(t)}n≥1, t ∈ [0, T ] be a sequence of random processes such that

(a) for each n the process ξn(t) is a.s. monotone;
(b) for every t

ξn(t)
P→ ξ(t), n→∞;

(c) the limiting process ξ(t) is continuous a.s.

Then the uniform convergence in probability holds

sup
t∈[0,T ]

|ξn(t)− ξ(t)| P→ 0, n→∞.

Lemma 2. Let {ξn(t)}n≥1, t ∈ [0, T ] be a sequence of random processes satisfying (a),
(b), (c) of Lemma 1 and

(d) for each n
ξn(0) = 0, ξn(∞) =∞.

Then for any T > 0 the uniform convergence in probability holds

sup
t∈[0,T ]

|ξ(−1)
n (t)− ξ(−1)(t)| P→ 0, n→∞.
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3.1. Proof of Theorem 1. Set

hn(t) =
α(−1)(nt)

n
, t ≥ 0.

From the definition of S̃ one has

X̃n(t) =
S̃(nt)√

n
=
S(α(−1)(nt))

σ
√
n

=
S(nα

(−1)(nt)
n )

σ
√
n

= Xn(hn(t)).

Hence we will prove that

(1) Xn(hn(·)) w→W (·), n→∞.
We claim that

(2) sup
t∈[0,T ]

|hn(t)− t| = sup
t∈[0,T ]

∣∣∣α(−1)(nt)

n
− t
∣∣∣ P→ 0, n→∞.

To check this we intend to show that for any t ≥ 0 :

(3)
α(nt)

n

P→ t, n→∞.

This is obvious for t = 0. For t > 0

(4)
α(nt)

n
= t+

1

n

τ0(nt)∑
i=1

ηi = t+
τ0(nt)

n

1

τ0(nt)

τ0(nt)∑
i=1

ηi.

For a fixed t > 0 one has P{limn→∞ τ0(nt) = ∞} = 1, see e.g. [15] (Proposition I.2.3
and I.2.8). Thus, by the strong law of large numbers

1

τ0(nt)

τ0(nt)∑
i=1

ηi → Eη1 <∞, n→∞ a.s.

Here τ0(nt)√
n

converges in distribution to an absolute value of a normally distributed ran-

dom variable as n→∞, see for example [3]. So

τ0(nt)

n

P→ 0, n→∞,

and thereupon

(5)
α(nt)

n

P→ t, n→∞.

Since the functions {α(n·)
n }n≥1 are nondecreasing a.s. and their sequence converges to

the continuous limit, we invoke Lemmas 1 and 2 to conclude that (2) holds.
The following is well-known, e.g. [2] (Theorem 4.4).

Lemma 3. Let E be a Polish space, {Xn, n ≥ 1}, X, {hn, n ≥ 1} be random elements

with values in E, and h ∈ E be non-random. Assume that Xn
w→ X and hn

w→ h. Then
the pairs of random variables converge weakly

(Xn, hn)
w→ (X,h), n→∞.

As Xn(·) w→ W (·) and hn(·) w→ h(·), where h(t) = t for t ≥ 0, Lemma 3 yields

(Xn, hn)
w→ (W,h). Due to the Skorokhod representation theorem [2] there exists a

probability space which supports random elements X̄n and h̄n such that in C[0,∞):

(X̄n, h̄n)
d
= (Xn, hn),

and for any T > 0 the uniform convergence on [0, T ] holds

X̄n(t) ⇒ W̄ (t) and h̄n(t) ⇒ t, n→∞ a.s.
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Thus X̄n(h̄n(·))→ W̄ (·), n→∞ a.s., hence

Xn(hn(·)) w→ W̄ (·).

3.2. Proof of Theorem 2. We recall that now, for each n ≥ 1, {η(n)
i }i≥1 is a sequence

of independent geometrically distributed random variables with mean 1−pn
pn

. As before,

for t ≥ 0, τ0(t) is the number of visits to zero of the random walk S up to and including
time t. Let

αn(t) = t+

τ0(t)∑
i=1

η
(n)
i , t ≥ 0,

and α
(−1)
n be its generalised inverse. Set

hn(t) =
α

(−1)
n (nt)

n
,

hence

X(pn)
n (t) =

S(pn)(nt)√
n

=
S(α

(−1)
n (nt))

σ
√
n

=
S(n

α(−1)
n (nt)
n )

σ
√
n

= Xn(hn(t)).

Let us start with discussing the behaviour of

(6)
αn(nt)

n
= t+

1

n

τ0(nt)∑
i=1

η
(n)
i .

Observe that

(7)
αn(nt)

n
= t+

nγ√
n

τ0(nt)√
n

1

τ0(nt)

τ0(nt)∑
i=1

η
(n)
i

nγ
.

Theorem 3 ([3]). Let W be a Brownian motion in R, L be its local time. Then in
C[0,∞) (τ0(nt)√

n
,
S(nt)

σ
√
n

)
w→ (L(t), W (t)), n→∞.

For each n ≥ 1 by the Skorokhod theorem we can construct a probability space which

supports random elements τ̄
(n)
0 and S̄(n) such that in C[0,∞):

(8)
( τ̄ (n)

0 (nt)√
n

,
S̄(n)(nt)√

n

)
t≥0

d
=
(τ0(nt)√

n
,
S(nt)√

n

)
t≥0

,

and for any T > 0 the uniform convergence on [0, T ] holds

(9)
τ̄

(n)
0 (nt)√

n
⇒ L̄(t) and

S̄(n)(nt)√
n

⇒ W̄ (t) as n→∞ a.s.

Assume that, for each n ≥ 1, {η(n)
i }i≥1 is defined on the same probability space as

S̄(n), τ̄
(n)
0 , L̄ and W̄ , and is independent of these.

Theorem 4. For every T > 0

(10) sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞,

where
∑x
i=1 means

∑[x]
i=1.

We need some auxiliary results.
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Proposition 1. For any fixed t ≥ 0 we have

1√
n

√
nt∑

i=1

η
(n)
i

nγ
P→ t

ρ
, n→∞.

Proof. Since

E
1√
n

√
nt∑

i=1

η
(n)
i

nγ
=

[
√
nt]√
nρ
→ t

ρ
, n→∞,

it suffices to verify that the variances converge to 0. The summands are independent,
thus

V

(
1√
n

√
nt∑

i=1

η
(n)
i

nγ

)
=

1

n

√
nt∑

i=1

Vη(n)
i

n2γ
=

1

n

√
nt∑

i=1

1− ρ
nγ

ρ2

n2γ n2γ
=

[
√
nt]

n

1− ρ
nγ

ρ2
→ 0, n→∞.

�

Proposition 2. For every T > 0 and for any ε > 0 we have

sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

√
nt∑

i=1

η
(n)
i

nγ
− t

ρ

∣∣∣∣∣ P→ 0, n→∞.

Proof. The sum is monotonous in t and due to Proposition 1 it has a continuous limit.
Thus this proposition follows from Lemma 1. �

Proof of Theorem 4. Let δ > 0 be a fixed number. Find T ′ such that the set Ωδ =
{L̄(T ) < T ′} satisfies P(Ωδ) > 1−δ. Note that for any t ∈ [0, T ] it holds that L̄(t) ≤ L̄(T ).
Hence on the set Ωδ

sup
t∈[0,T ]

∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣ ≤ sup
y∈[0,T ′]

∣∣∣ 1√
n

√
ny∑
i=1

η
(n)
i

nγ
− y

ρ

∣∣∣.
Denote by

An,ε =

{
sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ > ε

}
and write down

P(An,ε) = P(An,ε ∩ Ωδ) + P(An,ε ∩ Ω̄δ).

From Proposition 2

lim
n→∞

P(An,ε) ≤ 0 + δ.

As δ and ε are arbitrary, the last inequality proves the theorem. �

Now suppose that Ω is a set where (9) holds with probability 1. Let ε be fixed, then
for N large enough find the set Ωδ ⊂ Ω with P(Ωdelta) > 1− δ on which the event

sup
t∈[0,T ]

∣∣∣L̄(t)− τ̄
(n)
0 (nt)√

n

∣∣∣ < ε

holds for each n > N and P(Ωδ) > 1− δ.
Consider the difference

(11) sup
t∈[0,T ]

1√
n

∣∣∣
√
nL̄(t)∑
i=1

η
(n)
i

nγ
−
τ̄

(n)
0 (nt)∑
i=1

η
(n)
i

nγ

∣∣∣.
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We show that it converges to 0 in probability and so the limits of the sums should

coincide. Since {η(n)
i }i≥1 are independent of (L̄, τ̄

(n)
0 ), the last expression is equal in

distribution to

1√
n

√
n supt∈[0,T ] |L̄(t)− τ̄

(n)
0 (nt)
√
n
|∑

i=1

η
(n)
i

nγ
.

Now on the set Ωδ for n > N

1√
n

√
n supt∈[0,T ] |L̄(t)− τ̄

(n)
0 (nt)
√
n
|∑

i=1

η
(n)
i

nγ
≤ 1√

n

√
nε∑

i=1

η
(n)
i

nγ
,

and Proposition 2 implies the convergence of the latter to ε
ρ . Since the probability of the

complement of Ωδ is less or equal δ and ε was arbitrary, one sees that (11) converges in
probability to 0. Now due to Theorem 4

(12) sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

τ̄
(n)
0 (nt)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞.

3.2.1. Proof of the theorem in case γ < 0.5. Recall (7):

(13)
αn(nt)

n
= t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
.

In case γ < 0.5, the right hand side of (13) converges to t in probability. Now Lemmas
1 and 2 assure that for every T > 0:

(14) sup
t∈[0,T ]

|hn(t)− t| = sup
t∈[0,T ]

∣∣∣α(−1)
n (nt)

n
− t
∣∣∣ P→ 0, n→∞.

The last limit is non random, thus for each n ≥ 1 we use Lemma 3 and the Skorokhod

theorem to construct a probability space which supports random variables (τ̄
(n)
0 , S̄(n), h̄n)

such that in C[0,∞):( τ̄ (n)
0 (nt)√

n
,
S̄(n)(nt)√

n
, h̄n(t)

)
t≥0

d
=
(τ0(nt)√

n
,
S(nt)√

n
, hn(t)

)
t≥0

,

and for any T > 0 the uniform convergence on [0, T ] holds

τ̄
(n)
0 (nt)√

n
⇒ L̄(t),

S̄(n)(nt)√
n

⇒ W̄ (t) and h̄n(t) ⇒ t as n→∞ a.s.

Recall that in Theorem 1 we had the similar situation. So analogously one obtains
that the limit is a Brownian motion

X(pn)
n (·) w→W (·), n→∞.

3.2.2. Proof of the theorem in case γ > 0.5. In this case the expression (13) converges

to ∞ in probability for every t > 0. Since for each n ≥ 1 the functions αn(n·)
n are

nondecreasing, we have

∀δ > 0 ∀M ∃N ∀t ∈ [δ,∞) ∀n > N P
(αn(nt)

n
> M

)
> 1− δ,
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which loosely may be interpreted as αn(nt)
n

P
⇒∞ on a set [δ,∞). This implies the uniform

convergence in probability on the compact subsets of [0,∞) for hn(t):

hn(t) =
α

(−1)
n (nt)

n

P
⇒ 0, n→∞.

Once again this limit is non random. By Lemma 3 and the Skorokhod theorem, we

construct a probability space which supports random variables (τ̄
(n)
0 , S̄(n), h̄n) such that

in C[0,∞): ( τ̄ (n)
0 (nt)√

n
,
S̄(n)(nt)√

n
, h̄n(t)

)
t≥0

d
=
(τ0(nt)√

n
,
S(nt)√

n
, hn(t)

)
t≥0

,

and the uniform convergence on the compact subsets of [0,∞) holds

τ̄
(n)
0 (nt)√

n
⇒ L̄(t),

S̄(n)(nt)√
n

⇒ W̄ (t) and h̄n(t) ⇒ 0 as n→∞ a.s.

Thus
Xn(hn(t))

w→ 0, n→∞.

3.2.3. Proof of the theorem in case γ = 0.5. In this case nγ√
n

= 1 and so from (12) one

sees that (13) has a non-trivial limit

hn(t) =
αn(nt)

n

w→ t+ L(t)/ρ, n→∞.

Furthermore, we may consider the copies of random variables that we constructed
after stating Theorem 3. For them we proved (12) and so for any T > 0

(15) sup
t∈[0,T ]

∣∣∣∣∣ ᾱn(nt)

n
− t− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞.

For each n ≥ 1 the functions ᾱn(n·)
n are a.s. monotone and their limit is continuous

(because the local time is continuous, e.g. [5]). Thus Lemma 2 implies (16). Recall that
we denoted a generalised inverse of a function as Inv.

(16) sup
t∈[0,T ]

∣∣∣∣∣ ᾱ(−1)
n (nx)

n
− Inv[t+ L̄(t)/ρ](x)

∣∣∣∣∣ P→ 0, n→∞.

And hence the convergence in C[0,∞) is proved

X̄n(h̄n(·))→ W̄ (Inv[t+ L̄(t)/ρ](·)), n→∞ a.s.

Thus in C[0,∞)

X(pn)
n (·) w→ W̄ (Inv[t+ L̄(t)/ρ](·)), n→∞.
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