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TETYANA KOSENKOVA, ALEXEI KULIK, AND ILYA PAVLYUKEVICH

FIRST ORDER CONVERGENCE OF WEAK WONG-ZAKAI
APPROXIMATIONS OF LEVY-DRIVEN MARCUS SDES

For solutions X = (Xt)se[o,1] of a Lévy-driven Marcus (canonical) stochastic dif-
ferential equation we study the Wong—Zakai type time discrete approximations X =
(th)osksT/hv h > 0, and establish the first order convergence |E f(X7)—Eg f(X2)| <
Ch for f € Cl‘}.

1. INTRODUCTION

Stochastic differential equations (SDE) driven by Lévy processes belong nowadays to
a standard toolbox of researches working in Physics, Finance, Engineering etc. Under
standard assumptions, a solution X of an SDE is a Markov (Feller) process containing a
continuous diffusive component as well as (infinitely many) jumps which model instant
change of the observable in the phase space.

From the point of view of applications, one often needs to determine averaged quan-
tities of the type E.f(Xr) for a fixed deterministic time 7' > 0 and a regular test
function f. Calculation of such functionals is equivalent to solving a certain partial
integro-differential equation that can be done by the method finite differences or finite
elements, see, e.g. Cont and Tankov [4, Chapter 12]. In this paper we consider alternative
approximations of E, f(Xr) by means of simulation of effective approximations of the
random process X.

The approximation problem for the functionals E, f(Xr) for diffusions is nowadays
a classical topic, see Kloeden and Platen [10]. The numerical methods have originated
in the paper by Maruyama [24] who showed that for the It6 SDE dX = a(X)dt +
b(X) dW driven by the Brownian motion, the Euler scheme X 441y, = Xin + a(Xpn)h +
b(th)(W(kH)h — Wip,) with the step size h > 0 converges to X7 in L?-sense for each
T > 0. Milstein [29] and Talay [38] showed that the Euler scheme yields weak convergence
of the order O(h). Higher order approximation methods can be found in the papers by
Mackevicius [21], Talay [38], Milstein [32], Talay and Tubaro [39], and Bally and Talay
[2] as well as in the monographs by Milstein [30], Kloeden and Platen [10], and Milstein
and Tretyakov [31].

Although the theory for diffusion models is well established, the presence of jumps
typically requires an additional justification.

In various application areas, jumps appear quite naturally. For instance, in finance
jumps can realistically model fluctuation of stock prices. In population biology jump
processes appear as limits of Markov chains. Such models are well described by mul-
tivariate Lévy-driven It6 SDEs of the type dX = F(X)dL. The weak convergence of
the Euler scheme for SDEs with a jump component of finite intensity was studied by
Mikulevicius and Platen [26], and by Kubilius and Platen [14]. Protter and Talay [34]
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established the first order convergence of the Euler scheme in in case of C} coefficient
F, a C} test function f, and tails of the Lévy measure having finite 8th moments (they
also have results for increasing f; then more moments are needed). Further analysis was
performed by Jacod et al. in [9]. Liu and Li [20] studied the SDE driven by a Brownian
motion and a Poisson random measure under the assumptions hat all moments of X
are finite. Recently weak approximations for SDEs with Hélder-continuous coefficients
were studied by Mikulevi¢ius and Zhang in [27, 25, 28]. A general class of high order
weak approximation schemes for Lévy-driven It6 SDEs was studied by Kohatsu-Higa and
Tankov [13], Tankov [40], Kohatsu-Higa and Ngo [11], and Kohatsu-Higa et al. [12].

There is however another, mechanical point of view on SDEs with jumps, which orig-
inates in the supposition that both the Brownian motion and the jump component are
convenient mathematical idealizations of smooth real-world processes (e.g. mechanical
motions). This paradigm goes back to Langevin who obtained a random motion of a
heavy particle in a liquid as an integral of a correlated Gaussian velocity process.

It turns out that the idealized diffusion dynamics in such an approach is correctly de-
scribed by the Stratonovich SDEs that can be seen as a limit of random non-autonomous
ordinary differential equations (ODE) in which the Brownian motion is replaced by
its (piece-wise) smooth approximations, the so-called Wong—Zakai approximations, see
Wong and Zakai [41, 42].

In the presence of jumps, the Marcus (canonical) SDEs are extensions of Stratonovich
SDEs for diffusions. As Stratonovich equations, they have a lot of useful properties. For
instance, the change of variables formula for solutions of Marcus SDEs looks like the de-
terministic Newton—Leibniz chain rule. They are also limits of continuous random ODEs
obtained by pathwise approximations of the driving Lévy process by smooth functions
(the Wong—Zakai technique). These properties justify their utilization in Physics and
Engineering, see, e.g. Marcus [22], Di Paola and Falsone [5], Sun et al. [37], Chechkin
and Pavlyukevich [3], Pavlyukevch et al. [33].

Roughly speaking, jumps in the Marcus setting should be understood as idealizations
of very fast motions along certain trajectories determined by the physical parameters of
the system.

Despite of their usefulness in applications, numerical methods for Marcus SDEs are
not well-developed. Some partial results in this direction on the physical level of rigour
were obtained by Li et al. [18, 19].

The goal of this paper is to fill this gap. We will construct an Euler-Maruyama
(Wong-Zakai) type numerical scheme X on a discrete time grid of the size h > 0, and
establish the first order weak approximations |Ef(X7) — Ef(Xr)| < Ch for Cj-test
functions f. The main difficulty will consist in the treatment of the non-linear jump
dynamics, which involves the analysis of a certain family of non-linear ODEs and makes
the approximation problem very different to the Ito case.
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2. SETTING AND THE MAIN RESULT

On a filtered probability space (2, &, F, P) satisfying the usual hypotheses consider an
m-~dimensional Brownian motion W and an independent m-dimensional pure jump Lévy
process Z with a characteristic triplet (0,0,7). The Lévy process Z has the Lévy—Itd
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decomposition

t t
(2.1) Zy = J f zN(ds,dz) + f J z N(ds,dz),
0 Jz|l<1 0 J|z|>1

where N is the Poisson random measure on R x R with the intensity measure d¢-v(dz),
and N is the compensated Poisson random measure. The theory of Lévy processes is a
classical topic nowadays, we refer the reader to e.g. Sato [36] and Applebaum [1].

For d > 1, consider a vector-valued function

a'(z),
(2.2) a(r) = N
a’(x)
and matrix-valued functions
bi(x) - by,(x) ci(z) - o)
(2.3) b(z) = , c(z) = )
bi(x) - b () flx) - ()

and denote
(2.4) (z) = (ci(x),...,c,(2))

the i-th row of the matrix ¢(x), i =1,...,d.
In this paper we will work with a Marcus (canonical) SDE

t t t

b(X,) o AW, +J o(X,)0dZ,, t=0.

25) Xi=X, +f )

0

a(Xs)ds+f

0

Canonical SDEs were introduced by Marcus [22] with the aim to construct jump-diffusions
which at least formally obey the rules of ordinary calculus. It is well known that the
chain rule for a solution of a Stratonovich SDE dX; = b(X;) o dW; coincides with the
Newton-Leibniz formula f(X;) = f(Xo) +Sé F(Xs)b(X,)odWy, f e C*(R,R), where the
latter integral has to be understood as the the stochastic Stratonovich integral, see, e.g.
Protter [35, Chapter V.5]. To extend such a property to the jump case, one has to define
the jumps of the process solution X of (2.5) properly. In the case of Marcus prescription,
the jump AX; = X; — X;_ is obtained as a result of an infinitely fast motion along the
integral curve of the vector field ¢(-)AZ;. Indeed, for each z € suppr € R™, consider a
non-linear ordinary differential equation

d
(2.6) @¢Z<U;$) = c(¢*(usx))z
¢*(0;x) =z, wel0,1],
and define the so-called Marcus flow
(2.7) ¢Z(x) — (i)Z(l;x).

Then by definition one sets AX; = ¢~%¢(X;_)—X;_. To make the construction rigorous,
it is convenient to rewrite (2.5) as an It6 SDE driven by a Brownian motion and a Poisson
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random measure. Written in the coordinates, it takes the form

¢
Xi=a'+ J- a'(X,)ds
0

S e 353 Gninse
(2.8) ; f | - X, ) N(dz.dr)
" JZ lelél <¢Z(XS) — X C(XS)Z)i V(dz) dr

* L Lzbl (¢ (xe0)- Xs—)i N(dzdr), i=1,....d.

For a complete account on Marcus SDEs see the works by Marcus [22, 23], Kurtz et
al. [17], Kunita [16], and Applebaum [1]. Note that the Marcus integral Sé c(Xs) o dZg
cannot be represented as a limit of Riemannian sums (opposite to the It6 or Stratonovich
integrals), so that the SDE (2.5) should be understood via its It6 representation (2.8).

Lévy-driven Marcus SDEs possess a lot of useful properties. For instance, under
sufficient smoothness assumptions on the coefficients a, b, and ¢, the their solutions forms
flows of stochastic diffeomorphisms, see Fujiwara and Kunita [7]. Due to the coordinate
free construction of the jump part and the Stratonovich diffusion part, Marcus SDEs can
be defined on manifolds, see Fujiwara [6].

Finally, one can approximate solutions of Marcus SDEs by solutions of continuous
random ordinary differential equations (ODEs) (the so-called Wong-Zakai approxima-
tions). For a time step h > 0, let us approximate W and Z by polygonal curves with
knots at {kh, Wgpn}e=0 and {kh, Zpp} k=0 respectively. Namely, we define the piece-wise
linear random processes

t—kh

Wt = Wi, + (W(k+1)h . th), te[kh,(k+Dh), k=0,

(2.9)
t—kh
ZZL = Zun +

(Z(M)h — Zkh), tekh,(k+1)h), k=0,

and consider a family of random ODEs

t
(2.10) XM=+ f (a()‘(g) + (XMW + C(X';L)Zsh) ds, t>0.
0

It is well known (see, e.g. Marcus [22] and Kunita [15]) that the approximations X"
converge to X as h — 0 in the sense of convergence of finite dimensional distributions.
In this paper we present a weak numerical scheme for (2.5) based on the Wong—Zakai
approximations (2.10).
For f: R? — R we will use the uniform norm

(2.11) If = sup [f(z)]-
zeR4

For z € R? (and R™), we will work with the Euclidian norm ||z| = (2% +--- +22)"/2. For
a function f: R? — R denote by 0 its partial derivative corresponding to a multiindex
a. Let Dc(z) be the gradient tensor of the mapping x — c(z). For each x € R%, we
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consider it as a linear operator Dc(x): R™ — R4*? given by

0 0
ﬁ@l(ﬂc)a@ @@1(@7@
(2.12) Dc(z)z = : . :
4 4
ﬁ@ (x),2) --- @@ (), 2)
and define
|De(z)| = sup ||De(x)z],
(2.13) o<1
Also let
(2.14) |De| = sup | De(z)z].
zeRd

For practical needs it is sometimes convenient to use the maximum entry norm of the
gradient tensor:
o
Dclle = max H—cl» x H
(2.15) | Delle 1<i k<d |l Oy, 3(®)

1<j<m

Then we have

(2.16) |De(@)z]| < | De| - |1z < dv/m - | Dele - |12
In this paper we make the following assumptions on the coefficients a, b and c.
H,p.:
(2.17)
ae C*RYRY)  and 0%’ <0, 1<i<d, 1<]|al<4
be C*RLRY™) and 0% <o, 1<i<d, 1<j<m, 1<|a|<4,
6% - 0%bf || < o0, 1<ik<d, 1<jl<m, 2<]o|<4
ce CYRYR™™) and 0% <00, 1<i<d, 1<j<m, 1<|af<4,
Ict 0% <o, 1<ik<d, 1<jl<m, 2<]|a/<4
f

studied in Appendix A.

We recall now the definition (2.9) of the processes W" and Z" and introduce the
discrete time scheme X = (th)k>0 as follows.

For 7 = 0, w, z € R™, consider the ordinary differential equation

d
o9 () = () + b (w)w + c((u)
¥(0) =2, wel0,1],
which has a unique global solution under assumptions Hg p .. Let
(2.19) Y(x) = (7w, 2) = Y(L 2, 7, w, 2).
The properties of the mapping v are studied in Appendix B.
For z € R and the time step h > 0, consider the non-linear Euler type scheme
X() =T,
Xiryn = ©(Xen; b, Weesyn — Wi, Zes1yn — Zkn), k= 0.

The goal of this paper is to establish the weak convergence rate of this numerical scheme.
It is assumed that the increments of the Brownian motion and of the pure jump process
Z can be simulated exactly. We also do not take into account numerical errors which
may arise while solving the ODE (2.18).

(2.20)
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Now we formulate further assumptions and the main result of this paper.
H,: Assume that the tails of the Lévy measure v satisfy

(2.21) fl - |22 - eBIPel =l (dz) < o0,
Z|[>

In view of (2.16), Assumption H, is guaranteed by the following condition which is easier
to verify in practice.

H,:
(2.22) J |2 - eBvmelPelelzl 1 (dz) < oo
[[z]>1

Theorem 2.1. Assume that conditions Hgyp . and H, hold true. Then for any T > 0,
there is a constant Cp such that for any x € R the following holds.
1. There is a unique strong solution X = (Xt)se[o,r such that

(2.23) E; sup [ X" < Or(1+ [z
te[0,T]

2. For any h > 0, the numerical scheme { Xy, Yo<kn<r Satisfies

(2.24) E, sup | Xpn|" < Op(1+|z]*).
0<kh<T
Proof. See Section 4. |
The following result is interesting on its own. Assume
Hv¢7,j:
| 1wt < e,
|z|>1
| v v <
(2 25) |z|>1

fllﬁww%wd<w
zZ|>

f V467 v(dz) < oo.
|z|>1

Theorem 2.2. Under conditions H, . and Hyg,,, for any f € C, any T > 0, there
is C'> 0 such that for each x € R?, t € [0,T] and any multiindex o

(2.26) "B (X < C, 1< al <4.
Proof. See Section 7. O

Remark 2.3. Under assumptions H, p ., it follows from Lemma A.2 that H, implies
HV¢,V‘

The main result of this paper is the first order weak convergence rate of the Euler
type (Wong—Zakai) scheme (2.20).

Theorem 2.4. Let conditions H, p . and H, hold true. Then for any f € C’gl(R,R) and
any T > 0 there is a constant C = C(T, f) such that for any n € N and h > 0 such that
nh<T

(2.27) . f(Xnn) — Eof (Xpn)| < C-nbh?- (14 |z|*), =zeR%
The proof of this theorem will be given in the following Sections.

Eventually we comment on conditions H, ;. and H,, and the applicability of the
numerical scheme.
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Remark 2.5. Conditions H, ;. are less restrictive than the assumptions in Protter and
Talay [34] and Jacod et al. [9] where the coefficients of the SDE are Cj or smoother.

Remark 2.6. Assumption H, (or H]) requires existence of exponential moments of
the Lévy measure v and looks more restrictive than the assumptions in [34] and [9]
where existence of high absolute moments (up to the 32-th or higher ones) is demanded.
Exponential moments appear due to the non-linear nature of the Marcus ODE (2.6).
Recall that the jump size of an Itd6 SDE dX; = ¢(X;_)dZ; is AX; = ¢(X;—)AZ; and
hence is a linear function of AZ;. On the contrary, the jump size of the Marcus SDE
dX; = ¢(X;)odZ; equals to AX; = ¢*%(X,_)—X;_ and is determined by the non-linear
ODE (2.6). The best generic estimate for the size of this jump is given by the Gronwall
inequality. Hence exponential moments in the Marcus case serve as a natural analog of
the conventional moments in the It6 scheme. For instance, assumptions H,, and H/, are
always satisfied for a Lévy process Z with bounded jumps.

In particular cases one can find less restrictive assumptions on the moments of the
Lévy measure. For instance one can show that in dimensions d = m = 1 for the equation
dX; = a(X;)dt +b(X;) odWy + M X, 0dZ;, with a,b € Cf and M > 0, convergence (2.27)
holds for any spectrally negative Lévy process Z with v((0,400)) = 0, and in particular
for a spectrally negative stable Lévy process. However we were not able to find similar
tractable sufficient conditions for convergence in general, especially in the multivariate
case.

Remark 2.7. The scheme (2.20) employs realizations of the increments of the Lévy jump
process Z. The list of infinitely divisible distributions which can be simulated explicitly
is rather short and includes a-stable laws, Gamma and variance Gamma distributions,
as well as inverse Gaussian. We refer the reader to Protter and Talay [34, Section 3]
and Cont and Tankov [4, Section II.6] for more information on this subject and the
description of the corresponding numerical algorithms.

For the reader’s convenience, in the following Sections 4-7 as well as in the Appen-
dices A and B we assume that d = m = 1. In the proof we will not use any of the
geometrical advantages of the one-dimensional setting and make this assumption just in
order to simplify the notation significantly. The technical difficulties lie not in the higher
dimensions of the state space but in the analysis of the interplay of the terms d¢, o dW
and ¢dZ with the corresponding terms in the approximation scheme (2.20). From this
point of view, we are in a setting of a scalar equation driven by a three-dimensional Lévy
process (t, Wy, Zy).

3. NUMERICAL ILLUSTRATION

In this Section we give a numerical illustration to Theorem 2.4. Consider a Marcus
SDE

(31) dXt =dt + Xt <& dZt

with the coefficients a(z) = 1, b(z) = 0 and ¢(z) = x. The Lévy process Z is a compound
Poisson process with the symmetric Lévy measure

(3.2) v(dz) = % e lFBdz, A0, >0,

i.e. the jumps of Z are Laplace-distributed with the parameter 5. To satisfy assumption
H, we assume that 5 = 0.1. We set the jump intensity A = 100.

We calculate the expected value E, f(X;) for the function f(x) = 10%sin(1073x) for
different values of = € [—1,1]. Since maxye[_20,201|f(z) — 2| < 0.0015, E, f(X;) can be
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seen as a good approximation of the reference mean value E, X;. The generator of X is

(3.3) Lf(z) = f'(x) + f

R

(flae?) = f@))v(d2),  feC'RE),

and a straightforward application of the Dynkin formula yields the explicit formula for
the mean value

Pt —1 \3?
(34) Bx —aet+ S, My
p 1-p2
Analogously one can calculate the second moment E, X? and the variance of X; but we
omit here the explicit cumbersome formulae.
Denoting 0 < 7y < -+ < 7y < 1 the jump times of Z, and Jy, ..., Jy the iid Laplace-
distributed jump sizes, we solve equation (3.1) explicitly as
Xe=x+t, tel0,m),
Xﬁ = X‘rl—ele
Xe =X +1t—m11, tE[Tl,T2)7

Xy = Xpy_elv
Xi=Xpy +t—7n, te[rn,1].
The scheme (3.5) is exact and can be easily realized on the computer. To estimate

E,f(X1) we simulate n = 10° independent samples {Z*)},<r<, of the paths of the
Lévy process Z = (Zt)se[0,1] and approximate the mean value by the empirical mean

(3.6) Buf(X1) ~ (F(X1)) 7%2"; Xy,

where X (*) is the solution of (3.1) driven by the process Z*).
Furthermore, for the step size h > 0, we employ the numerical scheme (2.20), which
in our particular case has the form

Xh=u,
(3.7) h o
Xrvyn = V(Xghs s Zryn — Zin),
where
e*—1

4

(3.8) W@, b, 2) = "L + — h, z#0,
x+h, z=0.

For the values h = 0.1 and h = 0.01 we also approximate
= 1 « h (k)
(3.9) E,f(X]) ~ (F(X]) = Z

where X"(F) is the Wong-Zakai approximation of (3.1) driven by the process Z*).

The results of the reference values and the numerical simulations are presented in
Table 1. Figure 1 contains sample paths of the Lévy process Z and its Wong—Zakai
approximations Z" as well as sample paths of the process X and its Wong-Zakai approx-
imations X". One can clearly observe that the approximation error increases mainly due
to large jumps of Z.
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x E.X1 | v/Varg X1 | n7 Y2/ Varg X1 || (F(X1)) | <F(XP)S, h=0.1 | {(F(XP)), h =0.01
—1.0 || —1.0175 5.5349 0.0175 || —0.9950 —1.0486 —1.0154
—0.5 || 0.3555 2.2352 0.0071 0.3550 0.3176 0.3578

0.0 1.7284 2.3608 0.0075 1.7160 1.7054 1.7206
05| 3.1014 5.8848 0.0186 || 3.0935 3.0701 3.1157
1.0 || 4.4743 9.6005 0.0304 || 4.4769 4.4452 4.4931

TABLE 1. The results of the numerical simulations for the equation (3.1)
for A =100, 8 = 0.1, n = 10°.

FIGURE 1. Left: a sample path of the Lévy process Z (bold line) and
its Wong—Zakai approximations Z" for h = 0.1 (dot-dashed line) and
h = 0.01 (dashed line), see (2.9). Right: the corresponding sample path
of the solution of the Marcus SDE X (bold line) and its Wong—Zakai
approximations X" for A = 0.1 (dot-dashed line) and h = 0.01 (dashed
line), see (2.10).

4. PROOF OF THEOREM 2.1
Proof. 1. We denote

(4.1) a®(z) = a(z) + %b'(m)b(x) + f

|z|<1

(gbz () —z— c(x)z) v(dz)

+ le>1 ((bz(:c) - a?) v(dz)

and write (2.8) in dimension 1 as

t

(42) X, = Xo+ J

(X ds + L b(X,) AW, + JO JR (¢Z(XS,) - Xs,) N(ds, dz)

Due to Lemmas A.1 and A.2, the drift a® is a Lipschitz continuous function, and since
(4.3) 6% (2) — 2| < C(1 + [a])|2[1(|2] < 1) + [a] (1 + el NI(|2] > 1)
and
(4.4)

|07 () — 2 — ¢*(y) +y| < Clz —y| - [2] - 1(|]2] < 1) + |z — y|(1 + I =N)I(|2] > 1),
existence and uniqueness of the strong solution X with a finite fourth moment follows,
e.g. from [16, Theorem 3.1].

2. The discrete time scheme X = (Xpn)r=0 can be transformed to a continuous time
process {X;}:>0 by taking

(45) Xt = ’lﬂ(th; h, Wy — Wyn, Zy — Zkh)7 te [kh, (k + 1)h)
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Then, using the It6 formula on the time interval [kh, (k + 1)h] and taking into account
condition H,, and the properties of the mapping ¢ and its derivatives (see Lemma B.1),
it is easy to show that

(4.6) By Xfinn — EoXih < Ch(1+E.X,), k>0

with some constant C' which does not depend on k. This gives

(4.7) 1+E, X} <(Q+Chra+aY, k=0,

which proves (2.24). O

5. ONE-STEP ESTIMATES

Theorem 5.1. For any f € C}} there is a constant C > 0 such that for any h > 0 and
reR

(5.1) E.f(Xn) — E.f(Xn)| < Ch*(1 + 2*)

The proof of this Theorem will be given in Section 5.2 after necessary preparations
made in the next Section.

5.1. Bounded jumps estimates. Consider the pure jump Lévy process
t

(5.2) Zy = J J z N(dz,ds),
0 Jiz|<1

which is a zero mean Lévy process with |AZ;| < 1. We denote by X the solution of the
SDE

~ ¢ ¢ ¢ B
Xi=z+ J a(Xs)ds + J b(Xs) odWy + J (X)) 0dZs

(5.3) 0

0 0
t ¢ t R ~
=J d(XS)derf b(X,) dW, +J f (qu(XS,) —Xs,) (ds, dz)
0 0 0 Jz|<1
where we denote the effective drift by

G4) ) =)+ ) + |

|z|<1

(cbz(x) —x— c(x)z) v(dz).

We also introduce for convenience the Stratonovich diffusion correction term
1

(5.5) a(z) = a(z) + §b’(x)b(x).

Note that due to Lemma A.1, |a(z)], |a(z)| < C(1 + |z|) and @, & € C3 (R, R).

Lemma 5.2. Assume that conditions Hy p . hold true. Then for any T > 0, any x € R
there is a unique strong solution X = (X¢)e[o,r]- Moreover for each p > 1 and T > 0
there is a constant Kr, > 0 such that

(5.6) E, sup |Xi|P < Krp(1+|z|P), xeR.
te[0,T]

Proof. The proof is the same as in Theorem 2.1 with no conditions on big jumps |z| >
1. O

The process Xisa strong Markov process with the generator
(5.7)
~ 1
Li(w) = 4(o)f () + 500" @) + |

|z|<1

(£(6° (@) = (@) = f (@)el@)z)v(d2),  fe CARR).
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Lemma 5.3. There is a constant C > 0 such that for each f € C*(R,R) with bounded
first and second derivatives

(5.8) Lf@) < c(I71+ 1)1 +a%), zeR.

Proof. Taking into account the linear growth condition for a and b we get for some C' > 0

(59) (o) (@) + ()" (@)

To estimate the integral term in (5.7) we note that

<O+ |z + ClF7IQ + 22).

(5.10)  f(¢*(x)) — f(z) — )2 =2 J J f”c2 + fled qbz(u;x)) duds,

and Lemma A.1 yields
(F(&° (@) — 7@) — F/(@)elw)z)w(dz)| < CUF| + 17D +22).

d

(5.11) |

<1

Lemma 5.4. Let f € C}(R,R). Then there is a constant C > 0 such that for all z € R
(5.12) ILLf(z)| < C(1 + ).

Proof. Denote G(z) := Lf(x).
Then

(5.13) (LLf)(x) = (LG)(2) = a(x)G"(x) + %bQ(ﬂﬁ)G”(w)

+ fl - (G(¢Z(x)) —Glz) - G’(x)c(x)z) v(dz).
We will show that |G’(z)| < C(1 + 22), |G"(z)| < C(1 + 22) and
- (G6*(2) - Gla) = &' (@)e(@)z) w(d2)| < C(1+ ).
1. The first derivative G’. We have

(5.14)

(5.15) G/(x) = &/(x)f/((t) + (&(1,) + bb’(a:))f”(x) + %b%m)f’”(m)
+ (MO @) - fwela)z = P w)z ~ o) k)

= (L)) (2) () +06 () " )+ fl _ (FE @ @)1 @ @e) vae),

The term Lf’ is estimated by Lemma 5.3 by C(1 + #2), the term & (z)f'(x) by C and
the term bV’ f” by C(1 + |x|). To estimate the integral term, we use Lemma A.1 to get
(5.16)

P8 @) (63() — 1) — F(0)d (@) = /(6" (@) (¢ @)z + pa(liz,2)) — ()¢ ()2
_ c'(m)zQL (F'e) (8 (s 2)) ds + F/(67(2)) s (L 2, 2)

Taking into account the bounds from Lemma A.1 we conclude that the integral term is
estimated by C(1 + |z|) and eventually

(5.17) |G’ (z)] < C(1 + 2?).
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2. The second derivative G”. Straightforward differentiation yields
(5.18) G"(x) = a"(0)f (@) + (20 (2) + B@)' (@) ) (@) + (aw) + 26()¥ (2)) £"(2)
B@ @)+ [ (PG + @) )

|z|<1
= 2f'(x)c" (z) = f"(2)(1 + 22¢ (x)) — Zf”'(ﬂf)c(x)) v(dz).

Recalling that
(5.19) (LF")(@) = a()"(@) + 821/

| (0w 2) = 1) = f()ele)z ) v(d)

|z|<1
we can rewrite
(5.20)
G (@) = (Lf")(@) + &' @)f (@) + (20 (@) + G (2))) () + 20(2)¥ (2)f" (@)

+f o @@ 1) 41 @ @)k )2 () (2) =24 (@) @) v(do)

The first line of the previous formula is bounded by C'(1+x?). We estimate the integrand
in its second line similarly to (5.16) with the help of Lemma A.1. Denote for brevity
0z = @a(L;2,2), Yoz = puz(l;2,2). Then

767 (@) (63(2) = 1) + F(6° (@), (@) = 2 (@) (x) = 22" (@) (x)
= /(67 @) (€@ + ¢ + 2 (2)2 + 2 (@), + 2
FP@@) (@) + pra) = 2L (@) (@) — 228" (@) (1)
(5.21) = 2:¢ (@) (1"(6*(@)) = 1"(@)) + 2" (2) (' (6 (2)) - J' (=)

+ 11(6* @) (¢ @)% + 2 + 20 @)z +200) + F1(6%(2)) 2

=222 (x ") (s;x)) ds + 22 ( 1 "e)(¢*(s;x)) ds
=222 (a) | (176 (i) ds + 2w | (1)@ (s:2)

0
7167 (@) (¢ (022 + 62 + 20 (@) 20 + 20 ) + £ (6 (@) aas
and hence the integral term in (5.20) is bounded by C(1 + |z|). Eventually
(5.22) |G" ()| < O(1 + 2?).

3. The integral term of the generator. For G(z) := Lf(x) we recall (5.10), (5.17), (5.22),
and the estimate sup,|<; [¢*(2)| < C(1 + [z]), to get

(5.23) Lgl (G (@) — Glw) — E(@)elw)z) w(dz)| < O + ).
O

For the function ¢ = 9 (x; 7, w, z) defined in (2.18) and (2.19), we introduce the process
(5.24) Y, = (x;t, Wy, Z;), tel0,h]
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Since ¥(+;-,-,-) € CHR*, R), the Itd formula implies that Y is an It6 process and

(525)  E.f(YV) = f(2) + L BQf(4(x:5,Ws, Z.))ds, [ e CA(R,R),

with the generator

1
(5'26) QQ(T,UJ, Z) = gT(T,w, Z) + §gww(7—awa Z)

H (o4 - gl - gulrwz) - €) vldo),
lgl<1
defined on smooth real-valued functions g(7,w, z).
Lemma 5.5. Let f € CZ(R,R). Then
(5.27) Lf(x) = Qf (1(x;0,0,0)).
Proof. For each x € R, applying (5.26) to g(T,w,2) := f o ¢(z;T,w, z) we get

(5.28) Qf(Y(x;m,w,2)) = f'(Yla; 1, w, 2))r (237, w, 2)
+ %f”(z/)(a:;T,w,z)) (Yo (3T, w, 2))? + %f’(d)(z;T,w,z))i//ww(x;T,w,z)))
+ J£|<1 (f(?/}(x, T, W, Z+§)) _f@/)(ffv T, W, Z)) - f/(¢($, T, W, Z))’Q[JZ(.T, T, W, Z) g) V(df)

Recalling that ¢(x;0,0,z) = ¢*(x) and ¥(x;0,0,0) = x, and taking into account the
formulae from Lemma B.1 we find that

¥, (2;0,0,0) = a(z),
w(2;0,0,0) = b(x),
(5.29) VYuww(2;0,0,0) = bb (x),
¥, (2;0,0,0) = c(x),
and hence we get (5.27). O

Lemma 5.6. Let f € C}(R,R). Then there is a constant C > 0 such that for any T > 0,
weR, zeR and x e R

(5.30) 1QQf (P (x;7,w,2))| < O(1 + ) - T HIwIHD,

Proof. Denoting for brevity where it is possible ¢ = i(z; 7, w, z) = ¥ (T, w, z) or adopting
when necessary the notation ¥(z2) := ¢ (z; 7, w, z), we apply the formula (5.28) to a Cj-
function f to get

1

(531) QFW(rw2) = f/(6)s + 5 ") 02 + 3 ' ()b

; fl i (£ +6) = FOE) - FEE(E) - €) v(ae)

= F N+ 5 E W)t S W+ | @[ 0ur (0 + 01 - ) a0 ().
| 0

g1
With the help of (5.26) we calculate

(5.32) Q2f(yp(r,w,2)) = ,QF (V) + %%wa(w)
i LM (QF((= +) ~ QI W(2) - 2:QF (¥(2)) - €) (de)
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= Q1) + 5@ W) + [ €| 2.Qs 0+ 09)(1 - 0)d0wa0)

gl<t

We estimate the summands in (5.32).
1. 0;Qf. First, we write
(5.33)

2:Qf(W(r,w,2)) = f"(W)¢7 + [ (¥)¢rr

43 (@) e (00 27" W) b s+ W) - s+ ) )

n L@g j Bren f (02 + €0))(1 — 0) dO(dE),

where for the integral term we get

(5.34)  Orea f(W(T,w,2)) = [ ()Yrt2 + [ () tbee + 2f" () rator + (V)72

Hence in view of Lemma B.1
(5.35) 10-Qf (W(T,w,2))| S C(L+ [2*) - (1 + 7 + |w]| + |2])? - eCTHIwlFI=D,
2. Oww@f. Analogously

OwwQF () = [" (W) rbly + 21" (V) brwthw + " () rthuw

S @b + 3 FO@E + 37" @)Y

(536) + gf”(’(/J)’(/)i)w + Qf//(w>wwwwww + %f/(w)wwwww

+L|<1§ Lawwzzf(w<z+§e>><1—9)dey<dg),

where for the integral term we calculate
(5.37)

Owws=f (W) = FPD(W)v2y?
+ () wwt? + A" () utwsths + [ ()2,

+ 21" () uwtuwze + 2" (W), + (/@) + [ () Vwwtez + 2F" () Yuww: e,
which yields

(5.38) 0w @ (W (r,w, 2)| < C(1+ 2%) - (1 4+ 7+ |w] + [2])? - T HHED,
3. 0..Qf. We determine the derivatives
(5.39)

0ox (P W) + 5 F0) 02+ T )hun)
= f/('l/))w‘rwzz + f/,(¢)¢7¢3 + (f/('l/)) + f”(T/J))l//rzi/Jz + f/(qu)'wfzz
+ %f‘4><¢)wiw§ + 21" () Yuthstus + %f’”(z/})wiwzz S COU R Y COIUMERS

S L@+ Ot + 38 @bt + 3 F )

and
(5.40)
Ornaa f(10) = FO W)L + 6" (0)020os + B (D)2, + A" (W) hstbszs + F(D)hszs

and apply Lemma B.1 to get
(5.41) 10::QF (W (5t w,2)| < C(L+a*) - (147 + |w| +[2])* - CTHwIHED,
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Lemma 5.7. For any f € C}(R,R) there is a constant C > 0 such that for any h = 0
and any x € R

(5.42) |E.f(Xn) — Eo f(Y(x; h, Wi, Z1,))| < O(1 + 2*)h2,
Proof. Applying the It6 formula twice we get
(5.43)

h h
Eof(X0) ~ Bof(0(oih, Wi Z0)) = | BLLF(X)ds — | B.Qf(0(ais, W, 2) ds
0 0
= hLf(x) — hQf(¥(x;0,0,0))
h prs h prs
o] | ELrE)aras— || BQQIEin W Z) drds
and hence by Lemma 5.5 and Hélder’s inequality for any p > 1
(544) ’E»Lf(Xh) - E»Lf(w(l", h, Wh7 Zh))’
< h?® sup B |LLf(X,)|+h* sup E|QQf(¥(x;r, Wy, Z,))l

re[0,h] re[0,h]
< Ch2(1 + sup EE|XT|4) +Ch? sup E (14 |X,.[Ye Clr+Wrl+1)
re[0,h] re[0,h]

< CR(1+ faf') + O sup (Ba(1+ X, 1) (et en)
re[0,h]
< CR*(1+ |z|*).
O
5.2. One-step estimate. Proof of Theorem 5.1.

Proof. Decompose the jump process Z into a sum

Nt
(5.45) Zi=Zi+ Y. .
k=0

Assume from the very beginning that A = v(|z] > 1) > 0. Denote o := oy, the first jump
time of ¢ Sé S|Z‘>1 N(dz,ds), J = J; the size of the first large jump. First note, that
P(r <t¢|Np =1)=t/h, t€[0,h], and P(J € ANy, =1) =v(An {|z]| > 1})/v(|z| > 1).
For each x € R we get
B f (Xn) — Eo f (Xn)| < [Ea f(Xn) = Eof (w5 h, Wi, Zn))|
(5.46) + B [I£(X0) = F(Xn) [N = 1PV, = 1)
+ 2| f[P(Nn = 2).

The first summand is estimated by Lemma 5.7 by C(1 + 2*)h?, the third has the order
h2. Let us estimate the second summand.

First note that P(N}, = 1) < Ch. Then, on the event {N}, = 1}, the solution X}, can
be represented as a composition

(5.47) Xp(z) = Xop 0 ¢’ 0 Xoo(2)
and hence
JEn(@) = F(Xn(@)) = F(6” (@) = [(Xon 0 ¢” (@)
(5.48) + [(Xon09”(2)) = f(Xono0¢” 0 Xo o (2))
+ [(Xn(@)) = f(¢7 (2)).
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Step 1. Desintegrating the laws of ¢, J and Z we obtain from the It formula, Lemma
5.3 and Assumption H,, that

IEf(Xono0¢’ (z) — Ef(¢7 (2))]
1 (" _ . )
< EJ Jl - [Ef (Xn—s(67(2))) = f(¢7(x)) v(dz) ds

h—s
E L drv(dz
AhJLJ oo L () dr v(d2) ds
h—s _
(5.49) <7J J f By (1 + |X,%) drv(dz) ds
Al Jo Jizis1 Jo

% Lh L>1 A(1+16%@)) v(dz) ds

<oh-(1+ | 107 @Pva)
< C3h(1 + 22).

Step 2. Acting similarly we estimate
(5.50)

Ef(Xon0¢”(2) ~Ef(Xon0¢” 0 Xo(2)
— E[Ef (X010 0" (1) = Bf (o 067 0 Ko (2))| 7, ]

= EI:Equ(m)f(Xh—o) - E¢J(;~<P($))f()~(h—a)]

= — E;|Ep-(o) f(Xn—s) — By 5. (o) f(Xn—s)| v(dz)ds.
AN [w)( ) = Ege(x,_ @y f( )]( )

Denote

(5.51) Fi(w) = Bo f(X0).
Since by Theorem 2.2

(5.52) s (151 11) <€

we can calculate
0 F (¢ @) < C - 3]
022 (6 @) < C (19312 + 163]).

Then for each s € [0, h] the It6 formula and Lemma 5.3 imply
(5.54)

B, ' (07(%,-) = [ (07 (@) < fo E,|Lf"(¢%(X,))] dr

<c-h-(u¢;u?+||¢;zn) (1+ sup Bl X, P)

re[0,h]

(5.53)

e (1032 + loz.) - (1+ 2%).
Hence Assumption H, yields
(5.55) [Ef(Xon 00! () —Ef(Xon o0 ¢’ 0o Xo(x))] < Ch(1 + 22).
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Step 3. Recall that Xj(z) = o¢(x;h, Wy, J + Z3,). The Taylor expansion of 9 =
Y(x;T,w, J + &) at (0,0, J) for a fixed z yields

(5.56)

(@, hyw, J +€)) = f(4(x,0,0,]))

7 (0(@,0,0,0)) (16r (23.0,0, T+ (50,0, ) + 02 (230,0, )¢ )
+ R(z; hyw, J + &),
with the remainder term

(5.57)
Rlashow, 7 +€) = 5 [ F/G0) (0 (01 + 20 (0)h0 + 26 (OE + s (O

+ 200 ()€ + 12 (0)€2) A0 = Ry + -+ + .

where we write ¥(0) := (z; 0h, Ow, 6 + J).
Due to the independence of Z, J and W, and EW), = EZ), = 0, we get that the mean
value of the second line in (5.56) vanishes.
To estimate the remainder term we have to estimate six terms with the help of (B.3).
Thus
1
E|R,| < h2||f”\|f E|{r(x;0h, 0Wy,,0Z), + J)| do
0

(5.58) <R2|CO + 22)EQ2 + h + [Wi| + | J])e7 10 118 1Wa l+1(7]11)
<

Ch2(1 + 22).

Analogously, the terms Ry and Rz are bounded by Ch(1 + 2?2). Further,
(5.59)

1
E|R,| < ||f”||f E|Yw. (x;0h, 0Wy,0Z), + J)| - W2 d6
0

<|f'lca + x2)E[W]g(2 Y4 W+ |J|)es<ua/uh+nb'u\wh\+uc’n(m+1>>]
< Ch(1 + 22),
where the factor h essentially comes from the term W,% The R, and R3 are bounded by
Ch(1 + 2?) in a silmilar way. O
6. MAIN ESTIMATES AND THE PROOF OF THEOREM 2.4

According to Markov property of X, for each t € [0,T] and any bounded measurable
f

(6.1) E,f(X7) = E;Ex,  f(Xy) = Eo f'(X7—y),
where

(6.2) fia) =By f(X0).

Let h > 0 and let for definiteness T' = nh for some n > 0. Denote
(6.3) up(z) == Eg f*"(Xr_in).

Then,

(6.4) E. f(X7) = un,

E,f(Xr) = uo,
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and we have the following chaining representation

Exf(th) - E.Lf(X’ﬂh) = Z (uk - uk—l)

(6.5) i
= (Exfkh(th—kh) - Ea;f(k_l)h()_(nh—kh+h))-
k=1
Observe that
(6.6) E:rf(k_l)h(X(n—k+1)h) = EzE)’((",k)hf(k_l)h(Xh%
and, using the property
(6.7) () = By fEM(X),
we have that
(6.8) E, /" (X (nemn) = BaEx,, ,, f* " (Xn).

Combining (6.5), (6.6) and (6.8), we finally have
(6.9)

E.f(Xun) = Eof (Xun) = ) Ba (B, SEM(X0) — B, S5 (X)),
k=1
By Theorem 5.1 and the 4th moment bound (2.24) from Theorem 2.1,

(6:10) Eo B, 7" (Xn) = Ex, ,,, f*7"(Xn)
< C1R*(1+ Eg| X (nopyn|") < C2h(1 + 2*),
what together with (6.5) finishes the proof.

7. C*-SMOOTHNESS OF THE MARCUS SEMIGROUP. PROOF OF THEOREM 2.2

We separate the proof in two parts. First, we prove the required statement in the case
v(]z] > 1) = 0; that is, for X = X. We consider all the derivatives of f* till the order 4:

(7.1)

0! () = Bo (/(X0)0: X0 ),
(7.2)

axmft('r) = Em (f”(Xt)(ath)g) + Ez (f/(Xt)aszt) )
(7.3)

aa:a:wft(x) = E:E (fm<Xt)(aa:Xt)3) + 3E:v (f”(Xt)(aa:Xt)(awat)) + Ew (f/<Xt)aI:E£EXt) )
(7.4)
axaca:xft(z) =E, (f(4) (Xt>(axXt)4) + 6E, (f”/(Xt)(ant)Q(amet))
+ 3B, (f"(X0)(022X)?) + TEy (f"(X1) (05 X¢) (OranXt))
Then the required statement follows from the following Proposition.

Proposition 7.1. Let v(|z| > 1) =0 and Hy . holds. Then for anyp>1 and T >0
(7.5) sup ElO"X,(z)P <o, k=1,...,4.

t<T,zeR
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Proposition 7.1 has the same spirit as Lemma 4.2 in Protter and Talay [34]. However,
their result is not applicable here directly, because the It6 form of the Marcus SDE

(76)  dX, = a(X,)di + b(X,)dW; + f (6°(Xi) — X,_) N(at, d),

|z|<1

contains the integral w.r.t. the compensated Poisson random measure, while [34] deals
with the It6-SDEs w.r.t. dZ with a Lévy process Z. Because of that, we outline the
proof, mainly in order to make it visible how the non-linear structure of the jump part
effects on the assumptions required.

Proof. Without loss of generality we can assume p > 2, which will allow us to apply the
It6 formula with the C?-function |z|P.

1. The first derivative. Denote X} := 0, X;, then

(7.7)  dX = @ (X0) X[ dt + b (X)X, AW, + J (¢3(x0-) = 1) X;_ N(at, dz),

|z|<1

and the It6 formula yields

t _ t
X = v e ds + MRS [ ey o) as
79 e[ (esxor =1 pieson) ) ip vt ds

1 t
o [ pepvoaw s [ (leeop - 1) S,
0 0 Jiz|<1

where the last two terms are local martingales. Then the standard argument, based on
the martingale localization and the Fatou lemma, yields

t . 1 t
E|X|F<1 +pJ E|X/|P|a’(X)|ds + ’MJ E|X/|PV (X,)*ds
0 2 0
(7.9) .
] B(leser - 1= pez(x) - 1) XU v(az) ds
0 Jlzl<1

We have the following elementary inequality: for any p > 2 there exists C}, such that for
a, 0 eR

(7.10) la + 0P < |al? + plalP~ (sgna)d + c,,(|a|p—252 + |5\P).
In addition, we have a@’, b’ bounded and, by Lemma A.1,
(7.11) 03(2) — 1 < Clel, | <1.
Then, applying (7.10) with a = 1, § = ¢%(x) — 1 we get from (7.8)
¢
(7.12) E.|lX;P <1+ CP’TJ E.|X.[Pds, t<T,
0

which yields (7.5) for k = 1 by the Gronwall lemma.
2. The second derivative. Denote X/ := 0,,X; = 0,X;. Then

AX7 = ("(X) (X)) + o/ (X)) X/ ) dt

(7.13) (1 (XD (XD? + V(X)X ) aw

+L<1[ 2 (X )(X)? + (63(X,-) = 1) X/ | N(at.dz),  X( =o.
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By the It6 formula, localization, and the Fatou lemma,

(7.14)
t
EIX/P < pB | (|a"(X0)|0002 + 1 (X)X ) X2 ds
0
-1 t 2
o (|b"<Xs>||X;|2+|b'<Xs>||X;'|) XLp2ds

X (X% + o2 (X X!| = |X0)P

[ ]l
—p|X§'\”_1Sgn(Xé’)<¢>§x(Xs)( 07+ (¢3(X0) = 1)x7) | v(dz) ds.

We apply (7.10) with @ = A(X") = X",6 = 6(X, X', X", 2) = ¢%,(X)(X')? + (¢;(X) -
1>X”. By Lemma A.1, we have for |z| < 1

(7.15) |62 (2)] < Clz,
which together with (7.11) gives
(7.16)
6(X, X7, X", 2)P < CUX'|* + IX"P) 2, [6(X, X", X", 2)[P < COXI*P + |X"|P)]2 [P
Since @', a”,v’,b" are bounded and |z|P < |z|? for |z| < 1, this yields the inequality

t
(7.17) E[X/|P < CEf <|X;/|p + |X;’|p‘1|X;|2 + |X;/‘p—2|X;|4 + |X§|2p> ds.
0

By the Young inequality
P pd 1
(7.18) <+ abz0, -
p q p
we have
1 -1 2 -2
(709) |XIPUXGR < X+ Bom X, X < x4+ S X
p p p p
Then (7.5) with 2p and k = 1, (7.17), and the Gronwall inequality yield (7.5) with p and
k=2.
3. The third derivative. Denote X/ := 0,3: Xt = 022X, = 0, X/, then
(7.20)

Ay = (" (X0 (XD + 38" (X)) X[ X[ + 8/ (X,) X[") dt
4 (B0 (XD + 88/ (X) X{X] + V(X)XY") aW,
+f < [ a:a:x(Xt )(X£—>3 + 3¢§£(Xt—)Xt/_Xt”_ + ((b;(Xt_) — I)Xéﬂ_] N(dt,dz)
<

By the It formula, localization, and the Fatou lemma,

(7.21)
t
EIX/P < 5B [ (" CEIPCP + 31 (G + [a (X)X ) X ds
0

-1 t ?
# P20 [ (O + 3 RN + Y (Rl1X) TP ds

LB f J |<1 X7 4+ 02, (XX + 805, (XXX + (93X — 1) x0|" — |x0p

(X 1sgn<x’">(¢m<x>< 0?4305, (X)XUX! + (62(X) ~1) X0 ) | w(d2) ds.
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We apply (7.10) with
a=X"6=38X,X X" X" 2) = ¢ (X)(X')? +3¢%, (X)X'X" + (¢z (X) - 1).

We have for |z| < 1 by Lemma A.1

(7.22) |9%ae (2)] < Cl2,

which together with (7.11), (7.15) and the Young inequality gives

‘(5(X, X’,X”,XW )|2 < (|X/‘6 + ‘X”|4 + ‘XW|2)|Z|2,

[6(X, X, X", X", 2)[P < C(X'TP + | X" + | X" [P) 2.

Since the derivatives of @, b are bounded and |X'||X"”| < C(|X’|? +|X"|*>/?) by the Young
inequality, we get

(7.23)

t
EIX/P < CE | (1217 + X217 X0 + X X
(7.24) 0

X2 XL0 X PR X X2 d

Then (7.5) for k = 3 with given p follows from the same bounds with & = 1,3p and
k = 2,3p/2, the Young inequality, and the Gronwall inequality.

4. The fourth derivative. Denote X" := 0,142 X+, then
(7.25) dX! =
(al(Xt)Xllll + 4&//(Xt)X X”/ Jr 6~I//( )(XtI)ZXt// + 3&//( )(X//) ~””(Xf)(Xt,)4) dt

+ (3b// X// + 6(X£)2Xt//b”/(Xt) +4X£b//(Xt)X£// + (Xt/)4b////(Xt) + b/(Xt)Xt””) th

TTT

] (BP0, 00+ X2, X 6007 () + (65K) — DX
<1

+ (X[ )

TTrXrT (

X, )] N(dt, dz).

By the It formula, localization, and the Fatou lemma,
t
(1:26) BIX{P < B | (| (XX + 43 (X)X X
+6|5l”’( DXGPIX]+ 3la" (X)X + I&””(Xs)lX2|4)IXL’”\”*dS
p(p - 1) 1 "2 1120 1 | 1 m
+—5—E . 3|b (X)X + 6] X [7[ X" (X)) + 4] X |6 (X)X
2
+ [ X" (X)| + Ib’(Xs)IIX;’”I) | X{" [P~ ds

+EJ [(3(X§/)2 ;:(Xs) +4X§¢azgm(Xs)Xg” +6(X’) X” ;xz( S) +¢;(XS)X;”/
lz|<1

rrxr

2
(X 00 (X)) = (XU)2 = p(B(X) 205, (X,) + 4165, X! + 6(X0)2X1 0%, (X,)

(93(X,) = DX + (X405 00(X,) ) (X2~ sn(XV)]| v(d2)ds,

TTrxrxT

We apply (7.10) with a = X" and

(7.27)
§=06(X, X, X", X" X" 2) = 3(X")2¢2,(X) + 4X ¢, X" + 6(X")2X"¢%,. (X)

+ (05(X) = DX + (X') 00 (X).

rTxrrxr
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We have for |z| < 1 by Lemma A.1

(7.28) |9zae=(@)| < Clz],

which together with (7.11), (7.15), (7.22) and the Young inequality gives

(7.29) [6(X, X', X", X", 2) P < OUX'PE + (X[ + X712 41X P) |2,
. |5(X7 X/,X//,X”/,Z)‘p < C(|X/|4p + |X//|2p + |X///|4p/3 + |Xllll|p)|z‘p.

Since the derivatives of a,b are bounded, applying the Young inequality once again we
get

t
(T30) BIX/P < CE | (IX2P + [X2P X+ X0 X XX
XX + XX 4 XX X X X ds.

Then (7.5) for £k = 4 with given p follows from the Young inequality, the Gronwall
inequality, and the bounds (7.5) with k = 1, 2, 3 and p’ equal 4p, 2p, 4p/3, respectively.
O

Now, let us consider the general case of non-trivial large jump part. The semigroup
P, of the solution to (2.5) admits the following representation. Consider the SDE (7.6),
which corresponds to the driving noise with large jumps (i.e. |z] > 1) truncated away.
Denote the corresponding semigroup Py, ¢t = 0. Denote by Q the operator which corre-
sponds to a single large jump of the driving noise:

(7.31) 0f@) = | (16w~ @) vid).

Then we have

<--<sp<t

0
(7.32) Po=eMP+ ) e*”J P, QP ., ,Q...QP, ds;...dsy,
k=1 0<s1

where A = v(]z| > 1) is the intensity of large jumps. The above representation follows
easily by independence of the processes

t t
(7.33) Zy = J f zN(ds,dz), and Z; — Z;, = J f 2 N(ds,dz)
0 Jjz|<1 0 Jjz|>1

and the compound Poisson structure of Z — Z.
We have shown in the first part of the proof that

(7.34) H]-:’t\|c4_,c4 <Cp, t<T.

On the other hand, for the function Qf given by the integral formula (7.31) its derivatives
of the orders 1,...4 admit integral representations similar to (7.1)—(7.4), and then it is
a direct calculation to see that

(7.35) 1Qlcscs < Co.

Then for the semigroup P; we have for t < T
(7.36)

0 k
t

HPtHC4 ,04 < e_AtCT + E e M k! (CT)k-H"(CQ)k = CTet(CQCT_A) < CTET(CQCT_/\)Jr,
k=1 :

which completes the proof.
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APPENDIX A. PROPERTIES OF ¢*(u;x) AND ITS DERIVATIVES
Lemma A.1. Let H, . holds true and let
(A1) olu;z, z) = ¢*(u;x) —x — c(x)zu, we[0,1].
Then there is a constant C > 0 such that for all |z| <1 and all z € R
wx, z2)| <C- 22 |e(z)],
(4.2) |V§i§u,x,z§: <C- 2% | (1 2 k<4

In particular, the effective drift a € C*(R,R) and |V*a| < oo, k = 1,...,4, and for
|z| <1

|p* (us ) — x
(A.3) 97 (w; ) — 1
IVE™ (us )| < Clz|, k=2,3,4.

Proof. Estimate the integral term.

1. We write
(A4) O (u;x) = x + c(z)zu + p(u;x, 2), wel0,1]
Then
(A.5)
du¢z(u; x) =c(x)z + p(uyz, 2) = c(z + c(x)zu + o(u; x, 2))z
=c(z)z + (&) (c(m)zu + o(u; , z))z, & =¢(u,x, 2)
Hence
pu, 2) = ¢ (E)c(w)2®u + p(u;z, 2)c (€)2,
(A.6) a2l < | (I1ke@] + 1l lptria,2)])
lp(us, 2)| < 2°|¢/|[e(x)] - el
Hence
(A7) [6°(2) =z = c()2] < 2] le(a)] -]

and a is of linear growth.
2. Analogously,

(A.8) ¢i(wyx) =1+ d(2)2u+ pu(us,2), wel0,1]
Then
difbi(u;x) = (2)2 + ¢u(us 2, 2) = (7 (u; ) 9% (us ) 2
(A.9) u
= (% (u; ) (1 +d(x)zu + o (u;, z))z
Hence
(A.10)

Galui,2) = (¢(6°(ui2)) = ¢ (@) ) 2 + ¢ (6% (wi )€ (@)2%u + ¢ (6" (s ) pa (s, 2)2

:ffaﬂﬁﬁm%dﬁﬁwﬁw+dwaw@W@V%+JW“W@WHW%@Z

0
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Hence

o (s 2, 2)| < ([e"e] + [¢']%)2* + HC’HIZIJ lp(r;, 2)| dr,
(A.11) 0

o (s 3, 2)| < 22(|c] + [[?) - e,
3. Analogously,
(A.12) 2 (wsz) = " (@)2u + @up(u; 2, 2), we[0,1]
Then

d
(A.13) T Zousr) = (2)2 + Quu(usz, 2)

=" (9% (u;2)) (1 + ' (z)2u + 07 (u; x))2z + (9% (u; x)) (c"(z)zu + Qpa(u; T, z))z
= (6% (i) (1 + 2(¢ (@)zu + ¢ (wi0)) + (¢ @)z + g3 (i 2))?) 2

+ (9% (us @) (C”(x)zu + Paa (5.2, Z))Z

Taking into account that |¢”¢| < oo and
(A14) (i) = ) = = [ (6 s )elo (i)
0
we get that
(A15) |(pm(u7 ‘r’z)‘ < 2;2 . 02 . eHC/”.

4. The higher derivatives are checked analogously.
O

We have the following formulae for the derivatives of the Marcus flow z — ¢*(z).
These derivatives are hence solutions of non-autonomous non-homogeneous linear differ-
ential equations.

d z (2N A2 Z(0. _
@(bw =zc (¢) )(bwv ¢ (va) - la

d
0h =a(0%)62 + 2 ()05
d
(A.16) i —2((69)8 + 3 (6%)0505, ) + 2 (6)

e =2 (063 + 67(67)05(65,)° + 3¢ (6)(65,)°

4 ()0 (500)") + 2 ()
Lemma A.2. Under assumption Hg; . we have for all |z| > 1 and z € R
|7 (u; )| < eI\C’HIZI’

| < |z|e3I< =],

o2 (u;x

) 65005 |
|62 (s )| < |2 221112
|62 e (ws )] < [2[2¥19NZ1 e [0,1].

In particular,
|07 () — 2| < J2](1 + €l

(A.18) ,
|92 (x) — 1] < 1+ elell=l
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Proof. Indeed, solving the linear equations (A.16) we get

o7 (u) —eloc(67)zdr,
) = [ e o g,
0
(A19) fmx(u) :J;) Z(C”/(QSZ)Qsz + 30//(¢Z)¢i ;x)esg & (¢*)zdr d57

) = [ (M0 @20 + 60716265, + 3 (0°)

A (67) 0505, )5 O ds,

and hence the estimates follow.
By the Gronwall lemma, |¢*(z)| < |z[el<I1#l, and

(A.20) |9 () — 2| < 1+ el<lI2l,

In the multidimensional setting, solutions should be written in terms of the funda-
mental solution of the linear differential equation with the matrix De(¢?(u; x))z and the
estimates (A.19) follow, for example from Hartman [8, Section IV .4]).

APPENDIX B. PROPERTIES OF t(u;x; T, w,z) AND ITS DERIVATIVES

For the estimates of the Lemma 5.6 we need the following elementary inequalities.

Lemma B.1. Let H, . hold true. Then there is a constant C' > 0 such that for all

720, weR, zeR, andr e R

(B.1)  sup |o(wamw,z2)| < C(L + |a]) - el 1T+ Ilwl+lell=1,

ue[0,1]
(B.2) sup |0ap(u;z, 7w, 2)| < C(1 + |z|) - 2UITHIVIWIHICNED e (7 0, 2},
uel0,1]
(B.3)
sup |0 (u;z; T, w, 2)| < C(L+22) - (1+ 7+ |w| + |2| )P I+ Nl +lell=D)
ue[0,1]
Z"j € {T’w7z}7
(B.4)
sup [vijn(us 25w, 2)] < C(L+ |2f?) - (147 + |2] + Jw) 2B U ImHIP eI+l
ue[0,1]
Z'7j7k e {T7 w7Z}7
(B.5)

sup [Yiju (w25 Tow, 2)| < C(L+ |z|*) - (147 + |2 + |w])3et 1T+ 0" [l + < Nl=)

ue[0,1]
i,7,k,l e {r,w, z}.

Proof. These estimates are obtained directly.

0. Estimate of ¢. For 7,w,z € R, denote 1(u) = ¥ (u;x;7,w,2) the solution to the

Cauchy problem

d

(B.6) 1oV (W) = a(@ ()7 + b ()w + c(p(u)z,

P(0) =z, wel0,1].
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Since
B.7)  la(@)| < a(0)] + a'[[z], [b(x)| < [bO)] + ['[|2], |e(@)] < [e(0)] + [ [zl

the Gronwall inequality yields (B.1) for some C > 0.
1. Estimates of 9, ¥, .. The derivative w.r.t. 7 satisfies the lienar non-autonomous
ODE

d

(B.8) ot = a(®) + (@ (@)7 + V' (W)w + ¢ ()2)er

U (0525 7,w,2) =0

which can be solved explicitly
(B.9) Ve (u) = Ju a(tp(s))els T WD+ () +2¢ (W) dr g g
0

Applying the estimate (B.1) we get (for a different constant C' > 0)

(B.10) sup |y (us 27, w, 2)| < C(1 + |z) - U NIV i+ 1=])
’ uel0,1]

Due to the symmetry of the ODE for ¥ w.r.t. 7, w, and z the same estimate holds for

1y, and .
2. Estimates of ¥y V¥rwy Vrzy Ywws Ywzs V2.. We consider derivatives ¥, and ¥y,

(B.11)

gy = 20 () + (" ()7 4 ()4 ()2 )02+ (a ()7 + 6 () +-¢ ()2 ) o,
Y (052358, w, 2) =0,

Yru = a0 + V@), + (0" )7+ 8" () + ¢ (0)2)vr vy
+ (a’(w)T + b (Y)w + c’(w)z) Yrw, Yrw (05 25 7, w, 2) = 0.

d
du

Writing down the solution explicitly and using the estimates from the previous steps
yields the result.

3. Estimates of ¥rrrs Vrrws Vrrzs Yrwws - - - We consider derivatives .- and ¥y,
and 1/)7'71}2

d
s = 3" ()2 + 30 (W) + 3(a ()T + ' (W)w + ()2 )irtprs

(B.12) + (@) + b @) + " (@)2) e + (a @) + Y () + ¢ (9)2) bror,
Yrrr (05258, w, 2) =0,

(B.13)
i = VW24 Y (e + 20 () 4 2(a ()14 7) 4 () ()2 )t
+ (a" (@) + V@) + " ()2 )uRby + (@ @)7 + 8" @) + ' (6)2) et
+ (@) + V(@) + ()2) brru,
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(B.14)
d
@wm = C,/(w)¢fww + bl’(w)wrwz + a//(¢)¢w1/}z + C'(d})?/fm + b/(¢)¢rz + a,(dj)wwz

+ (a" ) + V@ + " ()2) (Yrtus +rutss + vt

T (@) + 8" @) + ¢ W)2) et + (@ ()7 + V(@0 + ¢ ()2) ra
1/erz(0; T, T, W, Z) = 0.

4. Estlmates Of w-,—q—q—-r, wTTTw’ wTTTZ7 wr‘rwwa LICS
We consider derivatives ¥, ;- and ¥ rrw, and Yrrpw, and Yyt

(B.15)
(f—uz/JTTTT = (Ta(4) (1) + wb™ (1) + z¢@ (w))i/)f_ +6 <7'a'”(1/)) +wb"” () + ZC”’(i/})) V2,
+ (7a () + Wb (8) + 2" (@) (362, + 44br s, )
40" ()62 + 30" (W)rthrr + @/ (D)rrr ) + (70 () + 0l (@) + 20/ (8) ) rrrr

d

@wﬂ"rw = b’"(w)i/ﬁ + b/(d})w‘rﬂ' + 3b”(7/})7/}7'1/)~r7'
+3(a” () a2 + 20" (O)br e + 0 () utbrr + @' (V)brra)
+ (Ta(4) (V) + wb(4)(z/1) + 20(4)(1/1))1/13%,

(B.16)
+3(ra” () + Wb (¥) + 2" (1)) (V2 + Yutirvr)
+ (70" () + Wb’ (V) + 2" (1)) (3brutbrr + Brtbrry + Yutirrr )
+ (7'0,/1/1 +wb'y + zc'd)) Vrrrw
(B.17)
d

g Yrrww = TaW @R +0" ()Y + 40" () Yuthru+20" () un +20 () Yrun
AW + AV () sy + 26 () butrrr + 20 ()
+ (ra (@) + wb® () + 2@ (@) v
+ (" (@) +wb" () + 2" () ) (00 tor + Vb + U
+ (m”(w) +wb” () + zc”(w)) (wiw + 20 Prww + 2w rre + mwww)
+ (v )+ wb () + 2 () ) e

d
(B18) @wrﬂuw = 2a/(w)¢7wz + b/(d))wﬂ'z + C/(q//)d)ﬂ'w

420" () (Wrthu - raths bt ) 40 (0) (200 et ) 4" () (20rru i)
+ Qa/”(w)w-,—’(/)w'(/}z + b’”(l/)szz + C’”(w)i/ﬁ?bw
+ (7a® @) + wb®(w) + 2 () )i
+ (Ta//,(¢) + wb’”(d’) + Zcm(ﬂ})) <1/}72—¢wz + 200 Yrthrs + 20000, + 1/1771,/111;%/12)
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+ (70" () + Wb () + 2" (@) (20rutbrs + 205trs + Vrrtbus + Yrrathy + Yrruth:)

—_

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

+ (Ta/(’l/)) + wb' (Y) + zc’(1/1))¢”wz.
O
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