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FIRST ORDER CONVERGENCE OF WEAK WONG–ZAKAI

APPROXIMATIONS OF LÉVY-DRIVEN MARCUS SDES

For solutions X “ pXtqtPr0,T s of a Lévy-driven Marcus (canonical) stochastic dif-

ferential equation we study the Wong–Zakai type time discrete approximations X̄ “

pX̄khq0ďkďT {h, h ą 0, and establish the first order convergence |ExfpXT q´ExfpXh
T q| ď

Ch for f P C4
b .

1. Introduction

Stochastic differential equations (SDE) driven by Lévy processes belong nowadays to
a standard toolbox of researches working in Physics, Finance, Engineering etc. Under
standard assumptions, a solution X of an SDE is a Markov (Feller) process containing a
continuous diffusive component as well as (infinitely many) jumps which model instant
change of the observable in the phase space.

From the point of view of applications, one often needs to determine averaged quan-
tities of the type ExfpXT q for a fixed deterministic time T ą 0 and a regular test
function f . Calculation of such functionals is equivalent to solving a certain partial
integro-differential equation that can be done by the method finite differences or finite
elements, see, e.g. Cont and Tankov [4, Chapter 12]. In this paper we consider alternative
approximations of ExfpXT q by means of simulation of effective approximations of the
random process X.

The approximation problem for the functionals ExfpXT q for diffusions is nowadays
a classical topic, see Kloeden and Platen [10]. The numerical methods have originated
in the paper by Maruyama [24] who showed that for the Itô SDE dX “ apXqdt `
bpXqdW driven by the Brownian motion, the Euler scheme X̄pk`1qh “ X̄kh`apX̄khqh`

bpX̄khqpWpk`1qh ´Wkhq with the step size h ą 0 converges to XT in L2-sense for each
T ě 0. Milstein [29] and Talay [38] showed that the Euler scheme yields weak convergence
of the order Ophq. Higher order approximation methods can be found in the papers by
Mackevičius [21], Talay [38], Milstein [32], Talay and Tubaro [39], and Bally and Talay
[2] as well as in the monographs by Milstein [30], Kloeden and Platen [10], and Milstein
and Tretyakov [31].

Although the theory for diffusion models is well established, the presence of jumps
typically requires an additional justification.

In various application areas, jumps appear quite naturally. For instance, in finance
jumps can realistically model fluctuation of stock prices. In population biology jump
processes appear as limits of Markov chains. Such models are well described by mul-
tivariate Lévy-driven Itô SDEs of the type dX “ F pXqdL. The weak convergence of
the Euler scheme for SDEs with a jump component of finite intensity was studied by
Mikulevičius and Platen [26], and by Kubilius and Platen [14]. Protter and Talay [34]
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processes; 60H35 Computational methods for stochastic equations.
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established the first order convergence of the Euler scheme in in case of C4
b coefficient

F , a C4
b test function f , and tails of the Lévy measure having finite 8th moments (they

also have results for increasing f ; then more moments are needed). Further analysis was
performed by Jacod et al. in [9]. Liu and Li [20] studied the SDE driven by a Brownian
motion and a Poisson random measure under the assumptions hat all moments of X
are finite. Recently weak approximations for SDEs with Hölder-continuous coefficients
were studied by Mikulevičius and Zhang in [27, 25, 28]. A general class of high order
weak approximation schemes for Lévy-driven Itô SDEs was studied by Kohatsu-Higa and
Tankov [13], Tankov [40], Kohatsu-Higa and Ngo [11], and Kohatsu-Higa et al. [12].

There is however another, mechanical point of view on SDEs with jumps, which orig-
inates in the supposition that both the Brownian motion and the jump component are
convenient mathematical idealizations of smooth real-world processes (e.g. mechanical
motions). This paradigm goes back to Langevin who obtained a random motion of a
heavy particle in a liquid as an integral of a correlated Gaussian velocity process.

It turns out that the idealized diffusion dynamics in such an approach is correctly de-
scribed by the Stratonovich SDEs that can be seen as a limit of random non-autonomous
ordinary differential equations (ODE) in which the Brownian motion is replaced by
its (piece-wise) smooth approximations, the so-called Wong–Zakai approximations, see
Wong and Zakai [41, 42].

In the presence of jumps, the Marcus (canonical) SDEs are extensions of Stratonovich
SDEs for diffusions. As Stratonovich equations, they have a lot of useful properties. For
instance, the change of variables formula for solutions of Marcus SDEs looks like the de-
terministic Newton–Leibniz chain rule. They are also limits of continuous random ODEs
obtained by pathwise approximations of the driving Lévy process by smooth functions
(the Wong–Zakai technique). These properties justify their utilization in Physics and
Engineering, see, e.g. Marcus [22], Di Paola and Falsone [5], Sun et al. [37], Chechkin
and Pavlyukevich [3], Pavlyukevch et al. [33].

Roughly speaking, jumps in the Marcus setting should be understood as idealizations
of very fast motions along certain trajectories determined by the physical parameters of
the system.

Despite of their usefulness in applications, numerical methods for Marcus SDEs are
not well-developed. Some partial results in this direction on the physical level of rigour
were obtained by Li et al. [18, 19].

The goal of this paper is to fill this gap. We will construct an Euler–Maruyama
(Wong–Zakai) type numerical scheme X̄ on a discrete time grid of the size h ą 0, and
establish the first order weak approximations |EfpXT q ´ EfpX̄T q| ď Ch for C4

b -test
functions f . The main difficulty will consist in the treatment of the non-linear jump
dynamics, which involves the analysis of a certain family of non-linear ODEs and makes
the approximation problem very different to the Itô case.
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ics at the University of Potsdam and the Institute of Mathematics of National Academy
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2. Setting and the main result

On a filtered probability space pΩ,F ,F,Pq satisfying the usual hypotheses consider an
m-dimensional Brownian motion W and an independent m-dimensional pure jump Lévy
process Z with a characteristic triplet p0, 0, νq. The Lévy process Z has the Lévy–Itô
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decomposition

(2.1) Zt “

ż t

0

ż

}z}ď1

z Ñpds,dzq `

ż t

0

ż

}z}ą1

z Npds,dzq,

where N is the Poisson random measure on R`ˆRm with the intensity measure dt¨νpdzq,

and Ñ is the compensated Poisson random measure. The theory of Lévy processes is a
classical topic nowadays, we refer the reader to e.g. Sato [36] and Applebaum [1].

For d ě 1, consider a vector-valued function

(2.2) apxq “

¨

˚

˝

a1pxq,
...

adpxq

˛

‹

‚

,

and matrix-valued functions

(2.3) bpxq “

¨

˚

˝

b11pxq ¨ ¨ ¨ b1mpxq
...

. . .
...

bd1pxq ¨ ¨ ¨ bdmpxq

˛

‹

‚

, cpxq “

¨

˚

˝

c11pxq ¨ ¨ ¨ c1mpxq
...

. . .
...

cd1pxq ¨ ¨ ¨ cdmpxq

˛

‹

‚

,

and denote

(2.4) cipxq “
`

ci1pxq, . . . , c
i
mpxq

˘

the i-th row of the matrix cpxq, i “ 1, . . . , d.
In this paper we will work with a Marcus (canonical) SDE

(2.5) Xt “ X0 `

ż t

0

apXsqds`

ż t

0

bpXsq ˝ dWs `

ż t

0

cpXsq ˛ dZs, t ě 0.

Canonical SDEs were introduced by Marcus [22] with the aim to construct jump-diffusions
which at least formally obey the rules of ordinary calculus. It is well known that the
chain rule for a solution of a Stratonovich SDE dXt “ bpXtq ˝ dWt coincides with the

Newton–Leibniz formula fpXtq “ fpX0q`
şt

0
f 1pXsqbpXsq˝dWs, f P C

2pR,Rq, where the
latter integral has to be understood as the the stochastic Stratonovich integral, see, e.g.
Protter [35, Chapter V.5]. To extend such a property to the jump case, one has to define
the jumps of the process solution X of (2.5) properly. In the case of Marcus prescription,
the jump ∆Xt “ Xt ´Xt´ is obtained as a result of an infinitely fast motion along the
integral curve of the vector field cp¨q∆Zt. Indeed, for each z P supp ν Ď Rm, consider a
non-linear ordinary differential equation

(2.6)

$

&

%

d

du
φzpu;xq “ cpφzpu;xqqz

φzp0;xq “ x, u P r0, 1s,

and define the so-called Marcus flow

(2.7) φzpxq :“ φzp1;xq.

Then by definition one sets ∆Xt “ φ∆ZtpXt´q´Xt´. To make the construction rigorous,
it is convenient to rewrite (2.5) as an Itô SDE driven by a Brownian motion and a Poisson
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random measure. Written in the coordinates, it takes the form

(2.8)

Xi
t “ xi `

ż t

0

aipXsqds

`

m
ÿ

j“1

ż t

0

bijpXsqdW j
s `

1

2

m
ÿ

j“1

d
ÿ

l“1

ż t

0

B

Bxl
bijpXsqb

l
jpXsqds

`

ż t

0

ż

}z}ď1

´

φzpXs´q ´Xs´

¯i

Ñpdz,drq

`

ż t

0

ż

}z}ď1

´

φzpXsq ´Xs ´ cpXsqz
¯i

νpdzqdr

`

ż t

0

ż

}z}ą1

´

φzpXs´q ´Xs´

¯i

Npdz,drq, i “ 1, . . . , d.

For a complete account on Marcus SDEs see the works by Marcus [22, 23], Kurtz et

al. [17], Kunita [16], and Applebaum [1]. Note that the Marcus integral
şt

0
cpXsq ˛ dZs

cannot be represented as a limit of Riemannian sums (opposite to the Itô or Stratonovich
integrals), so that the SDE (2.5) should be understood via its Itô representation (2.8).

Lévy-driven Marcus SDEs possess a lot of useful properties. For instance, under
sufficient smoothness assumptions on the coefficients a, b, and c, the their solutions forms
flows of stochastic diffeomorphisms, see Fujiwara and Kunita [7]. Due to the coordinate
free construction of the jump part and the Stratonovich diffusion part, Marcus SDEs can
be defined on manifolds, see Fujiwara [6].

Finally, one can approximate solutions of Marcus SDEs by solutions of continuous
random ordinary differential equations (ODEs) (the so-called Wong–Zakai approxima-
tions). For a time step h ą 0, let us approximate W and Z by polygonal curves with
knots at tkh,Wkhukě0 and tkh, Zkhukě0 respectively. Namely, we define the piece-wise
linear random processes

(2.9)
Wh
t “Wkh `

t´ kh

h

´

Wpk`1qh ´Wkh

¯

, t P rkh, pk ` 1qhq, k ě 0,

Zht “ Zkh `
t´ kh

h

´

Zpk`1qh ´ Zkh

¯

, t P rkh, pk ` 1qhq, k ě 0,

and consider a family of random ODEs

(2.10) X̄h
t “ x`

ż t

0

´

apX̄h
s q ` bpX̄

h
s q

9Wh
s ` cpX̄

h
s q

9Zhs

¯

ds, t ě 0.

It is well known (see, e.g. Marcus [22] and Kunita [15]) that the approximations X̄h

converge to X as hÑ 0 in the sense of convergence of finite dimensional distributions.
In this paper we present a weak numerical scheme for (2.5) based on the Wong–Zakai

approximations (2.10).
For f : Rd ÞÑ R we will use the uniform norm

(2.11) }f} “ sup
xPRd

|fpxq|.

For x P Rd (and Rm), we will work with the Euclidian norm }x} “ px2
1`¨ ¨ ¨`x

2
dq

1{2. For
a function f : Rd Ñ R denote by Bαf its partial derivative corresponding to a multiindex
α. Let Dcpxq be the gradient tensor of the mapping x ÞÑ cpxq. For each x P Rd, we
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consider it as a linear operator Dcpxq : Rm Ñ Rdˆd given by

(2.12) Dcpxqz “

¨

˚

˚

˚

˚

˝

B

Bx1
xc1pxq, zy ¨ ¨ ¨

B

Bxd
xc1pxq, zy

...
. . .

...
B

Bx1
xcdpxq, zy ¨ ¨ ¨

B

Bxd
xcdpxq, zy

˛

‹

‹

‹

‹

‚

and define

(2.13) }Dcpxq} “ sup
}z}ď1

}Dcpxqz},

Also let

(2.14) }Dc} “ sup
xPRd

}Dcpxqz}.

For practical needs it is sometimes convenient to use the maximum entry norm of the
gradient tensor:

(2.15) }Dc}e “ max
1ďi,kďd
1ďjďm

›

›

›

B

Bxk
cijpxq

›

›

›
.

Then we have

(2.16) }Dcpxqz} ď }Dc} ¨ }z} ď d
?
m ¨ }Dc}e ¨ }z}.

In this paper we make the following assumptions on the coefficients a, b and c.

Ha,b,c:
(2.17)
a P C4pRd,Rdq and }Bαai} ă 8, 1 ď i ď d, 1 ď |α| ď 4;

b P C4pRd,Rdˆmq and }Bαbij} ă 8, 1 ď i ď d, 1 ď j ď m, 1 ď |α| ď 4,

}bij ¨ B
αbkl } ă 8, 1 ď i, k ď d, 1 ď j, l ď m, 2 ď |α| ď 4;

c P C4pRd,Rdˆmq and }Bαcij} ă 8, 1 ď i ď d, 1 ď j ď m, 1 ď |α| ď 4,

}cij ¨ B
αckl } ă 8, 1 ď i, k ď d, 1 ď j, l ď m, 2 ď |α| ď 4.

Under these conditions there is a unique global solution φz of (2.6) whose properties are
studied in Appendix A.

We recall now the definition (2.9) of the processes Wh and Zh and introduce the
discrete time scheme X̄ “ pX̄khqkě0 as follows.

For τ ě 0, w, z P Rm, consider the ordinary differential equation

(2.18)

d

du
ψpuq “ apψpuqqτ ` bpψpuqqw ` cpψpuqqz,

ψp0q “ x, u P r0, 1s,

which has a unique global solution under assumptions Ha,b,c. Let

(2.19) ψpxq “ ψpx; τ, w, zq :“ ψp1;x, τ, w, zq.

The properties of the mapping ψ are studied in Appendix B.
For x P R and the time step h ą 0, consider the non-linear Euler type scheme

(2.20)
X̄0 “ x,

X̄pk`1qh “ ψpX̄kh;h,Wpk`1qh ´Wkh, Zpk`1qh ´ Zkhq, k ě 0.

The goal of this paper is to establish the weak convergence rate of this numerical scheme.
It is assumed that the increments of the Brownian motion and of the pure jump process
Z can be simulated exactly. We also do not take into account numerical errors which
may arise while solving the ODE (2.18).
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Now we formulate further assumptions and the main result of this paper.

Hν : Assume that the tails of the Lévy measure ν satisfy

(2.21)

ż

}z}ą1

}z}3 ¨ e8}Dc}¨}z} νpdzq ă 8.

In view of (2.16), Assumption Hν is guaranteed by the following condition which is easier
to verify in practice.

H1
ν :

(2.22)

ż

}z}ą1

}z}3 ¨ e8d
?
m¨}Dc}e¨}z} νpdzq ă 8.

Theorem 2.1. Assume that conditions Ha,b,c and Hν hold true. Then for any T ą 0,
there is a constant CT such that for any x P R the following holds.
1. There is a unique strong solution X “ pXtqtPr0,T s such that

(2.23) Ex sup
tPr0,T s

}Xt}
4 ď CT p1` }x}

4q.

2. For any h ą 0, the numerical scheme tX̄khu0ďkhďT satisfies

(2.24) Ex sup
0ďkhďT

}X̄kh}
4 ď CT p1` }x}

4q.

Proof. See Section 4. �

The following result is interesting on its own. Assume
H∇φ,ν :

(2.25)

ż

|z|ą1

}∇xφ
z}4 νpdzq ă 8,

ż

|z|ą1

}∇2
xφ

z}2 νpdzq ă 8,

ż

|z|ą1

}∇3
xφ

z}4{3 νpdzq ă 8,

ż

|z|ą1

}∇4
xφ

z} νpdzq ă 8.

Theorem 2.2. Under conditions Ha,b,c and H∇φ,ν , for any f P C4
b , any T ą 0, there

is C ą 0 such that for each x P Rd, t P r0, T s and any multiindex α

(2.26) }BαExfpXtq} ď C, 1 ď |α| ď 4.

Proof. See Section 7. �

Remark 2.3. Under assumptions Ha,b,c, it follows from Lemma A.2 that Hν implies
H∇φ,ν .

The main result of this paper is the first order weak convergence rate of the Euler
type (Wong–Zakai) scheme (2.20).

Theorem 2.4. Let conditions Ha,b,c and Hν hold true. Then for any f P C4
b pR,Rq and

any T ą 0 there is a constant C “ CpT, fq such that for any n P N and h ą 0 such that
nh ď T

(2.27) |ExfpXnhq ´ExfpX̄nhq| ď C ¨ nh2 ¨ p1` }x}4q, x P Rd.

The proof of this theorem will be given in the following Sections.

Eventually we comment on conditions Ha,b,c and Hν , and the applicability of the
numerical scheme.
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Remark 2.5. Conditions Ha,b,c are less restrictive than the assumptions in Protter and
Talay [34] and Jacod et al. [9] where the coefficients of the SDE are C4

b or smoother.

Remark 2.6. Assumption Hν (or H1
ν) requires existence of exponential moments of

the Lévy measure ν and looks more restrictive than the assumptions in [34] and [9]
where existence of high absolute moments (up to the 32-th or higher ones) is demanded.
Exponential moments appear due to the non-linear nature of the Marcus ODE (2.6).
Recall that the jump size of an Itô SDE dXt “ cpXt´qdZt is ∆Xt “ cpXt´q∆Zt and
hence is a linear function of ∆Zt. On the contrary, the jump size of the Marcus SDE
dXt “ cpXtq˛dZt equals to ∆Xt “ φ∆ZtpXt´q´Xt´ and is determined by the non-linear
ODE (2.6). The best generic estimate for the size of this jump is given by the Gronwall
inequality. Hence exponential moments in the Marcus case serve as a natural analog of
the conventional moments in the Itô scheme. For instance, assumptions Hν and H1

ν are
always satisfied for a Lévy process Z with bounded jumps.

In particular cases one can find less restrictive assumptions on the moments of the
Lévy measure. For instance one can show that in dimensions d “ m “ 1 for the equation
dXt “ apXtqdt`bpXtq˝dWt`MXt ˛dZt, with a, b P C4

b and M ą 0, convergence (2.27)
holds for any spectrally negative Lévy process Z with νpp0,`8qq “ 0, and in particular
for a spectrally negative stable Lévy process. However we were not able to find similar
tractable sufficient conditions for convergence in general, especially in the multivariate
case.

Remark 2.7. The scheme (2.20) employs realizations of the increments of the Lévy jump
process Z. The list of infinitely divisible distributions which can be simulated explicitly
is rather short and includes α-stable laws, Gamma and variance Gamma distributions,
as well as inverse Gaussian. We refer the reader to Protter and Talay [34, Section 3]
and Cont and Tankov [4, Section II.6] for more information on this subject and the
description of the corresponding numerical algorithms.

For the reader’s convenience, in the following Sections 4–7 as well as in the Appen-
dices A and B we assume that d “ m “ 1. In the proof we will not use any of the
geometrical advantages of the one-dimensional setting and make this assumption just in
order to simplify the notation significantly. The technical difficulties lie not in the higher
dimensions of the state space but in the analysis of the interplay of the terms dt, ˝ dW
and ˛ dZ with the corresponding terms in the approximation scheme (2.20). From this
point of view, we are in a setting of a scalar equation driven by a three-dimensional Lévy
process pt,Wt, Ztq.

3. Numerical illustration

In this Section we give a numerical illustration to Theorem 2.4. Consider a Marcus
SDE

(3.1) dXt “ dt`Xt ˛ dZt

with the coefficients apxq ” 1, bpxq ” 0 and cpxq ” x. The Lévy process Z is a compound
Poisson process with the symmetric Lévy measure

(3.2) νpdzq “
λ

2β
¨ e´|z|{β dz, λ ą 0, β ą 0,

i.e. the jumps of Z are Laplace-distributed with the parameter β. To satisfy assumption
Hν we assume that β “ 0.1. We set the jump intensity λ “ 100.

We calculate the expected value ExfpX1q for the function fpxq “ 103 sinp10´3xq for
different values of x P r´1, 1s. Since maxxPr´20,20s |fpxq ´ x| ď 0.0015, ExfpX1q can be
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seen as a good approximation of the reference mean value ExX1. The generator of X is

(3.3) Lfpxq “ f 1pxq `

ż

R

´

fpxezq ´ fpxq
¯

νpdzq, f P C1pR,Rq,

and a straightforward application of the Dynkin formula yields the explicit formula for
the mean value

(3.4) ExXt “ xeρt `
eρt ´ 1

ρ
, ρ “

λβ2

1´ β2
, t ě 0.

Analogously one can calculate the second moment ExX
2
t and the variance of Xt but we

omit here the explicit cumbersome formulae.
Denoting 0 ă τ1 ă ¨ ¨ ¨ ă τN ă 1 the jump times of Z, and J1, . . . , JN the iid Laplace-

distributed jump sizes, we solve equation (3.1) explicitly as

(3.5)

Xt “ x` t, t P r0, τ1q,

Xτ1 “ Xτ1´eJ1 ,

Xt “ Xτ1 ` t´ τ1, t P rτ1, τ2q,

. . .

XτN “ XτN´eJN ,

Xt “ XτN ` t´ τN , t P rτN , 1s.

The scheme (3.5) is exact and can be easily realized on the computer. To estimate
ExfpX1q we simulate n “ 105 independent samples tZpkqu1ďkďn of the paths of the
Lévy process Z “ pZtqtPr0,1s and approximate the mean value by the empirical mean

(3.6) ExfpX1q « xfpX1qy :“
1

n

n
ÿ

k“1

fpX
pkq
1 q,

where Xpkq is the solution of (3.1) driven by the process Zpkq.
Furthermore, for the step size h ą 0, we employ the numerical scheme (2.20), which

in our particular case has the form

(3.7)
X̄h

0 “ x,

X̄h
pk`1qh “ ψpX̄h

kh, h, Zpk`1qh ´ Zkhq,

where

(3.8) ψpx, h, zq “

$

&

%

ezx`
ez ´ 1

z
h, z ‰ 0,

x` h, z “ 0.

For the values h “ 0.1 and h “ 0.01 we also approximate

(3.9) ExfpX̄
h
1 q « xfpX̄

h
1 qy :“

1

n

n
ÿ

k“1

fpX̄
h,pkq
1 q,

where X̄h,pkq is the Wong–Zakai approximation of (3.1) driven by the process Zpkq.
The results of the reference values and the numerical simulations are presented in

Table 1. Figure 1 contains sample paths of the Lévy process Z and its Wong–Zakai
approximations Zh as well as sample paths of the process X and its Wong–Zakai approx-
imations X̄h. One can clearly observe that the approximation error increases mainly due
to large jumps of Z.
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x ExX1

a

Varx X1 n´1{2
a

Varx X1 xfpX1qy xfpX̄h
1 qy, h “ 0.1 xfpX̄h

1 qy, h “ 0.01

´1.0 ´1.0175 5.5349 0.0175 ´0.9950 ´1.0486 ´1.0154

´0.5 0.3555 2.2352 0.0071 0.3550 0.3176 0.3578

0.0 1.7284 2.3608 0.0075 1.7160 1.7054 1.7206

0.5 3.1014 5.8848 0.0186 3.0935 3.0701 3.1157

1.0 4.4743 9.6005 0.0304 4.4769 4.4452 4.4931

Table 1. The results of the numerical simulations for the equation (3.1)
for λ “ 100, β “ 0.1, n “ 105.

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

Z

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

X

Figure 1. Left: a sample path of the Lévy process Z (bold line) and
its Wong–Zakai approximations Zh for h “ 0.1 (dot-dashed line) and
h “ 0.01 (dashed line), see (2.9). Right: the corresponding sample path
of the solution of the Marcus SDE X (bold line) and its Wong–Zakai
approximations X̄h for h “ 0.1 (dot-dashed line) and h “ 0.01 (dashed
line), see (2.10).

4. Proof of Theorem 2.1

Proof. 1. We denote

(4.1) a˛pxq “ apxq `
1

2
b1pxqbpxq `

ż

|z|ď1

´

φzpxq ´ x´ cpxqz
¯

νpdzq

`

ż

|z|ą1

´

φzpxq ´ x
¯

νpdzq

and write (2.8) in dimension 1 as

(4.2) Xt “ X0 `

ż t

0

a˛pXsqds`

ż t

0

bpXsqdWs `

ż t

0

ż

R

´

φzpXs´q ´Xs´

¯

Ñpds,dzq

Due to Lemmas A.1 and A.2, the drift a˛ is a Lipschitz continuous function, and since

(4.3) |φzpxq ´ x| ď Cp1` |x|q|z|Ip|z| ď 1q ` |x|p1` e}c
1
}¨|z|qIp|z| ą 1q

and
(4.4)

|φzpxq ´ x´ φzpyq ` y| ď C|x´ y| ¨ |z| ¨ Ip|z| ď 1q ` |x´ y|p1` e}c
1
}¨|z|qIp|z| ą 1q,

existence and uniqueness of the strong solution X with a finite fourth moment follows,
e.g. from [16, Theorem 3.1].

2. The discrete time scheme X̄ “ pX̄khqkě0 can be transformed to a continuous time
process tX̄tutě0 by taking

(4.5) X̄t “ ψpX̄kh;h,Wt ´Wkh, Zt ´ Zkhq, t P rkh, pk ` 1qhq.
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Then, using the Itô formula on the time interval rkh, pk ` 1qhs and taking into account
condition Hν and the properties of the mapping ψ and its derivatives (see Lemma B.1),
it is easy to show that

(4.6) ExX̄
4
pk`1qh ´ExX̄

4
kh ď Ch

´

1`ExX̄
4
kh

¯

, k ě 0

with some constant C which does not depend on k. This gives

(4.7) 1`ExX̄
4
kh ď p1` Chq

kp1` x4q, k ě 0,

which proves (2.24). �

5. One-step estimates

Theorem 5.1. For any f P C4
b there is a constant C ą 0 such that for any h ą 0 and

x P R

(5.1)
ˇ

ˇ

ˇ
ExfpXhq ´ExfpX̄hq

ˇ

ˇ

ˇ
ď Ch2p1` x4q

The proof of this Theorem will be given in Section 5.2 after necessary preparations
made in the next Section.

5.1. Bounded jumps estimates. Consider the pure jump Lévy process

(5.2) Z̃t “

ż t

0

ż

|z|ď1

z Ñpdz,dsq,

which is a zero mean Lévy process with |∆Z̃t| ď 1. We denote by X̃ the solution of the
SDE

(5.3)

X̃t “ x`

ż t

0

apX̃sqds`

ż t

0

bpX̃sq ˝ dWs `

ż t

0

cpX̃sq ˛ dZ̃s

“

ż t

0

ãpX̃sqds`

ż t

0

bpX̃sqdWs `

ż t

0

ż

|z|ď1

´

φzpX̃s´q ´ X̃s´

¯

Ñpds,dzq

where we denote the effective drift by

(5.4) ãpxq “ apxq `
1

2
b1pxqbpxq `

ż

|z|ď1

´

φzpxq ´ x´ cpxqz
¯

νpdzq.

We also introduce for convenience the Stratonovich diffusion correction term

(5.5) åpxq “ apxq `
1

2
b1pxqbpxq.

Note that due to Lemma A.1, |ãpxq|, |̊apxq| ď Cp1` |x|q and ã1, å1 P C3
b pR,Rq.

Lemma 5.2. Assume that conditions Ha,b,c hold true. Then for any T ą 0, any x P R
there is a unique strong solution X̃ “ pX̃tqtPr0,T s. Moreover for each p ě 1 and T ą 0
there is a constant KT,p ą 0 such that

(5.6) Ex sup
tPr0,T s

|X̃t|
p ď KT,pp1` |x|

pq, x P R.

Proof. The proof is the same as in Theorem 2.1 with no conditions on big jumps |z| ą
1. �

The process X̃ is a strong Markov process with the generator
(5.7)

L̃fpxq “ åpxqf 1pxq `
1

2
b2pxqf2pxq `

ż

|z|ď1

´

fpφzpxqq ´ fpxq ´ f 1pxqcpxqz
¯

νpdzq, f P C2
c pR,Rq.
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Lemma 5.3. There is a constant C ą 0 such that for each f P C2pR,Rq with bounded
first and second derivatives

(5.8) |L̃fpxq| ď C
´

}f 1} ` }f2}
¯

p1` x2q, x P R.

Proof. Taking into account the linear growth condition for å and b we get for some C ą 0

(5.9)
ˇ

ˇ

ˇ̊
apxqf 1pxq `

1

2
b2pxqf2pxq

ˇ

ˇ

ˇ
ď C}f 1}p1` |x|q ` C}f2}p1` x2q.

To estimate the integral term in (5.7) we note that

(5.10) fpφzpxqq ´ fpxq ´ f 1pxqcpxqz “ z2

ż 1

0

ż s

0

´

f2c2 ` f 1cc1
¯

pφzpu;xqq duds,

and Lemma A.1 yields

(5.11)

ˇ

ˇ

ˇ

ż

|z|ď1

´

fpφzpxqq ´ fpxq ´ f 1pxqcpxqz
¯

νpdzq
ˇ

ˇ

ˇ
ď Cp}f2} ` }f 1}qp1` x2q.

�

Lemma 5.4. Let f P C4
b pR,Rq. Then there is a constant C ą 0 such that for all x P R

(5.12) |L̃L̃fpxq| ď Cp1` x4q.

Proof. Denote Gpxq :“ L̃fpxq.
Then

(5.13) pL̃L̃fqpxq “ pL̃Gqpxq “ åpxqG1pxq `
1

2
b2pxqG2pxq

`

ż

|z|ď1

´

Gpφzpxqq ´Gpxq ´G1pxqcpxqz
¯

νpdzq.

We will show that |G1pxq| ď Cp1` x2q, |G2pxq| ď Cp1` x2q and

(5.14)

ˇ

ˇ

ˇ

ż

|z|ď1

´

Gpφzpxqq ´Gpxq ´G1pxqcpxqz
¯

νpdzq
ˇ

ˇ

ˇ
ď Cp1` x4q.

1. The first derivative G1. We have

(5.15) G1pxq “ å1pxqf 1pxq `
´

åpxq ` bb1pxq
¯

f2pxq `
1

2
b2pxqf3pxq

`

ż

|z|ď1

´

f 1pφzpxqqφzxpxq ´ f
2pxqcpxqz ´ f 1pxqc1pxqz ´ f 1pxq

¯

νpdzq

“ pL̃f 1qpxq`å1pxqf 1pxq`bb1pxqf2pxq`

ż

|z|ď1

´

f 1pφzpxqq
`

φzxpxq´1
˘

´f 1pxqc1pxqz
¯

νpdzq.

The term L̃f 1 is estimated by Lemma 5.3 by Cp1 ` x2q, the term å1pxqf 1pxq by C and
the term bb1f2 by Cp1` |x|q. To estimate the integral term, we use Lemma A.1 to get
(5.16)
f 1pφzpxqq

`

φzxpxq ´ 1
˘

´ f 1pxqc1pxqz “ f 1pφzpxqq
`

c1pxqz ` ϕxp1;x, zq
˘

´ f 1pxqc1pxqz

“ c1pxqz2

ż 1

0

pf 1cqpφzps;xqq ds` f 1pφzpxqqϕxp1;x, zq

Taking into account the bounds from Lemma A.1 we conclude that the integral term is
estimated by Cp1` |x|q and eventually

(5.17) |G1pxq| ď Cp1` x2q.
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2. The second derivative G2. Straightforward differentiation yields

(5.18) G2pxq “ å2pxqf 1pxq `
´

2̊a1pxq ` pbpxqb1pxqq1
¯

f2pxq `
´

åpxq ` 2bpxqb1pxq
¯

f3pxq

`
1

2
b2pxqf4pxq `

ż

|z|ď1

´

f2pφzpxqqpφzxpxqq
2 ` f 1pφzpxqqφzxxpxq

´ zf 1pxqc2pxq ´ f2pxqp1` 2zc1pxqq ´ zf3pxqcpxq
¯

νpdzq.

Recalling that

(5.19) pL̃f2qpxq “ åpxqf3pxq `
1

2
b2pxqf p4qpxq

`

ż

|z|ď1

´

f2pφpx, zqq ´ f2pxq ´ f3pxqcpxqz
¯

νpdzq

we can rewrite

(5.20)

G2pxq “ pL̃f2qpxq ` å2pxqf 1pxq `
´

2̊a1pxq ` pbpxqb1pxqq1
¯

f2pxq ` 2bpxqb1pxqf3pxq

`

ż

|z|ď1

´

f2pφzpxqq
´

φzxpxq
2´1

¯

`f 1pφzpxqqφzxxpxq´zf
1pxqc2pxq´2zf2pxqc1pxq

¯

νpdzq.

The first line of the previous formula is bounded by Cp1`x2q. We estimate the integrand
in its second line similarly to (5.16) with the help of Lemma A.1. Denote for brevity
ϕx “ ϕxp1;x, zq, ϕxx “ ϕxxp1;x, zq. Then

(5.21)

f2pφzpxqq
´

φzxpxq
2 ´ 1

¯

` f 1pφzpxqqφzxxpxq ´ zf
1pxqc2pxq ´ 2zf2pxqc1pxq

“ f2pφzpxqq
´

c1pxq2z2 ` ϕ2
x ` 2c1pxqz ` 2c1pxqzϕx ` 2ϕx

¯

` f 1pφzpxqq
´

c2pxqz ` ϕxx

¯

´ zf 1pxqc2pxq ´ 2zf2pxqc1pxq

“ 2zc1pxq
´

f2pφzpxqq ´ f2pxq
¯

` zc2pxq
´

f 1pφzpxqq ´ f 1pxq
¯

` f2pφzpxqq
´

c1pxq2z2 ` ϕ2
x ` 2c1pxqzϕx ` 2ϕx

¯

` f 1pφzpxqqϕxx

“ 2z2c1pxq

ż 1

0

pf3cqpφzps;xqqds` z2c2pxq

ż 1

0

pf 1cqpφzps;xqqds

` f2pφzpxqq
´

c1pxq2z2 ` ϕ2
x ` 2c1pxqzϕx ` 2ϕx

¯

` f 1pφzpxqqϕxx,

and hence the integral term in (5.20) is bounded by Cp1` |x|q. Eventually

(5.22) |G2pxq| ď Cp1` x2q.

3. The integral term of the generator. For Gpxq :“ L̃fpxq we recall (5.10), (5.17), (5.22),
and the estimate sup|z|ď1 |φ

zpxq| ď Cp1` |x|q, to get

(5.23)

ˇ

ˇ

ˇ

ż

|z|ď1

´

Gpφzpxqq ´Gpxq ´G1pxqcpxqz
¯

νpdzq
ˇ

ˇ

ˇ
ď Cp1` x4q.

�

For the function ψ “ ψpx; τ, w, zq defined in (2.18) and (2.19), we introduce the process

(5.24) Yt “ ψpx; t,Wt, Z̃tq, t P r0, hs.
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Since ψp¨; ¨, ¨, ¨q P C4pR4,Rq, the Itô formula implies that Y is an Itô process and

(5.25) ExfpYtq “ fpxq `

ż t

0

EQfpψpx; s,Ws, Z̃sqq ds, f P C2
c pR,Rq,

with the generator

(5.26) Qgpτ, w, zq “ gτ pτ, w, zq `
1

2
gwwpτ, w, zq

`

ż

|ξ|ď1

´

gpτ, w, z ` ξq ´ gpτ, w, zq ´ gzpτ, w, zq ¨ ξ
¯

νpdξq,

defined on smooth real-valued functions gpτ, w, zq.

Lemma 5.5. Let f P C2
b pR,Rq. Then

(5.27) L̃fpxq “ Qfpψpx; 0, 0, 0qq.

Proof. For each x P R, applying (5.26) to gpτ, w, zq :“ f ˝ ψpx; τ, w, zq we get

(5.28) Qfpψpx; τ, w, zqq “ f 1pψpx; τ, w, zqqψτ px; τ, w, zq

`
1

2
f2pψpx; τ, w, zqq ¨ pψwpx; τ, w, zqq2 `

1

2
f 1pψpx; τ, w, zqqψwwpx; τ, w, zqqq

`

ż

|ξ|ď1

´

fpψpx; τ, w, z`ξqq´fpψpx; τ, w, zqq´f 1pψpx; τ, w, zqqψzpx; τ, w, zq ¨ξ
¯

νpdξq.

Recalling that ψpx; 0, 0, zq “ φzpxq and ψpx; 0, 0, 0q “ x, and taking into account the
formulae from Lemma B.1 we find that

(5.29)

ψτ px; 0, 0, 0q “ apxq,

ψwpx; 0, 0, 0q “ bpxq,

ψwwpx; 0, 0, 0q “ bb1pxq,

ψzpx; 0, 0, 0q “ cpxq,

and hence we get (5.27). �

Lemma 5.6. Let f P C4
b pR,Rq. Then there is a constant C ą 0 such that for any τ ě 0,

w P R, z P R and x P R

(5.30) |QQfpψpx; τ, w, zqq| ď Cp1` x4q ¨ eCpτ`|w|`|z|q.

Proof. Denoting for brevity where it is possible ψ “ ψpx; τ, w, zq “ ψpτ, w, zq or adopting
when necessary the notation ψpzq :“ ψpx; τ, w, zq, we apply the formula (5.28) to a C4

b -
function f to get

(5.31) Qfpψpτ, w, zqq “ f 1pψqψτ `
1

2
f2pψq ¨ ψ2

w `
1

2
f 1pψqψww

`

ż

|ξ|ď1

´

fpψpz ` ξqq ´ fpψpzqq ´ f 1pψpzqqψzpzq ¨ ξ
¯

νpdξq

“ f 1pψqψτ `
1

2
f2pψq ¨ ψ2

w `
1

2
f 1pψqψww `

ż

|ξ|ď1

ξ2

ż 1

0

Bzzfpψpz ` ξθqqp1´ θqdθ νpdξq.

With the help of (5.26) we calculate

(5.32) Q2fpψpτ, w, zqq “ BτQfpψq `
1

2
B2
wwQfpψq

`

ż

|ξ|ď1

´

Qfpψpz ` ξqq ´Qfpψpzqq ´ BzQfpψpzqq ¨ ξ
¯

νpdξq
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“ BτQfpψq `
1

2
B2
wwQfpψq `

ż

|ξ|ď1

ξ2

ż 1

0

BzzQfpψpz ` θξqqp1´ θqdθ νpdξq.

We estimate the summands in (5.32).
1. BτQf . First, we write
(5.33)
BτQfpψpτ, w, zqq “ f2pψqψ2

τ ` f
1pψqψττ

`
1

2

´

f3pψq ¨ ψτ ¨ pψwq
2 ` 2f2pψq ¨ ψw ¨ ψτw ` f

2pψq ¨ ψτ ¨ ψww ` f
1pψq ¨ ψτww

¯

`

ż

|ξ|ď1

ξ2

ż 1

0

Bτzzfpψpz ` ξθqqp1´ θqdθ νpdξq,

where for the integral term we get

(5.34) Bτzzfpψpτ, w, zqq “ f3pψqψτψ
2
z ` f

2pψqψτψzz ` 2f2pψqψτzψτ ` f
1pψqψτzz.

Hence in view of Lemma B.1

(5.35) |BτQfpψpτ, w, zqq| ď Cp1` |x|3q ¨ p1` τ ` |w| ` |z|q2 ¨ eCpτ`|w|`|z|q.

2. BwwQf . Analogously

(5.36)

BwwQfpψq “ f3pψqψτψ
2
w ` 2f2pψqψτwψw ` f

2pψqψτψww

` f 1pψqψτww `
1

2
f p4qpψqψ4

w ` 3f3pψqψ2
wψww

`
3

2
f2pψqψ2

ww ` 2f2pψqψwψwww `
1

2
f 1pψqψwwww

`

ż

|ξ|ď1

ξ2

ż 1

0

Bwwzzfpψpz ` ξθqqp1´ θqdθ νpdξq,

where for the integral term we calculate
(5.37)

Bwwzzfpψq “ f p4qpψqψ2
wψ

2
z

` f3pψqψwwψ
2
z ` 4f3pψqψwψwzψz ` f

3pψqψ2
wψzz

` 2f2pψqψwψwzz ` 2f2pψqψ2
wz ` pf

1pψq ` f2pψqqψwwψzz ` 2f2pψqψwwzψz,

which yields

(5.38) |BwwQfpψpτ, w, zqq| ď Cp1` x4q ¨ p1` τ ` |w| ` |z|q2 ¨ eCpτ`|w|`|z|q.

3. BzzQf . We determine the derivatives
(5.39)

Bzz

´

f 1pψqψτ `
1

2
f2pψq ¨ ψ2

w `
1

2
f 1pψqψww

¯

“ f 1pψqψτψzz ` f
2pψqψτψ

2
z ` pf

1pψq ` f2pψqqψτzψz ` f
1pψqψτzz

`
1

2
f p4qpψqψ2

wψ
2
z ` 2f3pψqψwψzψwz `

1

2
f3pψqψ2

wψzz ` f
2pψqψ2

wz ` f
2pψqψwψwzz

`
1

2
f3pψqψ2

zψww ` f
2pψqψzψwwz `

1

2
ψ2pψqψwwψzz `

1

2
f 1pψqψwwzz,

and
(5.40)

Bzzzzfpψq “ f p4qpψqψ4
z ` 6f3pψqψ2

zψzz ` 3f2pψqψ2
zz ` 4f2pψqψzψzzz ` f

1pψqψzzzz

and apply Lemma B.1 to get

(5.41) |BzzQfpψpx; t, w, zqq| ď Cp1` x4q ¨ p1` τ ` |w| ` |z|q3 ¨ eCpτ`|w|`|z|q.

�



46 TETYANA KOSENKOVA, ALEXEI KULIK, AND ILYA PAVLYUKEVICH

Lemma 5.7. For any f P C4
b pR,Rq there is a constant C ą 0 such that for any h ě 0

and any x P R
(5.42) |ExfpX̃hq ´Exfpψpx;h,Wh, Z̃hqq| ď Cp1` x4qh2.

Proof. Applying the Itô formula twice we get

(5.43)

ExfpX̃hq ´Exfpψpx;h,Wh, Z̃hqq “

ż h

0

ExL̃fpX̃sqds´

ż h

0

ExQfpψpx; s,Ws, Z̃sqqds

“ hL̃fpxq ´ hQfpψpx; 0, 0, 0qq

`

ż h

0

ż s

0

ExL̃L̃fpX̃rqdr ds´

ż h

0

ż s

0

EQQfpψpx; r,Wr, Z̃rqqdr ds,

and hence by Lemma 5.5 and Hölder’s inequality for any p ą 1

(5.44)
ˇ

ˇ

ˇ
ExfpX̃hq ´Exfpψpx;h,Wh, Z̃hqq

ˇ

ˇ

ˇ

ď h2 sup
rPr0,hs

Ex|L̃L̃fpX̃rq| ` h
2 sup
rPr0,hs

E|QQfpψpx; r,Wr, Z̃rqq|

ď Ch2
´

1` sup
rPr0,hs

Ex|X̃r|
4
¯

` Ch2 sup
rPr0,hs

Exp1` |X̃r|
4qeCpr`|Wr|`1q

ď Ch2p1` |x|4q ` Ch2 sup
rPr0,hs

´

Exp1` |X̃r|
4qp

¯1{p´

Ee
pC
p´1 pr`|Wr|`1q

¯pp´1q{p

ď Ch2p1` |x|4q.

�

5.2. One-step estimate. Proof of Theorem 5.1.

Proof. Decompose the jump process Z into a sum

(5.45) Zt “ Z̃t `
Nt
ÿ

k“0

Jk.

Assume from the very beginning that λ “ νp|z| ą 1q ą 0. Denote σ :“ σ1, the first jump

time of t ÞÑ
şt

0

ş

|z|ą1
Npdz,dsq, J “ J1 the size of the first large jump. First note, that

Ppτ ď t|Nh “ 1q “ t{h, t P r0, hs, and PpJ P A|Nh “ 1q “ νpAX t|z| ą 1uq{νp|z| ą 1q.
For each x P R we get

(5.46)

|ExfpXhq ´ExfpX̄hq| ď |ExfpX̃hq ´Exfpψpx;h,Wh, Z̃hqq|

`Ex

”

|fpXhq ´ fpX̄hq|

ˇ

ˇ

ˇ
Nh “ 1

ı

PpNh “ 1q

` 2}f}PpNh ě 2q.

The first summand is estimated by Lemma 5.7 by Cp1` x4qh2, the third has the order
h2. Let us estimate the second summand.

First note that PpNh “ 1q ď Ch. Then, on the event tNh “ 1u, the solution Xh can
be represented as a composition

(5.47) Xhpxq “ X̃σ,h ˝ φ
J ˝ X̃0,σ´pxq

and hence

(5.48)

fpX̄hpxqq ´ fpXhpxqq “ fpφJpxqq ´ fpX̃σ,h ˝ φ
Jpxqq

` fpX̃σ,h ˝ φ
Jpxqq ´ fpX̃σ,h ˝ φ

J ˝ X̃0,σ´pxqq

` fpX̄hpxqq ´ fpφ
Jpxqq.
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Step 1. Desintegrating the laws of σ, J and Z̃ we obtain from the Itô formula, Lemma
5.3 and Assumption Hν that

(5.49)

|EfpX̃σ,h ˝ φ
Jpxqq ´EfpφJpxqq|

ď
1

λh

ż h

0

ż

|z|ą1

|EfpX̃h´spφ
zpxqqq ´ fpφzpxqq| νpdzqds

ď
1

λh

ż h

0

ż

|z|ą1

ż h´s

0

Eφzpxq|L̃fpX̃rq| dr νpdzqds

ď
C

λh

ż h

0

ż

|z|ą1

ż h´s

0

Eφzpxqp1` |X̃r|
2qdr νpdzqds

ď
C1

λh

ż h

0

ż

|z|ą1

h
´

1` |φzpxq|2
¯

νpdzqds

ď C2h ¨
´

1`

ż

|z|ą1

|φzpxq|2 νpdzq
¯

ď C3hp1` x
2q.

Step 2. Acting similarly we estimate
(5.50)

EfpX̃σ,h ˝ φ
Jpxqq ´EfpX̃σ,h ˝ φ

J ˝ X̃σ´pxqq

“ E
”

EfpX̃σ,h ˝ φ
Jpxqq ´EfpX̃σ,h ˝ φ

J ˝ X̃σ´pxqq
ˇ

ˇ

ˇ
Fσ

ı

“ E
”

EφJ pxqfpX̃h´σq ´EφJ pX̃σ´pxqq
fpX̃h´σq

ı

“
1

h

ż h

0

ż

|z|ą1

Ex

”

EφzpxqfpX̃h´sq ´EφzpX̃s´pxqq
fpX̃h´sq

ı

νpdzqds.

Denote

(5.51) f̃ tpxq “ ExfpX̃tq.

Since by Theorem 2.2

(5.52) sup
tPr0,T s

´

}f̃ tx} ` }f̃
t
xx}

¯

ď C

we can calculate

(5.53)
}Bxf̃

tpφzpxqq} ď C ¨ }φzx},

}Bxxf̃
tpφzpxqq} ď C

´

}φzx}
2 ` }φzxx}

¯

.

Then for each s P r0, hs the Itô formula and Lemma 5.3 imply
(5.54)

ˇ

ˇ

ˇ
Exf̃

h´spφzpX̃s´qq ´ f̃
h´spφzpxqq

ˇ

ˇ

ˇ
ď

ż s

0

Ex|L̃f̃
h´spφzpX̃rqq|dr

ď C ¨ h ¨
´

}φzx}
2 ` }φzxx}

¯

¨ p1` sup
rPr0,hs

Ex|X̃r|
2q

ď C ¨ h ¨
´

}φzx}
2 ` }φzxx}

¯

¨ p1` x2q.

Hence Assumption Hν yields

(5.55) |EfpX̃σ,h ˝ φ
Jpxqq ´EfpX̃σ,h ˝ φ

J ˝ X̃σ´pxqq| ď Chp1` x2q.
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Step 3. Recall that X̄hpxq “ ψpx;h,Wh, J ` Z̃hq. The Taylor expansion of ψ “

ψpx; τ, w, J ` ξq at p0, 0, Jq for a fixed x yields
(5.56)
fpψpx, h, w, J ` ξqq “ fpψpx, 0, 0, Jqq

` f 1pψpx, 0, 0, Jqq
´

ψτ px; 0, 0, Jqh` ψwpx; 0, 0, Jqw ` ψzpx; 0, 0, Jqξ
¯

`Rpx;h,w, J ` ξq,

with the remainder term

(5.57)

Rpx;h,w, J ` ξq “
1

2

ż 1

0

f2pψpθqq
´

ψττ pθqh
2 ` 2ψτwpθqhw ` 2ψτzpθqhξ ` ψwwpθqw

2

` 2ψwzpθqwξ ` ψzzpθqξ
2
¯

dθ “ R1 ` ¨ ¨ ¨ `R6.

where we write ψpθq :“ ψpx; θh, θw, θξ ` Jq.

Due to the independence of Z̃, J and W , and EWh “ EZ̃h “ 0, we get that the mean
value of the second line in (5.56) vanishes.

To estimate the remainder term we have to estimate six terms with the help of (B.3).
Thus

(5.58)

E|R1| ď h2}f2}

ż 1

0

E|ψττ px; θh, θWh, θZ̃h ` Jq| dθ

ď h2}f2}Cp1` x2qEp2` h` |Wh| ` |J |qe
5p}a1}h`}b1}|Wh|`}c

1
}p|J|`1qq

ď Ch2p1` x2q.

Analogously, the terms R2 and R3 are bounded by Chp1` x2q. Further,
(5.59)

E|R4| ď }f
2}

ż 1

0

E|ψwzpx; θh, θWh, θZ̃h ` Jq| ¨W
2
h dθ

ď }f2}Cp1` x2qE
”

W 2
h p2` h` |Wh| ` |J |qe

5p}a1}h`}b1}|Wh|`}c
1
}p|J|`1qq

ı

ď Chp1` x2q,

where the factor h essentially comes from the term W 2
h . The R2 and R3 are bounded by

Chp1` x2q in a silmilar way. �

6. Main estimates and the proof of Theorem 2.4

According to Markov property of X, for each t P r0, T s and any bounded measurable
f

(6.1) ExfpXT q “ ExEXT´tfpXtq “ Exf
tpXT´tq,

where

(6.2) f tpxq :“ ExfpXtq.

Let h ą 0 and let for definiteness T “ nh for some n ą 0. Denote

(6.3) ukpxq :“ Exf
khpX̃T´khq.

Then,

(6.4)
ExfpXT q “ un,

ExfpX̄T q “ u0,
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and we have the following chaining representation

(6.5)

ExfpXnhq ´ExfpX̄nhq “

n
ÿ

k“1

puk ´ uk´1q

“

n
ÿ

k“1

´

Exf
khpX̄nh´khq ´Exf

pk´1qhpX̄nh´kh`hq

¯

.

Observe that

(6.6) Exf
pk´1qhpX̄pn´k`1qhq “ ExEX̄pn´kqh

f pk´1qhpX̄hq,

and, using the property

(6.7) fkhpyq “ Eyf
pk´1qhpXhq,

we have that

(6.8) Exf
khpX̄pn´kqhq “ ExEX̄pn´kqh

f pk´1qhpXhq.

Combining (6.5), (6.6) and (6.8), we finally have
(6.9)

ExfpXnhq ´ExfpX̄nhq “

n
ÿ

k“1

Ex

´

EX̄pn´kqh
f pk´1qhpXhq ´EX̄pn´kqh

f pk´1qhpX̄hq

¯

.

By Theorem 5.1 and the 4th moment bound (2.24) from Theorem 2.1,

(6.10) Ex

ˇ

ˇ

ˇ
EX̄pn´kqh

f pk´1qhpXhq ´EX̄pn´kqh
f pk´1qhpX̄hq

ˇ

ˇ

ˇ

ď C1h
2p1`Ex|X̄pn´kqh|

4q ď C2h
2p1` x4q,

what together with (6.5) finishes the proof.

7. C4-smoothness of the Marcus semigroup. Proof of Theorem 2.2

We separate the proof in two parts. First, we prove the required statement in the case
νp|z| ą 1q “ 0; that is, for X “ X̃. We consider all the derivatives of f t till the order 4:

Bxf
tpxq “ Ex

´

f 1pXtqBxXt

¯

,

(7.1)

Bxxf
tpxq “ Ex

`

f2pXtqpBxXtq
2
˘

`Ex

`

f 1pXtqBxxXt

˘

,

(7.2)

Bxxxf
tpxq “ Ex

`

f3pXtqpBxXtq
3
˘

` 3Ex

`

f2pXtqpBxXtqpBxxXtq
˘

`Ex

`

f 1pXtqBxxxXt

˘

,

(7.3)

Bxxxxf
tpxq “ Ex

´

f p4qpXtqpBxXtq
4
¯

` 6Ex

`

f3pXtqpBxXtq
2pBxxXtq

˘

(7.4)

` 3Ex

`

f2pXtqpBxxXq
2
˘

` 7Ex

`

f2pXtqpBxXtqpBxxxXtq
˘

`Ex

`

f 1pXtqBxxxxXt

˘

.

Then the required statement follows from the following Proposition.

Proposition 7.1. Let νp|z| ą 1q “ 0 and Ha,b,c holds. Then for any p ą 1 and T ą 0

(7.5) sup
tďT,xPR

E|BkxXtpxq|
p ă 8, k “ 1, . . . , 4.
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Proposition 7.1 has the same spirit as Lemma 4.2 in Protter and Talay [34]. However,
their result is not applicable here directly, because the Itô form of the Marcus SDE

(7.6) dXt “ ãpXtqdt` bpXtqdWt `

ż

|z|ď1

´

φzpXt´q ´Xt´

¯

Ñpdt,dzq,

contains the integral w.r.t. the compensated Poisson random measure, while [34] deals
with the Itô-SDEs w.r.t. dZ with a Lévy process Z. Because of that, we outline the
proof, mainly in order to make it visible how the non-linear structure of the jump part
effects on the assumptions required.

Proof. Without loss of generality we can assume p ě 2, which will allow us to apply the
Itô formula with the C2-function |x|p.

1. The first derivative. Denote X 1t :“ BxXt, then

(7.7) dX 1t “ ã1pXtqX
1
t dt` b1pXtqX

1
t dWt `

ż

|z|ď1

´

φzxpXt´q ´ 1
¯

X 1t´ Ñpdt,dzq,

and the Itô formula yields

(7.8)

|X 1t|
p “ 1` p

ż t

0

|X 1s|
pã1pXsqds`

ppp´ 1q

2

ż t

0

|X 1s|
pb1pXsq

2 ds

`

ż t

0

ż

|z|ď1

´

|φzxpXsq|
p ´ 1´ ppφzxpXsq ´ 1q

¯

|X 1s|
p νpdzqds

` p

ż t

0

|X 1s|
pb1pXsqdWs `

ż t

0

ż

|z|ď1

´

|φzxpXs´q|
p ´ 1

¯

|X 1s´|
p Ñpdt, dzq,

where the last two terms are local martingales. Then the standard argument, based on
the martingale localization and the Fatou lemma, yields

(7.9)

E|X 1t|
p ď 1` p

ż t

0

E|X 1s|
p|ã1pXsq|ds`

ppp´ 1q

2

ż t

0

E|X 1s|
pb1pXsq

2 ds

`

ż t

0

ż

|z|ď1

E
´

|φzxpXsq|
p ´ 1´ ppφzxpXsq ´ 1q

¯

|X 1s|
p νpdzqds

We have the following elementary inequality: for any p ě 2 there exists Cp such that for
a, δ P R

(7.10) |a` δ|p ď |a|p ` p|a|p´1psgn aqδ ` Cp

´

|a|p´2δ2 ` |δ|p
¯

.

In addition, we have ã1, b1 bounded and, by Lemma A.1,

(7.11) |φzxpxq ´ 1| ď C|z|, |z| ď 1.

Then, applying (7.10) with a “ 1, δ “ φzxpxq ´ 1 we get from (7.8)

(7.12) Ex|X
1
t|
p ď 1` Cp,T

ż t

0

Ex|X
1
s|
p ds, t ď T,

which yields (7.5) for k “ 1 by the Gronwall lemma.

2. The second derivative. Denote X2t :“ BxxXt “ BxX
1
t. Then

(7.13)

dX2t “
´

ã2pXtqpX
1
tq

2 ` a1pXtqX
2
t

¯

dt

`

´

b2pXtqpX
1
tq

2 ` b1pXtqX
2
t

¯

dWt

`

ż

|z|ď1

”

φzxxpXt´qpX
1
t´q

2 `

´

φzxpXt´q ´ 1
¯

X2t´

ı

Ñpdt,dzq, X20 “ 0.
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By the Itô formula, localization, and the Fatou lemma,
(7.14)

E|X2t |
p ď pE

ż t

0

´

|ã2pXsq|pX
1
sq

2 ` |ã1pXsq||X
2
s |

¯

|X2s |
p´1 ds

`
ppp´ 1q

2
E

ż t

0

´

|b2pXsq||X
1
s|

2 ` |b1pXsq||X
2
s |

¯2

|X2s |
p´2 ds

`E

ż t

0

ż

|z|ď1

”
ˇ

ˇ

ˇ
φzxxpXsqpX

1
sq

2 ` φzxpXsqX
2
s

ˇ

ˇ

ˇ

p

´ |X2s |
p

´ p|X2s |
p´1 sgnpX2s q

´

φzxxpXsqpX
1
sq

2 `

´

φzxpXsq ´ 1
¯

X2s

¯ı

νpdzqds.

We apply (7.10) with a “ ApX2q “ X2, δ “ δpX,X 1, X2, zq “ φzxxpXqpX
1q2 `

´

φzxpXq ´

1
¯

X2. By Lemma A.1, we have for |z| ď 1

(7.15) |φzxxpxq| ď C|z|,

which together with (7.11) gives
(7.16)
|δpX,X 1, X2, zq|2 ď Cp|X 1|4 ` |X2|2q|z|2, |δpX,X 1, X2, zq|p ď Cp|X 1|2p ` |X2|pq|z|p.

Since ã1, ã2, b1, b2 are bounded and |z|p ď |z|2 for |z| ď 1, this yields the inequality

(7.17) E|X2t |
p ď CE

ż t

0

´

|X2s |
p ` |X2s |

p´1|X 1s|
2 ` |X2s |

p´2|X 1s|
4 ` |X 1s|

2p
¯

ds.

By the Young inequality

(7.18) ab ď
ap
1

p1
`
bq
1

q1
, a, b ě 0,

1

p1
`

1

q1
“ 1,

we have

(7.19) |X2s |
p´1|X 1s|

2 ď
1

p
|X 1s|

2p `
p´ 1

p
|X2s |

p, |X2s |
p´2|X 1s|

4 ď
2

p
|X 1s|

2p `
p´ 2

p
|X2s |

p.

Then (7.5) with 2p and k “ 1, (7.17), and the Gronwall inequality yield (7.5) with p and
k “ 2.

3. The third derivative. Denote X3t :“ BxxxXt “ BxxX
1
t “ BxX

2
t , then

(7.20)

dX3t “
´

ã3pXtqpX
1
tq

3 ` 3ã2pXtqX
1
tX

2
t ` ã

1pXtqX
3
t

¯

dt

`

´

b3pXtqpX
1
tq

3 ` 3b2pXtqX
1
tX

2
t ` b

1pXtqX
3
t

¯

dWt

`

ż

|z|ď1

”

φzxxxpXt´qpX
1
t´q

3 ` 3φzxxpXt´qX
1
t´X

2
t´ `

´

φzxpXt´q ´ 1
¯

X3t´

ı

Ñpdt,dzq

By the Itô formula, localization, and the Fatou lemma,

(7.21)

E|X3t |
p ď pE

ż t

0

´

|ã3pXsq||X
1
s|

3 ` 3|ã2pXsq||X
1
s||X

2
s | ` |ã

1pXsq||X
3
s |

¯

|X3s |
p´1 ds

`
ppp´ 1q

2
E

ż t

0

´

|b3pXsq||X
1
s|

3 ` 3|b2pXsq||X
1
s||X

2
s | ` |b

1pXsq||X
3
s |

¯2

|X3s |
p´2 ds

`E

ż t

0

ż

|z|ď1

”
ˇ

ˇ

ˇ
X3s ` φ

z
xxxpXsqpX

1
sq

3 ` 3φzxxpXsqX
1
sX

2
s `

´

φzxpXsq ´ 1
¯

X3s

ˇ

ˇ

ˇ

p

´ |X3s |
p

´ppX3s q
p´1 sgnpX3s q

´

φzxxxpXsqpX
1
sq

3`3φzxxpXsqX
1
sX

2
s `

´

φzxpXsq´1
¯

X3s

¯ı

νpdzqds.
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We apply (7.10) with

a “ X3, δ “ δpX,X 1, X2, X3, zq “ φzxxxpXqpX
1q3 ` 3φzxxpXqX

1X2 `
´

φzxpXq ´ 1
¯

.

We have for |z| ď 1 by Lemma A.1

(7.22) |φzxxxpxq| ď C|z|,

which together with (7.11), (7.15) and the Young inequality gives

(7.23)
|δpX,X 1, X2, X3, zq|2 ď Cp|X 1|6 ` |X2|4 ` |X3|2q|z|2,

|δpX,X 1, X2, X3, zq|p ď Cp|X 1|3p ` |X2|2p ` |X3|pq|z|p.

Since the derivatives of ã, b are bounded and |X 1||X2| ď Cp|X 1|3`|X2|3{2q by the Young
inequality, we get

(7.24)
E|X3t |

p ď CE

ż t

0

´

|X3s |
p ` |X3s |

p´1|X 1s|
3 ` |X3s |

p´1|X2s |
3{2

` |X3s |
p´2|X 1s|

6 ` |X3s |
p´2|X2s |

3 ` |X 1s|
3p ` |X2s |

3p{2
¯

ds.

Then (7.5) for k “ 3 with given p follows from the same bounds with k “ 1, 3p and
k “ 2, 3p{2, the Young inequality, and the Gronwall inequality.

4. The fourth derivative. Denote X4t :“ BxxxxXt, then

(7.25) dX4t “
´

a1pXtqX
4
t ` 4ã2pXtqX

1
tX

3
t ` 6ã3pXtqpX

1
tq

2X2t ` 3ã2pXtqpX
2
t q

2 ` ã4pXtqpX
1
tq

4
¯

dt

`

´

3b2pXtqpX
2
t q

2 ` 6pX 1tq
2X2t b

3pXtq ` 4X 1tb
2pXtqX

3
t ` pX

1
tq

4b4pXtq ` b
1pXtqX

4
t

¯

dWt

`

ż

|z|ď1

”

3pX2t´q
2φzxxpXt´q` 4X 1t´φ

z
xxX

3
t´` 6pX 1t´q

2X2t´φ
z
xxxpXt´q` pφ

z
xpXt´q´ 1qX4t´

` pX 1t´q
4φzxxxxpXt´q

ı

Ñpdt,dzq.

By the Itô formula, localization, and the Fatou lemma,

(7.26) E|X4t |
p ď pE

ż t

0

´

|a1pXsq||X
4
s | ` 4|ã2pXsq||X

1
s||X

3
s |

` 6|ã3pXsq||X
1
s|

2|X2s | ` 3|ã2pXsq||X
2
s |

2 ` |ã4pXsq|X
1
s|

4
¯

|X4s |
p´1 ds

`
ppp´ 1q

2
E

ż t

0

´

3|b2pXsq||X
2
s |

2 ` 6|X 1s|
2|X2s ||b

3pXsq| ` 4|X 1s|b
2pXsq||X

3
s |

` |X 1s|
4|b4pXsq| ` |b

1pXsq||X
4
s |

¯2

|X4t |
p´2 ds

`E

ż

|z|ď1

”´

3pX2s q
2φzxxpXsq ` 4X 1sφ

z
xxpXsqX

3
s ` 6pX 1sq

2X2sφ
z
xxxpXsq ` φ

z
xpXsqX

4
s

` pX 1sq
4φzxxxxpXsq

¯2

´ pX4s q
2 ´ p

´

3pX2s q
2φzxxpXsq ` 4X 1sφ

z
xxX

3
s ` 6pX 1sq

2X2sφ
z
xxxpXsq

` pφzxpXsq ´ 1qX4 ` pX 1sq
4φzxxxxpXsq

¯

pX4s q
p´1 sgnpX4s q

ı

νpdzqds.

We apply (7.10) with a “ X4 and

(7.27)

δ “ δpX,X 1, X2, X3, X4, zq “ 3pX2q2φzxxpXq ` 4X 1φzxxX
3 ` 6pX 1q2X2φzxxxpXq

` pφzxpXq ´ 1qX4 ` pX 1q4φzxxxxpXq.
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We have for |z| ď 1 by Lemma A.1

(7.28) |φzxxxzpxq| ď C|z|,

which together with (7.11), (7.15), (7.22) and the Young inequality gives

(7.29)
|δpX,X 1, X2, X3, zq|2 ď Cp|X 1|8 ` |X2|4 ` |X3|8{3 ` |X4|2q|z|2,

|δpX,X 1, X2, X3, zq|p ď Cp|X 1|4p ` |X2|2p ` |X3|4p{3 ` |X4|pq|z|p.

Since the derivatives of ã, b are bounded, applying the Young inequality once again we
get

(7.30) E|X3t |
p ď CE

ż t

0

´

|X4s |
p ` |X4s |

p´1|X 1s|
4 ` |X4s |

p´1|X2s |
2 ` |X4s |

p´1|X3s |
4{3

` |X4s |
p´2|X 1s|

8 ` |X4s |
p´2|X2s |

4 ` |X4s |
p´2|X3s |

8{3 ` |X 1s|
4p ` |X2s |

2p ` |X3s |
4p{3

¯

ds.

Then (7.5) for k “ 4 with given p follows from the Young inequality, the Gronwall
inequality, and the bounds (7.5) with k “ 1, 2, 3 and p1 equal 4p, 2p, 4p{3, respectively.

�

Now, let us consider the general case of non-trivial large jump part. The semigroup
Pt of the solution to (2.5) admits the following representation. Consider the SDE (7.6),
which corresponds to the driving noise with large jumps (i.e. |z| ą 1) truncated away.

Denote the corresponding semigroup P̃t, t ě 0. Denote by Q the operator which corre-
sponds to a single large jump of the driving noise:

(7.31) Qfpxq “
ż

|z|ą1

´

fpφzpxqq ´ fpxq
¯

νpdzq.

Then we have

(7.32) Pt “ e´λtP̃t `
8
ÿ

k“1

e´λt
ż

0ďs1ď¨¨¨ďskďt

P̃t´skQP̃sk´sk´1
Q . . .QPs1 ds1 . . . dsk,

where λ “ νp|z| ą 1q is the intensity of large jumps. The above representation follows
easily by independence of the processes

(7.33) Z̃t “

ż t

0

ż

|z|ď1

z Ñpds,dzq, and Zt ´ Z̃t “

ż t

0

ż

|z|ą1

z Npds,dzq

and the compound Poisson structure of Z ´ Z̃.
We have shown in the first part of the proof that

(7.34) }P̃t}C4ÑC4 ď CT , t ď T.

On the other hand, for the function Qf given by the integral formula (7.31) its derivatives
of the orders 1, . . . 4 admit integral representations similar to (7.1)–(7.4), and then it is
a direct calculation to see that

(7.35) }Q}C4ÑC4 ď CQ.

Then for the semigroup Pt we have for t ď T
(7.36)

}Pt}C4ÑC4 ď e´λtCT `
8
ÿ

k“1

e´λt
tk

k!
pCT q

k`1pCQq
k “ CT etpCQCT´λq ď CT eT pCQCT´λq` ,

which completes the proof.
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Appendix A. Properties of φzpu;xq and its derivatives

Lemma A.1. Let Ha,b,c holds true and let

(A.1) ϕpu;x, zq “ φzpu;xq ´ x´ cpxqzu, u P r0, 1s.

Then there is a constant C ą 0 such that for all |z| ď 1 and all x P R

(A.2)
|ϕpu;x, zq| ď C ¨ z2 ¨ |cpxq|,

|∇k
xϕpu;x, zq| ď C ¨ z2, 1 ď k ď 4.

In particular, the effective drift ã P C4pR,Rq and }∇kã} ă 8, k “ 1, . . . , 4, and for
|z| ď 1

(A.3)

|φzpu;xq ´ x| ď Cp1` |x|q,

|φzxpu;xq ´ 1| ď C|z|,

|∇k
xφ

zpu;xq| ď C|z|, k “ 2, 3, 4.

Proof. Estimate the integral term.

1. We write

(A.4) φzpu;xq “ x` cpxqzu` ϕpu;x, zq, u P r0, 1s

Then
(A.5)

d

du
φzpu;xq “ cpxqz ` 9ϕpu;x, zq “ cpx` cpxqzu` ϕpu;x, zqqz

“ cpxqz ` c1pξq
´

cpxqzu` ϕpu;x, zq
¯

z, ξ “ ξpu, x, zq

Hence

(A.6)

9ϕpu;x, zq “ c1pξqcpxqz2u` ϕpu;x, zqc1pξqz,

|ϕpu;x, zq| ď

ż u

0

´

}c1}|cpxq|z2 ` }c1}|z||ϕpr;x, zq|
¯

dr,

|ϕpu;x, zq| ď z2}c1}|cpxq| ¨ e}c
1
}.

Hence

(A.7) |φzpxq ´ x´ cpxqz| ď z2}c1}|cpxq| ¨ e}c
1
}

and ã is of linear growth.
2. Analogously,

(A.8) φzxpu;xq “ 1` c1pxqzu` ϕxpu;x, zq, u P r0, 1s

Then

(A.9)

d

du
φzxpu;xq “ c1pxqz ` 9ϕxpu;x, zq “ c1pφzpu;xqqφzxpu;xqz

“ c1pφzpu;xqq
´

1` c1pxqzu` ϕxpu;x, zq
¯

z

Hence

(A.10)

9ϕxpu;x, zq “
´

c1pφzpu;xqq ´ c1pxq
¯

z ` c1pφzpu;xqqc1pxqz2u` c1pφzpu;xqqϕxpu;x, zqz

“ z2

ż u

0

c2pφzpr;xqqcpφzpr;xqqdr ` c1pφzpu;xqqc1pxqz2u` c1pφzpu;xqqϕxpu;x, zqz
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Hence

(A.11)
|ϕxpu;x, zq| ď p}c2c} ` }c1}2qz2 ` }c1}|z|

ż u

0

|ϕpr;x, zq|dr,

|ϕxpu;x, zq| ď z2p}c2c} ` }c1}2q ¨ e}c
1
}.

3. Analogously,

(A.12) φzxxpu;xq “ c2pxqzu` ϕxxpu;x, zq, u P r0, 1s

Then

(A.13)
d

du
φzxxpu;xq “ c2pxqz ` 9ϕxxpu;x, zq

“ c2pφzpu;xqq
´

1` c1pxqzu` ϕzxpu;xq
¯2

z ` c1pφzpu;xqq
´

c2pxqzu` ϕxxpu;x, zq
¯

z

“ c2pφzpu;xqq
´

1` 2pc1pxqzu` ϕzxpu;xqq ` pc1pxqzu` ϕzxpu;xqq2
¯

z

` c1pφzpu;xqq
´

c2pxqzu` ϕxxpu;x, zq
¯

z

Taking into account that }c3c} ă 8 and

(A.14) c2pφzpu;xqq ´ c2pxq “ z

ż u

0

c3pφzpr;xqqcpφzpr;xqqdr

we get that

(A.15) |ϕxpu;x, zq| ď z2 ¨ C2 ¨ e
}c1}.

4. The higher derivatives are checked analogously.

�

We have the following formulae for the derivatives of the Marcus flow x ÞÑ φzpxq.
These derivatives are hence solutions of non-autonomous non-homogeneous linear differ-
ential equations.

(A.16)

d

du
φzx “zc1pφzqφzx, φzp0;xq “ 1,

d

du
φzxx “zc2pφzqφ2

x ` zc
1pφzqφzxx,

d

du
φzxxx “z

´

c3pφzqφ3
x ` 3c2pφzqφzxφ

z
xx

¯

` zc1pφzqφzxxx,

d

du
φzxxxx “z

´

c4pφzqpφzxq
4 ` 6c3pφzqφzxpφ

z
xxq

2 ` 3c2pφzqpφzxxq
2

` 4c1pφzqφzxpφ
z
xxxq

3
¯

` zc1pφzqφzxxxx,

Lemma A.2. Under assumption Ha,b,c we have for all |z| ą 1 and x P R

(A.17)

|φzxpu;xq| ď e}c
1
}|z|,

|φzxxpu;xq| ď |z|e3}c1}|z|,

|φzxxxpu;xq| ď |z|2e5}c1}|z|,

|φzxxxxpu;xq| ď |z|3e8}c1}|z|, u P r0, 1s.

In particular,

(A.18)
|φzpxq ´ x| ď |x|p1` e}c

1
}|z|q,

|φzxpxq ´ 1| ď 1` e}c
1
}|z|.
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Proof. Indeed, solving the linear equations (A.16) we get

(A.19)

φzxpuq “e
şt
0
c1pφzqz dr,

φzxxpuq “

ż u

0

zc2pφzqφ2
x ¨ e

şu
s
c1pφzqz dr ds,

φzxxxpuq “

ż u

0

z
´

c3pφzqφ3
x ` 3c2pφzqφzxφ

z
xx

¯

e
şu
s
c1pφzqz dr ds,

φzxxxxpuq “

ż u

0

z
´

c4pφzqpφzxq
4 ` 6c3pφzqφzxpφ

z
xxq

2 ` 3c2pφzqpφzxxq
2

` 4c2pφzqφzxφ
z
xxx

¯

e
şu
s
c1pφzqz dr ds.

and hence the estimates follow.
By the Gronwall lemma, |φzpxq| ď |x|e}c

1
}¨|z|, and

(A.20) |φzpxq ´ x| ď 1` e}c
1
}¨|z|.

�

In the multidimensional setting, solutions should be written in terms of the funda-
mental solution of the linear differential equation with the matrix Dcpφzpu;xqqz and the
estimates (A.19) follow, for example from Hartman [8, Section IV.4]).

Appendix B. Properties of ψpu;x; τ, w, zq and its derivatives

For the estimates of the Lemma 5.6 we need the following elementary inequalities.

Lemma B.1. Let Ha,b,c hold true. Then there is a constant C ą 0 such that for all
τ ě 0, w P R, z P R, and x P R

sup
uPr0,1s

|ψpu;x; τ, w, zq| ď Cp1` |x|q ¨ e}a
1
}τ`}b1}|w|`}c1}|z|,(B.1)

sup
uPr0,1s

|Biψpu;x, τ, w, zq| ď Cp1` |x|q ¨ e2p}a1}τ`}b1}|w|`}c1}|z|q, i P tτ, w, zu,(B.2)

sup
uPr0,1s

|Bijψpu;x; τ, w, zq| ď Cp1` x2q ¨ p1` τ ` |w| ` |z|qe5p}a1}τ`}b1}|w|`}c1}|z|q,

i, j P tτ, w, zu,

(B.3)

sup
uPr0,1s

|ψijkpu;x; τ, w, zq| ď Cp1` |x|3q ¨ p1` τ ` |z| ` |w|q2e8p}a1}τ`}b1}|w|`}c1}|z|q,

i, j, k P tτ, w, zu,

(B.4)

sup
uPr0,1s

|ψijklpu;x; τ, w, zq| ď Cp1` |x|4q ¨ p1` τ ` |z| ` |w|q3e11p}a1}τ`}b1}|w|`}c1}|z|q,

i, j, k, l P tτ, w, zu.

(B.5)

Proof. These estimates are obtained directly.
0. Estimate of ψ. For τ, w, z P R, denote ψpuq “ ψpu;x; τ, w, zq the solution to the
Cauchy problem

(B.6)

d

du
ψpuq “ apψpuqqτ ` bpψpuqqw ` cpψpuqqz,

ψp0q “ x, u P r0, 1s.
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Since

(B.7) |apxq| ď |ap0q| ` }a1}|x|, |bpxq| ď |bp0q| ` }b1}|x|, |cpxq| ď |cp0q| ` }c1}|x|,

the Gronwall inequality yields (B.1) for some C ą 0.
1. Estimates of ψτ , ψw, ψz. The derivative w.r.t. τ satisfies the lienar non-autonomous
ODE

(B.8)

d

du
ψτ “ apψq ` pa1pψqτ ` b1pψqw ` c1pψqzqψτ

ψτ p0;x; τ, w, zq “ 0

which can be solved explicitly

(B.9) ψτ puq “

ż u

0

apψpsqqe
şu
s
pτa1pψprqq`wb1pψprqq`zc1pψprqqq dr ds,

Applying the estimate (B.1) we get (for a different constant C ą 0)

(B.10) sup
uPr0,1s

|ψτ pu;x; τ, w, zq| ď Cp1` |x|q ¨ e2p}a1}|τ |`}b1}|w|`}c1}|z|q.

Due to the symmetry of the ODE for ψ w.r.t. τ , w, and z the same estimate holds for
ψw and ψz.
2. Estimates of ψττ , ψτw, ψτz, ψww, ψwz, ψzz. We consider derivatives ψττ and ψτw,

(B.11)
d

du
ψττ “ 2a1pψqψτ `

´

a2pψqτ ` b2pψqw` c2pψqz
¯

ψ2
τ `

´

a1pψqτ ` b1pψqw` c1pψqz
¯

ψττ ,

ψττ p0;x; t, w, zq “ 0,

d

du
ψτw “ a1pψqψw ` b

1pψqψτ `
´

a2pψqτ ` b2pψqw ` c2pψqz
¯

ψτ ¨ ψw

`

´

a1pψqτ ` b1pψqw ` c1pψqz
¯

ψτw, ψτwp0;x; τ, w, zq “ 0.

Writing down the solution explicitly and using the estimates from the previous steps
yields the result.
3. Estimates of ψτττ , ψττw, ψττz, ψτww, . . . We consider derivatives ψτττ and ψττw,
and ψτwz

(B.12)

d

du
ψτττ “ 3a2pψqψ2

τ ` 3a1pψqψττ ` 3
´

a2pψqτ ` b2pψqw ` c2pψqz
¯

ψτψττ

`

´

a3pψqτ ` b3pψqw ` c3pψqz
¯

ψ3
τ `

´

a1pψqτ ` b1pψqw ` c1pψqz
¯

ψτττ ,

ψτττ p0;x; t, w, zq “ 0,

(B.13)
d

du
ψττw “ b2pψqψ2

τ ` b
1pψqψττ `2a1pψqψτw`2

´

a2pψqp1` τq` b2pψqw` c2pψqz
¯

ψτψw

`

´

a3pψqτ ` b3pψqw ` c3pψqz
¯

ψ2
τψw `

´

a2pψqτ ` b2pψqw ` c2pψqz
¯

ψττψw

`

´

a1pψqτ ` b1pψqw ` c1pψqz
¯

ψττw,
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(B.14)
d

du
ψτwz “ c2pψqψτψw ` b

2pψqψτψz ` a
2pψqψwψz ` c

1pψqψτw ` b
1pψqψτz ` a

1pψqψwz

`

´

a2pψqτ ` b2pψqw ` c2pψqz
¯´

ψτψwz ` ψτwψz ` ψτzψw

¯

`

´

a3pψqτ ` b3pψqw ` c3pψqz
¯

ψτψwψz `
´

a1pψqτ ` b1pψqw ` c1pψqz
¯

ψτwz

ψτwzp0;x; τ, w, zq “ 0.

4. Estimates of ψττττ , ψτττw, ψτττz, ψττww, . . .
We consider derivatives ψττττ and ψτττw, and ψττww, and ψττwz:

(B.15)
d

du
ψττττ “

´

τap4qpψq`wbp4qpψq`zcp4qpψq
¯

ψ4
τ `6

´

τa3pψq`wb3pψq`zc3pψq
¯

ψ2
τψττ

`

´

τa2pψq ` wb2pψq ` zc2pψq
¯´

3ψ2
ττ ` 4ψτψτττ

¯

` 4
´

a3pψqψ3
τ ` 3a2pψqψτψττ ` a

1pψqψτττ

¯

`

´

τa1pψq ` wb1pψq ` zc1pψq
¯

ψττττ

(B.16)

d

du
ψτττw “ b3pψqψ3

τ ` b
1pψqψτττ ` 3b2pψqψτψττ

` 3
´

a3pψqψwψ
2
τ ` 2a2pψqψτψτw ` a

2pψqψwψττ ` a
1pψqψττw

¯

`

´

τap4qpψq ` wbp4qpψq ` zcp4qpψq
¯

ψ3
τψw

` 3
´

τa3pψq ` wb3pψq ` zc3pψq
¯´

ψ2
τψτw ` ψwψτψττ

¯

`

´

τa2pψq ` wb2pψq ` zc2pψq
¯´

3ψτwψττ ` 3ψτψττw ` ψwψτττ

¯

`

´

τa1ψ ` wb1ψ ` zc1ψ
¯

ψτττw

(B.17)
d

du
ψττww “ τap4qpψqψ2

τψ
2
w`a

3pψqψτψ
2
w`4a2pψqψwψτw`2a2pψqψτψww`2a1pψqψτww

` 2b3pψqψ2
τψw ` 4b2pψqψτψτw ` 2b2pψqψwψττ ` 2b1pψqψττw

`

´

τap4qpψq ` wbp4qpψq ` zcp4qpψq
¯

ψ2
τψ

2
w

`

´

τa3pψq ` wb3pψq ` zc3pψq
¯´

4ψwψτψτw ` ψ
2
τψww ` ψττψ

2
w

¯

`

´

τa2pψq ` wb2pψq ` zc2pψq
¯´

2ψ2
τw ` 2ψτψτww ` 2ψwψττw ` ψττψww

¯

`

´

τa1pψq ` wb1pψq ` zc1pψq
¯

ψττww

(B.18)
d

du
ψττww “ 2a1pψqψτwz ` b

1pψqψττz ` c
1pψqψττw

`2a2pψq
´

ψτzψw`ψτwψz`ψτψwz

¯

`b2pψq
´

2ψτψτz`ψττψz

¯

`c2pψq
´

2ψτψτw`ψττψw

¯

` 2a3pψqψτψwψz ` b
3pψqψ2

τψz ` c
3pψqψ2

τψw

`

´

τap4qpψq ` wbp4qpψq ` zcp4qpψq
¯

ψ2
τψwψz

`

´

τa3pψq ` wb3pψq ` zc3pψq
¯´

ψ2
τψwz ` 2ψwψτψτz ` 2ψτψτwψz ` ψττψwψz

¯
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`

´

τa2pψq ` wb2pψq ` zc2pψq
¯´

2ψτwψτz ` 2ψτψτwz ` ψττψwz ` ψττzψw ` ψττwψz

¯

`

´

τa1pψq ` wb1pψq ` zc1pψq
¯

ψττwz.

�
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Lévy driven SDEs, Stochastic Processes and their Applications 122 (2012), no. 7, 2730–2757.
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