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THE NONLOCAL CONJUGATION PROBLEM FOR

ONE-DIMENSIONAL PARABOLIC EQUATION WITH

DISCONTINUOUS COEFFICIENTS AND ASSOCIATED FELLER

SEMIGROUP

This paper is dedicated to the memory of our colleague and friend S. Ya. Makhno

By the boundary integral equations method we establish the classical solvability of
the conjugation problem for one-dimensional linear parabolic equation of the second

order (backward Kolmogorov equation) with nonlocal Feller-Wentzell conjugation

condition. Using the solution of this problem, we construct the two-parameter Feller
semigroup associated with the inhomogeneous diffusion process in bounded domain

with moving membrane.

1. Introduction

The general form of boundary conditions for one-dimensional diffusion processes was
established by W. Feller [1] and A.D. Wentzell [2]. They proved the assertions from which
it follows that if {Tt, t ≥ 0} is Feller semigroup in C[r1, r2] (−∞ < r1 < r2 <∞) and its
generator A is the restriction of (L, C2[r1, r2]), where L is second order ordinary differ-
ential operator, then functions from DA ⊂ C2[r1, r2] must satisfy boundary conditions
which, generally speaking, have nonlocal character. These boundary conditions contain
the value of the function and its derivatives at boundary points ri (i = 1, 2) as well as
the integral over [r1, r2] with respect to some nonnegative measure which, furthermore,
can be infinite.

There are many publications in which the problem on construction of Markov processes
by given boundary conditions is formulated in different ways and is investigated by
different approaches, see, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and the references
given there. One of such variants of the described problem is the so-called problem of
pasting together two diffusion processes [9, 10], which is the object of research of our
paper. More specifically, the present paper deals with the partial case of this problem
where each of boundary conditions of Feller-Wentzell’s type contains only the integral
term. For our investigations, it is convenient to formulate the problem in terms of partial
differential equations of parabolic type as follows.

Consider on a plane (s, x) two domains:

S
(i)
t = {(s, x) : 0 ≤ s < t ≤ T, ri(s) < x < ri+1(s)},

where i = 1, 2; T is a fixed positive number and r1, r2, r3 are given functions defined

on [0, T ] such that r1(s) < r2(s) < r3(s) for all s ∈ [0, T ]. Let S
(i)

t denotes the closure

of S
(i)
t and let St = S

(1)
t ∪ S

(2)
t . Denote also by Dis the interval (ri(s), ri+1(s)), i = 1, 2,

and by Ds the union D1s ∪D2s.
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The problem is to find a function u(s, x, t) defined on (s, x) ∈ St, which satisfies the
backward Kolmogorov equation

∂u

∂s
+

1

2
bi(s, x)

∂2u

∂x2
+ ai(s, x)

∂u

∂x
= 0, (s, x) ∈ S(i)

t , i = 1, 2,(1)

the initial condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ Dt, i = 1, 2,(2)

two boundary conditions∫
Dis

(u(s, r2i−1(s), t)− u(s, y, t))µ2i−1(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2,(3)

and two conjugation conditions

u(s, r2(s)− 0, t) = u(s, r2(s) + 0, t), 0 ≤ s ≤ t ≤ T,(4) ∫
Ds

(u(s, r2(s), t)− u(s, y, t))µ2(s, dy) = 0, 0 ≤ s ≤ t ≤ T.(5)

The conditions (3) and (5) are nonlocal boundary and conjugation conditions of Feller-
Wentzell’s type respectively. The condition (4) is the condition of continuity of u(s, x, t)
at (s, r2(s)), 0 ≤ s ≤ t ≤ T .

Throughout this paper, we will make the following assumptions:

I. The coefficients ai(s, x) and bi(s, x) (i = 1, 2) are defined on

Π[0, T ] ≡ {(s, x) : 0 ≤ s ≤ T, x ∈ R},
they are bounded and belong to Hölder class H

α
2 ,α(Π[0, T ]) for some α ∈ (0, 1)

(to recall the definitions of Hölder classes see [11, p.16]). Moreover, bi(s, x) is
bounded away from zero.

II. The function ϕ is assumed to be defined on R and belongs to the space of bounded
continuous functions on R, which will be denoted by Cb(R). The norm in this
space is defined by the equality ‖ϕ‖ = supx∈R |ϕ(x)|. Furthermore, fitting con-
ditions∫
Dit

(ϕ(r2i−1(t))− ϕ(y))µ2i−1(t, dy) = 0, i = 1, 2,

ϕ(r2(t)− 0) = ϕ(r2(t) + 0),

∫
Dt

(ϕ(r2(t))− ϕ(y))µ2(t, dy) = 0, i = 1, 2,

hold.
III. µ2i−1 (i = 1, 2) and µ2 are probability measures on Dis and Ds respectively, such

that µi(s,Dis) = 1, µ2(s,Ds) = 1, s ∈ [0, T ], and for all f ∈ Cb(R) the integrals

F
(2i−1)
f (s) =

∫
Dis

f(y)µ2i−1(s, dy), F
(2)
f (s) =

∫
Ds

f(y)µ2(s, dy), i = 1, 2,

belong to H
1+α
2 ([0, T ]) as functions of s (α is the constant in I).

IV. The curves ri(s), i = 1, 2, 3, are continuous and belong to H
1+α
2 ([0, T ]) (α is the

constant in I).

Remark 1.1. For every M > 0, there exists a constant CM such that the Hölder inequality

(6) |F (j)
f (s)− F (j)

f (s′)| ≤ CM |s− s′|β , s, s′ ∈ [0, T ], j = 1, 2, 3,

holds for all f ∈ Cb(R) which are bounded by M .



THE PARABOLIC CONJUGATION PROBLEM AND ASSOCIATED FELLER SEMIGROUP 19

The parabolic conjugation problem (1)-(5) arises, in particular, in the theory of diffu-
sion processes in construction by analytical methods of a one-dimensional model of the
diffusion phenomenon with a membrane. The Feller process associated with (1)-(5) (its
Feller property is represented by (4)) coincides in Dis with the diffusion process with the
drift coefficient ai(s, x) and the diffusion coefficient bi(s, x) (i = 1, 2). The behavior of
this process at the points of the boundary is described by the boundary conditions (3)
(at the points r2i−1(s) (i = 1, 2)) and the conjugation condition (5) (at the point r2(s))
which are the variants of the nonlocal conditions of Feller-Wentzell type corresponding to
the jump-like exit of process from the points of boundary [1], [2], [12]. In the considered
case, the boundary points r1(s), r2(s), r3(s) are supposed to be moving. The role of the
membrane separating different (by their diffusion characteristics) media is being played
by r2(s) which is the common boundary of domains D1s and D2s. The point r2(s) can
be treated also as the point of ”pasting together” two given diffusion processes.

Thus, the first purpose of this paper is to prove an existence and uniqueness theorem
for the conjugation problem (1)-(5). The second purpose is to construct, using the
solution of the problem (1)-(5), the two-parameter semigroup of operators associated
with the Feller process which is a result of ”pasting together” two diffusion processes.

Note that the scheme we will use to solve the problem (1)-(5) is partially presented in
[13], where the similar problem is investigated in case of backward Kolmogotov equation

given in St = ∪2i=1S
(i)
t = ∪2i=1{(s, x) : 0 ≤ s < t ≤ T, (−1)i(x− r(s)) > 0} with Feller-

Wentzell conjugation condition which is imposed at the common boundary x = r(s) of

curvilinear domains S
(1)
t and S

(2)
t , and which contains, in addition to the integral term,

the local one corresponding to the termination of process. Note also that similar problems
(with different variants of Feller-Wentzell conjugation condition) were studied in our

earlier papers for the cases where S
(i)
t are finite [14, 15] or semi-infinite [16] rectangular

domains. We would like to mention again papers [7, 8], which give the results concerning
the construction of diffusion processes with nonlocal boundary conditions of the integral
type by the methods of functional [7] and stochastic analysis [8].

The rest of this paper is organized as follows. Section 2 provides a brief review
of auxiliary results on the fundamental solution of the backward Kolmogorov equation
and the associated potentials which will be used in the subsequent sections. Section 3 is
devoted to the proof of the existence and uniqueness theorem for the conjugation problem
(1)-(5). In Section 3, using the solution of this problem, we construct the two-parameter
Feller semigroup which describes the desired process.

2. Auxiliary Results

In this section we recall some auxiliary results concerning fundamental solution of
equation (1) and the associated parabolic potentials.

Denote by Gi(s, x, t, y) the fundamental solution of equation (1) in Π[0, T ]. Its exis-
tence is assured by the condition I (see [11, Ch.IV, §11], [17, Ch.I], [9, Ch.II, §2]). Recall
that the functions Gi (i = 1, 2) are nonnegative, jointly continuous, continuously differ-
entiable with respect to s, twice continuously differentiable with respect to x and satisfy
the inequality

|Dr
sD

p
xGi(s, x, t, y)| ≤ C(t− s)−

1+2r+p
2 exp

{
−c (y − x)2

t− s

}
,(7)

for all 0 ≤ s < t ≤ T, x, y ∈ R, where r and p are the nonnegative integers for which
2r + p ≤ 2, Dr

s is the partial derivative with respect to s of order r, Dp
x is the partial

derivative with respect to x of order p; symbols C and c denotes (here and in what
follows) any one of various different positive constants.
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Recall also that

Gi(s, x, t, y) = Zi0(s, x, t, y) + Zi1(s, x, t, y), i = 1, 2,(8)

where

Zi0(s, x, t, y) = [2πbi(t, y)(t− s)]− 1
2 exp

{
− (y − x)2

2bi(t, y)(t− s)

}
,(9)

Zi1(s, x, t, y) =

t∫
s

dτ

∫
R

Zi0(s, x, τ, z)Qi(τ, z, t, y)dz,(10)

and the function Qi(s, x, t, y) (i = 1, 2) is a solution of some singular Volterra integral
equation of the second kind. Note that the functions Zi1 satisfy the inequality

|Dr
sD

p
xZi1(s, x, t, y)| ≤ C(t− s)−

1+2r+p−α
2 exp

{
−c (y − x)2

t− s

}
(11)

where 0 ≤ s < t ≤ T, x, y ∈ R, 2r + p ≤ 2, α is the constant in I.
Having the fundamental solutions Gi, we now define the parabolic potentials that will

be used to solve the problem (1)-(5), namely the Poisson potential

ui0(s, x, t) =

∫
R

Gi(s, x, t, y)ϕ(y)dy,

where 0 ≤ s < t ≤ T, x ∈ R, ϕ is the function in (2), and the simple-layer potentials

u
(j)
i1 (s, x, t) =

t∫
s

Gi(s, x, τ, ri+j(τ))V2i−1+j(τ, t)dτ, i = 1, 2, j = 0, 1,

where 0 ≤ s < t ≤ T, x ∈ R and V2i−1+j (i = 1, 2, j = 0, 1) are some functions.

We recall some properties of functions ui0 and u
(j)
i1 (i = 1, 2, j = 0, 1) (see, for instance,

[9, Ch.II, §3]). Let ϕ ∈ Cb(R). From the properties of fundamental solutions Gi, i = 1, 2,
it follows that the potentials ui0 exist and satisfy in (s, x) ∈ [0, t) × R the equation (1)
with the initial condition

lim
s↑t

ui0(s, x, t) = ϕ(x), x ∈ R, i = 1, 2.(12)

In addition, the functions ui0 (i = 1, 2) satisfy the inequality

|Dr
sD

p
xui0(s, x, t)| ≤ C‖ϕ‖(t− s)−

2r+p
2 ,(13)

where 0 ≤ s < t ≤ T, x ∈ R, r and p are positive integers for which 2r + p ≤ 2.

Concerning the potentials u
(j)
i1 (i = 1, 2, j = 0, 1), if we assume that the functions

V2i−1+j(τ, t) (i = 1, 2, j = 0, 1) are continuous for τ ∈ [s, t) and admit of a weak
singularity with exponent greater than − 1

2 when τ = t, then each of the functions

u
(j)
i1 (s, x, t) (i = 1, 2, j = 0, 1) is bounded continuous in 0 ≤ s ≤ t ≤ T, x ∈ R and

satisfies the equation (1) in (s, x) ∈ [0, t) × (R \ ri+j(s)) with the initial condition:

u
(j)
i1 (s, x, t)→ 0 if s ↑ t (x ∈ R, i = 1, 2).

3. Solving the parabolic conjugation problem

The purpose of this section is to establish the classical solvability of parabolic conju-
gation problem (1)-(5).

Theorem 3.1. (Existence and Uniqueness) Let the conditions I-IV hold. Then there
exists a unique solution in C(St) of the nonlocal parabolic conjugation problem (1)-(5).
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Proof. We will find a solution of problem (1)-(5) in the form of a sum of Poisson potential

ui0 and simple-layer potentials u
(j)
i1 (i = 1, 2, j = 0, 1)

u(s, x, t) = ui(s, x, t) = ui0(s, x, t) +

1∑
j=0

u
(j)
i1 (s, x, t), (s, x) ∈ S(i)

t , i = 1, 2(14)

with the unknown densities V2i−1+j (in the formula for u
(j)
i1 (i = 1, 2, j = 0, 1)) to be

determined. In view of the properties of simple-layer potentials formulated in previous
section we need to assume a priori that functions V2i−1+j (i = 1, 2, j = 0, 1) are contin-
uous for τ ∈ [s, t) and admit of a weak singularity with exponent greater than − 1

2 when
τ = t.

If we substitute instead of function u its expression from the right-hand side of (14)
into each of equalities in (3), we get the following two Volterra integral equations of the
first kind for V2i−1+j (i = 1, 2, j = 0, 1):

1∑
j=0

t∫
s

Nij(s, τ)V2i−1+j(τ, t)dτ = Φi(s, t), i = 1, 2,(15)

where

Φi(s, t) =

∫
Dis

[ui0(s, y, t)− ui0(s, r2i−1(s), t)]µ2i−1(s, dy) =

=

∫
Dis

ui0(s, y, t)µ2i−1(s, dy)− ui0(s, r2i−1(s), t),

Nij(s, τ) =

∫
Dis

[Gi(s, r2i−1(s), τ, ri+j(τ))−Gi(s, y, τ, ri+j(τ))]µ2i−1(s, dy) =

= Gi(s, r2i−1(s), τ, ri+j(τ))−
∫
Dis

Gi(s, y, τ, ri+j(τ))µ2i−1(s, dy).

The following lemma gives us properties of functions Φi (i = 1, 2) which will be useful
in the sequel.

Lemma 3.1. Functions Φi(s, t) (i = 1, 2) tend to zero as s ↑ t and for them the inequality

|Φi(s, t)− Φi(s̃, t)| ≤ C‖ϕ‖(t− s)−
1+α
2 (s− s̃)

1+α
2(16)

holds for all 0 ≤ s̃ < s < t ≤ T .

Proof. Passing to the limit s ↑ t in the expression for Φi(s, t) (i = 1, 2) and recalling that
the Poisson potentials ui0 satisfy the condition (12), we get the expression∫

Dit

ϕ(y)µ2i−1(t, dy)− ϕ(r2i−1(t))

which, in view of II, is equal to zero.
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In order to verify (16), we proceed as follows. Write the difference Φi(s, t) − Φi(s̃, t)
in the form

Φi(s, t)− Φi(s̃, t) =

∫
Dis

[ui0(s, y, t)− ui0(s̃, y, t)]µ2i−1(s, dy)+

+

[ ∫
Dis

ui0(s̃, y, t)µ2i−1(s, dy)−
∫
Dis̃

ui0(s̃, y, t)µ2i−1(s̃, dy)

]
+

+ [ui0(s̃, r2i−1(s̃), t)− ui0(s, r2i−1(s̃), t)] + [ui0(s, r2i−1(s̃), t)− ui0(s, r2i−1(s), t)]

(17)

and note that for s̃ < s

|ui0(s, y, t)− ui0(s̃, y, t)| = |ui0(s, y, t)− ui0(s̃, y, t)|
1+α
2 |ui0(s, y, t)− ui0(s̃, y, t)|

1−α
2

≤

∣∣∣∣∣∂ui0(ŝ, y, t)

∂ŝ

∣∣∣∣
ŝ=s̃+θ(s−s̃)

· (s− s̃)

∣∣∣∣∣
1+α
2

(|ui0(s, y, t)|+ |ui0(s̃, y, t)|)
1−α
2

≤ C‖ϕ‖
[
(t− s̃− θ(s− s̃))−1(s− s̃)

] 1+α
2 ≤ C‖ϕ‖

[
((t− s)

+ (s− s̃)(1− θ))−1(s− s̃)
] 1+α

2 ≤ C‖ϕ‖(t− s)−
1+α
2 (s− s̃)

1+α
2

(0 < θ < 1). Note also that the difference ui0(s, r2i−1(s̃), t) − ui0(s, r2i−1(s), t) in (17)
can be easily estimated using the Lagrange finite-increments formula, the condition IV
and the inequality (13) (with r = 0, p = 1). It satisfies the estimate

|ui0(s, r2i−1(s̃), t)− ui0(s, r2i−1(s), t)| ≤ C‖ϕ‖(t− s)− 1
2 (s− s̃)

1+α
2 .

Finally, the difference of integrals in the second line of the expression (17) satisfies the

estimate with right-hand side C‖ϕ‖(s − s̃)
1+α
2 . This is the direct consequence of the

condition III and the fact that the functions f
(i)
s̃t (y) = ui0(s̃,y,t)

‖ϕ‖ (‖ϕ‖ > 0, i = 1, 2), as

functions of y, belong to Cb(R) and are uniformly bounded.
Combining the estimates on each component in (17), the inequality (16) follows. �

The condition (4) together with III allow us to rewrite (5) as

ui(s, r2(s), t)−
2∑
k=1

∫
Dks

uk(s, y, t)µ2(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2.(18)

After substituting (14) into (18), we obtain two more Volterra integral equations of the
first kind for V2i−1+j (i = 1, 2, j = 0, 1):

1∑
j=0

( t∫
s

Gi(s, r2(s), τ, ri+j(τ))V2i−1+j(τ, t)dτ−

−
2∑
k=1

t∫
s

V2k−1+j(τ, t)dτ

∫
Dks

Gk(s, y, τ, rk+j(τ))µ2(s, dy)

)
= Ψi(s, t), i = 1, 2,

(19)

where

Ψi(s, t) =

2∑
k=1

∫
Dks

uk0(s, y, t)µ2(s, dy)− ui0(s, r2(s), t).

Remark 3.1. It is clear that the assertion of Lemma 3.1 remains valid when Φi is replaced
by Ψi (i = 1, 2).
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Regularization of equations of system (15), (19) can be performed by Holmgren’s
method [18] (see also [19], [20]). For this purpose, we consider the integro-differential
operator

E(s, t)f =

√
2

π

∂

∂s

t∫
s

(ρ− s)− 1
2 f(ρ, t)dρ, 0 ≤ s < t ≤ T.

and apply it to the both sides of each equation in (15), (19). Our goal is to obtain the
system of four Volterra integral equations of the second kind which is equivalent to the
system (15), (19) and which can be solved by the method of successive approximations.

Consider the action of the operator E on the each side of (15).
Bearing in mind the assertion of Lemma 3.1, we get

Υi(s, t) ≡ E(s, t)Φi =
1√
2π

t∫
s

(ρ− s)− 3
2 [Φi(ρ, t)− Φi(s, t)]dρ−

−
√

2

π
(t− s)− 1

2 Φi(s, t).

(20)

Furthermore, the function Υi (i = 1, 2) satisfies the inequality

|Υi(s, t)| ≤ C‖ϕ‖(t− s)−
1
2 , 0 ≤ s < t ≤ T.(21)

The application of the operator E to the left-hand side of (15) gives the expression
which after interchanging the order of integration takes on the form

Ii(s, t) ≡
1∑
j=0

√
2

π

∂

∂s

t∫
s

V2i−1+j(τ, t)Jij(s, τ)dτ, i = 1, 2,(22)

where

Jij(s, τ) =

τ∫
s

(ρ− s)− 1
2Nij(ρ, τ)dρ, i = 1, 2, j = 0, 1.

For further investigations, it is convenient to write Nij (i = 1, 2, j = 0, 1) as

Nij(ρ, τ) = N
(1)
ij (ρ, τ) +N

(2)
ij (ρ, τ)−N (3)

ij (ρ, τ),

where

N
(1)
ij (ρ, τ) = Zi0(ρ, r2i−1(τ), τ, ri+j(τ)),

N
(2)
ij (ρ, τ) = Zi1(ρ, r2i−1(τ), τ, ri+j(τ))+

+ [Gi(ρ, r2i−1(ρ), τ, ri+j(τ))−Gi(ρ, r2i−1(τ), τ, ri+j(τ))],

N
(3)
ij (ρ, τ) =

∫
Diρ

Zi0(ρ, y, τ, ri+j(τ))µ2i−1(ρ, dy) +

∫
Diρ

Zi1(ρ, y, τ, ri+j(τ))µ2i−1(ρ, dy).

Set

J
(k)
ij (s, τ) =

τ∫
s

(ρ− s)− 1
2N

(k)
ij (ρ, τ)dρ, i = 1, 2, j = 0, 1, k = 1, 2, 3.

Observe that for each i = 1, 2, the sum in (22) has two terms: one term with i = j+ 1
and one term with i 6= j + 1. Let us show that
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• the term with i = j + 1 can be represented as:

− V3i−2(s, t)√
bi(s, r2i−1(s))

+

√
2

π

t∫
s

V3i−2(τ, t)
∂

∂s

(
J
(2)
i,i−1(s, τ)− J (3)

i,i−1(s, τ)
)
dτ ;(23)

• the term with i 6= j + 1 equals√
2

π

t∫
s

V2i−1+j(τ, t)
∂

∂s
Jij(s, τ)dτ.(24)

To prove the relations (23) and (24), we study separately J
(1)
ij (s, τ), J

(2)
ij (s, τ) and

J
(3)
ij (s, τ). Concerning J

(1)
ij (s, τ) and J

(2)
ij (s, τ), let us make the following remarks.

Remark 3.2. Consider J
(1)
ij (s, τ). If i = j + 1, then

J
(1)
ij (s, τ) =

1√
2πbi(τ, r2i−1(τ))

τ∫
s

(τ − ρ)−
1
2 (ρ− s)− 1

2 dρ =

√
π

2bi(τ, r2i−1(τ))
.

If i 6= j + 1, then J
(1)
ij (s, τ) tends to zero as s ↑ τ .

Remark 3.3. Consider J
(2)
ij (s, τ). Note that lim

s↑τ
J
(2)
ij (s, τ) = 0. This relation follows from

the estimate

|N (2)
ij (ρ, τ)| ≤ |Zi1(ρ, r2i−1(τ), τ, ri+j(τ))|+

+ |D1
xGi(ρ, x0, τ, ri+j(τ))| · |r2i−1(τ)− r2i−1(ρ)| ≤ C(τ − ρ)−

1
2+

α
2

(x0 is a point in the open interval with endpoints r2i−1(τ) and r2i−1(ρ)), which can be
obtained by applying the mean value theorem to difference Gi(ρ, r2i−1(ρ), τ, ri+j(τ)) −
Gi(ρ, r2i−1(τ), τ, ri+j(τ)) and using the condition IV and the estimates (7), (11).

From Remarks 3.2 and 3.3 it follows that in the case k = 1 and i = j + 1,

I
(1)
ij (s, t) =

√
2

π

∂

∂s

t∫
s

V3i−2(τ, t)

√
π

2bi(τ, r2i−1(τ))
dτ = − V3i−2(s, t)√

bi(s, r2i−1(s))
.(25)

Furthermore

I
(k)
ij (s, t) ≡

√
2

π

∂

∂s

t∫
s

V2i−1+j(τ, t)J
(k)
ij (s, τ)dτ =

=

√
2

π

t∫
s

V2i−1+j(τ, t)
∂

∂s
J
(k)
ij (s, τ)dτ

(26)

in each of two cases: 1) k = 1, i 6= j + 1; 2) k = 2.

Now, let us consider the integral J
(3)
ij (s, τ) and show that it also satisfies the relation

(26). For this it suffices to prove that

lim
s↑τ

J
(3)
ij (s, τ) = 0.(27)

Proof of (27). Denote by N
(31)
ij the first term in the expression for N

(3)
ij and by J

(31)
ij the

integral J
(3)
ij with N

(3)
ij replaced by N

(31)
ij . In view of (7) and (11), we may verify (27)

only for J
(31)
ij .
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Taking into account (9) and that

1

τ − ρ
=

1

τ − s
+

ρ− s
(τ − s)(ρ− s)

,

we write J
(31)
ij in the form

J
(31)
ij (s, τ) = L

(1)
ij (s, τ) + L

(2)
ij (s, τ) + L

(3)
ij (s, τ), i = 1, 2, j = 0, 1,

where

L
(1)
ij (s, τ) =

1√
2πbi(τ, ri+j(τ))

τ∫
s

(ρ− s)− 1
2 (τ − ρ)−

1
2 dρ

×
[ ∫
Diρ

exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − ρ)

}
µ2i−1(ρ, dy)

−
∫
Dis

exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − ρ)

}
µ2i−1(s, dy)

]
,

L
(2)
ij (s, τ) =

1√
2πbi(τ, ri+j(τ))

∫
Dis

[
exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − s)

}

− exp

{
− (y − ri+j(s))2

2bi(τ, ri+j(τ))(τ − s)

}]
Rij(s, τ, y)µ2i−1(s, dy),

L
(3)
ij (s, τ) =

1√
2πbi(τ, ri+j(τ))

×

×
∫
Dis

exp

{
− (y − ri+j(s))2

2bi(τ, ri+j(τ))(τ − s)

}
Rij(s, τ, y)µ2i−1(s, dy),

and Rij(s, τ, y) denotes the integral

Rij(s, τ, y) =

τ∫
s

(ρ− s)− 1
2 (τ − ρ)−

1
2 exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − s)
· ρ− s
τ − ρ

}
dρ,

which after the change of variables z = ρ−s
τ−ρ takes on the form

Rij(s, τ, y) =

∞∫
0

z−
1
2 (z + 1)−1 exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − s)
· z
}
dz,

and so

|Rij(s, τ, y)| ≤ C.(28)

From this and III it follows immediately that

|L(1)
ij (s, τ)| ≤ C(τ − s)

1+α
2 ,(29)

|L(3)
ij (s, τ)| ≤ C

(
µ2i−1(s, Uiδ(ri+j(s))) + exp

{
−c δ2

(τ − s)

})
,(30)

where Uiδ(ri+j(s)) = {y ∈ Dis : |y − ri+j(s)| < δ}, δ is any positive constant.
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Applying the mean value theorem to the difference of exponents within square brackets

in the expression for L
(2)
ij , we get, after using the condition IV as well as the estimate

(28) and the inequality σν exp{−cσ} ≤ C (0 ≤ σ <∞, 0 ≤ ν <∞),

|L(2)
ij (s, τ)| ≤ C(τ − s)α2 .(31)

The estimates (29)-(31) imply that J
(31)
ij (s, τ)→ 0 as s ↑ τ . This completes the proof

of (27). Thus, the relation (26) holds also for k = 3.
In view of (25) (k = 1, i = j + 1) and the fact that (26) holds in each of three cases:

1) k = 1, i 6= j + 1; 2) k = 2; 3) k = 3, we obtain the relations (23) and (24).
Now, equating the sum of expressions in (23) and (24) to Υi(s, t) (i = 1, 2), we obtain

two Volterra integral equations of the second kind which are equivalent to (15). These
two equations can be written in the form

V3i−2(s, t) =

1∑
j=0

t∫
s

Kij(s, τ)V2i−1+j(τ, t)dτ + Λ3i−2(s, t),(32)

(0 ≤ s < t ≤ T, i = 1, 2), where

Λ3i−2(s, t) = −
√
bi(s, r2i−1(s))Υi(s, t),

Ki,i−1(s, τ) =

√
2bi(s, r2i−1(s))

π

∂

∂s

(
J
(2)
i,i−1(s, τ)− J (3)

i,i−1(s, τ)
)
,

Kij(s, τ) =

√
2bi(s, r2i−1(s))

π

∂

∂s
Jij(s, τ), i 6= j + 1.

Consider the functions Λ3i−2(s, t) and Kij in (32) (i = 1, 2, j = 0, 1). The function
Λ3i−2(s, t) satisfy the same estimate as Υi(s, t), i.e., the estimate (21).

Let us estimate the kernels Kij(s, τ). To do this, we have to estimate ∂
∂sJij(s, τ).

Note that ∂
∂sJ

(31)
ij (s, τ) which is a term in the expression for ∂

∂sJij(s, τ) does not have a
weak singularity. For it we can only obtain the estimate∣∣∣∣ ∂∂sJ (31)

ij (s, τ)

∣∣∣∣ ≤ C(τ − s)−1, 0 ≤ s < τ < t ≤ T.(33)

The estimate (33) is caused by the integral∫
Uiδ(ri+j(s))

∂

∂y
Zi0(s, y, τ, ri+j(τ))µ2i−1(s, dy)(34)

which appears after writing ∂
∂sJ

(31)
ij (s, τ) as

∂

∂s
J
(31)
ij (s, τ) =

∂

∂s

τ∫
s

(ρ− s)− 1
2

( ∫
Diρ

Zi0(ρ, y, τ, ri+j(τ))µ2i−1(ρ, dy)−

−
∫

Dis0

Zi0(ρ, y, τ, ri+j(τ))µ2i−1(s0, dy)

)∣∣∣∣
s0=s

+

+
∂

∂s

τ∫
s

(ρ− s)− 1
2 dρ

∫
Dis0

Zi0(ρ, y, τ, ri+j(τ))µ2i−1(s0, dy)

∣∣∣∣
s0=s
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and taking the derivative of the last term of this expression. Namely,

∂

∂s

τ∫
s

(ρ− s)− 1
2 dρ

∫
Dis0

Zi0(ρ, y, τ, ri+j(τ))µ2i−1(s0, dy)

∣∣∣∣
s0=s

=
1√

2πbi(τ, ri+j(τ))
×

× ∂

∂s

∫
Dis0

exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − s)

}
Rij(s, τ, y)µ2i−1(s0, dy)

∣∣∣∣
s0=s

=

=
1√

2πbi(τ, ri+j(τ))

∂

∂s

∫
Dis0

µ2i−1(s0, dy)

∞∫
0

z−
1
2 (z + 1)−1×

× exp

{
− (y − ri+j(τ))2

2bi(τ, ri+j(τ))(τ − s)
· (z + 1)

}
dz

∣∣∣∣
s0=s

=

√
πbi(τ, ri+j(τ))

2
×

×
∫
Dis

∂

∂y
Zi0(s, y, τ, ri+j(τ))µ2i−1(s, dy) =

√
πbi(τ, ri+j(τ))

2
×

×
( ∫
Uiδ(ri+j(s))

∂

∂y
Zi0(s, y, τ, ri+j(τ))µ2i−1(s, dy)+

+

∫
Dis\Uiδ(ri+j(s))

∂

∂y
Zi0(s, y, τ, ri+j(τ))µ2i−1(s, dy)

)
.

One can easily verify that all terms in the expression for ∂
∂sJij except for the integral

term (34) can be estimated by C(δ)(τ − s)−1+
α
2 , where C(δ) is the positive constant

depending on δ.
We now get down to studying the action of the operator E on the both sides of (19).

Using the considerations similar to those leading to (32), we obtain the following two
Volterra integral equations of the second kind which are equivalent to (19):

Vi+1(s, t) =

1∑
j=0

t∫
s

[
Qij(s, τ)V2i−1+j(τ, t)−

−
2∑
k=1

Pkj(s, τ)V2k−1+j(τ, t)

]
dτ + Λi+1(s, t),

(35)

(0 ≤ s < t ≤ T, i = 1, 2), where

Λi+1(s, t) = −
√
bi(s, r2(s))Θi(s, t)

(the function Θi is defined by formula (20) with Φi replaced by Ψi),

Qi,2−i(s, τ) =

√
2bi(s, r2(s))

π

∂

∂s

τ∫
s

(ρ− s)− 1
2

(
Zi1(ρ, r2(τ), τ, r2(τ))+

+
[
Gi(ρ, r2(ρ), τ, r2(τ))−Gi(ρ, r2(τ), τ, r2(τ))

])
dρ,

Qij(s, τ) =

√
2bi(s, r2(s))

π

∂

∂s

τ∫
s

(ρ− s)− 1
2Gi(ρ, r2(ρ), τ, ri+j(τ))dρ, i+ j 6= 2,
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Pkj(s, τ) =

√
2bi(s, r2(s))

π

∂

∂s

τ∫
s

(ρ− s)− 1
2 dρ

∫
Dkρ

Gk(ρ, y, τ, rk+j(τ))µ2(ρ, dy).

We have thus obtained the system of four Volterra integral equations of the second
kind (32), (35) which is equivalent to the system (15), (19). Rewrite the system (32),
(35) in the form

Vi(s, t) =

4∑
j=1

t∫
s

Hij(s, τ)Vj(τ, t)dτ + Λi(s, t), i = 1, 2, 3, 4,(36)

where

Hij(s, τ) = Qi−1,j−1(s, τ)− Pi−1,j−1(s, τ) if i = 2, 3, j = 1, 2,

H3i−2,j(s, τ) = Ki,j−2i+1(s, τ) if i = 1, j = 1, 2 or if i = 2, j = 3, 4,

Hi+1,j(s, τ) = −P3−i,j+2i−5(s, τ) if i = 1, j = 3, 4 or if i = 2, j = 1, 2,

and all other Hij equal to zero.
From what we have proved so far it is clear that the function Λi (i = 1, 2, 3, 4) satisfies

the inequality (21) and that some of the kernels Hij (i = 1, 2, 3, 4, j = 1, 2, 3, 4), namely
ones containing the integral of the type (34), do not have a weak singularity. Concerning
other components of the expression for Hij , they admit the estimate with the right-hand
side C(δ)(τ − s)−1+α

2 .
Despite the strong singularity of kernels Hij of the type (34), one can prove that

the ordinary method of successive approximations can still be applied to the system of
equations (36) (for details, see, for instance, [14, 15]).

The solution of (36) Vi(s, t) (0 ≤ s < t ≤ T, i = 1, 2, 3, 4) has the form

Vi(s, t) =

∞∑
n=0

V
(n)
i (s, t),(37)

where

V
(0)
i (s, t) = Λi(s, t),

V
(n)
i (s, t) =

4∑
j=1

t∫
s

Hij(s, τ)V
(n−1)
j (τ, t)dτ, n = 1, 2, . . .

The convergence of series (37) and so the existence of the function Vi is the consequence
of the following inequality:

|V (n)
i (s, t)| ≤ C‖ϕ‖(t− s)− 1

2

n∑
k=0

Ckna
(n−k)bk, 0 ≤ s < t ≤ T, i = 1, 2, 3, 4,(38)

where

a(k) =

(
4C(δ0)T

α
2 Γ(α2 )

)k
Γ( 1

2 )

Γ
(
1+kα

2

) , k = 0, 1, . . . , n,

b = max
s∈[0,T ]

2∑
i=1

1∑
j=0

(
µ2i−1(s, Uiδ0(ri+j(s))) + µ2(s, Uiδ0(ri+j(s)))

)
and the constant δ = δ0 is chosen to be sufficiently small so that b < 1. One can prove
the estimate (38) by induction basing on considerations leading to the estimates (29),
(30) and (31) (see [14, 15] where the proof of similar estimate is given).

Furthermore, the estimate (38) implies that the function Vi (0 ≤ s < t ≤ T, i =
1, 2, 3, 4) satisfies the inequality (21). From this and (7) (with r = p = 0) it follows that
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there exist simple-layer potentials u
(j)
i1 (s, x, t) (i = 1, 2, j = 0, 1) in (14), and for them

the inequality

(39) |u(j)i1 (s, x, t)| ≤ C‖ϕ‖, (s, x) ∈ St, i = 1, 2, j = 0, 1,

holds. It is clear (see (13)) that the same inequality is also true for the Poisson potential
ui0(s, x, t) (i = 1, 2) in (14). Thus, the function u(s, x, t) given by (14), (37) is the desired
classical solution of problem (1)-(5) and the assertion on existence is proved.

To prove uniqueness of solution of problem (1)-(5), suppose

u(1)(s, x, t) = u
(1)
i (s, x, t), u(2)(s, x, t) = u

(2)
i (s, x, t), (s, x) ∈ S(i)

t , i = 1, 2,

are two solutions, continuous in St. Set

υi(s, x, t) = u
(1)
i (s, x, t)− u(2)i (s, x, t), (s, x) ∈ S(i)

t , i = 1, 2.(40)

and note that the function

υ(s, x, t) = υi(s, x, t), (s, x) ∈ S(i)

t , i = 1, 2,

is the solution of conjugation problem (1)-(5) with ϕ ≡ 0 in (2), which is continuous in
St. At the same time, each of functions υi, i = 1, 2, can be treated as the solution of the
following parabolic first boundary value problem:

∂υi
∂s

+
1

2
bi(s, x)

∂2υi
∂x2

+ ai(s, x)
∂υi
∂x

= 0, (s, x) ∈ S(i)
t , i = 1, 2,(41)

lim
s↑t

υi(s, x, t) = 0, x ∈ Dit, i = 1, 2,(42)

υi(s, r2i−1(s), t) = f2i−1(s, t), 0 ≤ s < t ≤ T, i = 1, 2,

υi(s, r2(s), t) = f2(s, t), 0 ≤ s < t ≤ T,
(43)

where

f2i−1(s, t) =

∫
Dis

υ(s, y, t)µ2i−1(s, dy), f2(s, t) =

∫
Ds

υ(s, y, t)µ2(s, dy).

Consider the problem (41)-(43). From III, it follows that fk ∈ H
1+α
2 ([0, T ]), k = 1, 2, 3.

Hence for each i = 1, 2 the first boundary value problem (41)-(43) can be solved by
the boundary integral equations method and it has the unique solution, continuous in

S
(i)

t (i = 1, 2), which, furthermore, can be determined by formula (14), where there is no
Poisson potential (see [21], [11, Ch.IV]). Thus, υi in (40) is the unique solution of problem
(41)-(43) (i = 1, 2) and hence it can be represented in the form (14) with ui0 ≡ 0 (i = 1, 2)
and some densities Vk (k = 1, 2, 3, 4) to be determined.

Repeating the considerations of the present section leading to the system of Volterra
integral equations of the second kind (36), we find that (V1, V2, V3, V4) is the solution of
the same system of equations, but with Λi ≡ 0. This means that Vk ≡ 0 (k = 1, 2, 3, 4).
Then υi ≡ 0 (i = 1, 2) and hence υ ≡ 0. This completes the proof of uniqueness. �

We close this section with the next assertion which follows directly from the proof of
Theorem 3.1.

Theorem 3.2. Let the conditions I-IV hold. Then the classical solution of problem
(1)-(5) has the form (14), (37).
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4. Construction of Feller semigroup

In this section, using the solution of problem (1)-(5), we define the two-parameter
semigroup associated with the Feller process which is the result of ”pasting together”
two diffusion processes.

Let C0(Dt) be the space all functions ϕ ∈ C(Dt) satisfying fitting conditions in II.
From Theorems 3.1 and 3.2 it follows that there exists a unique solution u(s, x, t) of the
problem (1)-(5) in the domain (s, x) ∈ St = [0, t]×Ds (see (14), (37)) and the solution
satisfies the condition that u(t, x, t) = ϕ(x), where ϕ is a function in C0(Dt) which is
assumed to be extended to R in such a way that ϕ is bounded continuous.

Denote by Tstϕ(x) the value of u(s, x, t) at point (s, x), s ≤ t, x ∈ Ds = [r1(s), r3(s)].
If s = t, Tssϕ(x) = ϕ(x), i.e., the operator Tss = E, where E is the identity operator. If
s ≤ t, the function Tstϕ(x) is continuous (provided fitting conditions in II holds). Thus,
the operator Tst maps C0(Dt) into C(Ds). It is also obvious that this operator is linear.

We get down to studying properties of operators Tst in C0(Dt).
First we prove that the operators Tst (0 ≤ s < t ≤ T ) remain the cone of nonnegative

functions invariant.

Lemma 4.1. If ϕ ∈ C0(Dt) and ϕ(x) ≥ 0 for all x ∈ Dt, then Tstϕ(x) ≥ 0 for all
0 ≤ s ≤ t, x ∈ Ds.

Proof. Let ϕ ∈ C0(Dt) be nonnegative. Denote by γ the minimum of Tstϕ(x) in St.
Suppose that γ < 0. Then, from the minimum principle [17, Ch.II] it follows that
the value γ may be attained only when s ∈ (0, t) and x = ri(s) (i = 1, 2, 3). In case
Ts0tϕ(r2(s0)) = γ, s0 ∈ (0, t), we get∫

Ds0

(Ts0tϕ(r2(s0))− Ts0tϕ(y)µ2(s0, dy) < 0

which contradicts (5). Analogously, we derive a contradiction for the case Ts0tϕ(ri(s0)) =
γ, s0 ∈ (0, t), i ∈ {1, 3}. Therefore γ ≥ 0 and the assertion of the lemma follows. �

Note also that Tst1 ≡ 1. This property together with the assertion of Lemma 4.1 allow
us to assert that operators Tst are contractive, i.e.,

‖Tstϕ‖ ≤ ‖ϕ‖

for all 0 ≤ s < t ≤ T .
Finally, we show that the operator family Tst has the semigroup property

Tst = TsτTτt, 0 ≤ s < τ < t ≤ T.

This property is a consequence of the assertion of uniqueness of the solution of the
problem (1)-(5). Indeed, to find u(s, x, t) = Tstϕ(x), when it is given that u(s, x, t) →
ϕ(x) as s ↑ t, one can solve the problem first in time interval [τ, t] and then solve it in
the time interval [s, τ ] with that initial function u(τ, x, t) = Tτtϕ(x) which was obtained;
in other words, Tstϕ(x) = Tsτ (Tτtϕ)(x), ϕ ∈ C(Dt) or Tst = TsτTτt.

The above properties of operators Tst imply the following assertion (see [22, Ch.II,
§1]).

Theorem 4.1. Let the conditions I-IV hold. Then the two-parameter family of operators
Tst, 0 ≤ s < t ≤ T, defined by the solution of (1)-(5) is the semigroup associated with the
inhomogeneous Feller process on Ds which coincides in each of domains Dis (i = 1, 2)
with the diffusion process with the drift coefficient ai(s, x) and the diffusion coefficient
bi(s, x). The behavior of this process at the points r2i−1(s) (i = 1, 2) and r2(s) is described
by the boundary conditions in (3) and the conjugation condition (5) respectively.
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