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B. CHIKVINIDZE

NEW PROOF OF THE NOVIKOV CRITERION USING BACKWARD

STOCHASTIC DIFFERENTIAL EQUATIONS

Using backward stochastic differential equations we give a new proof of well known
Novikov’s criterion.

1. The main result

Let us given a basic probability space
(
Ω,F , P

)
with right continuous filtration (Ft)t<∞

and let F∞ be the smallest σ−Algebra containing all Ft, t > 0. With this let T be some
deterministic time (which might be equal to∞) and M be a continuous local martingale
on the interval [0;T ] with 〈M〉T <∞ P a. s.

Denote by E(M) the stochastic exponential of a local martingale M :

Et(M) = exp{Mt −
1

2
〈M〉t}.

Condition 〈M〉T < ∞ P a. s. implies that Et(M) > 0 a. s. for all t ∈ [0;T ], which
allows us to define Et,T (M) as Et,T (M) = ET (M)/Et(M).

Now define the process Yt = E
[
Et,T (M)

∣∣Ft]. In our case Et(M) is a positive local

martingale which implies that Et(M) is a supermartingale. So we have E
[
ET (M)

∣∣Ft] ≤
Et(M) which is equivalent to the inequality:

0 < Yt = E
[
Et,T (M)

∣∣Ft] ≤ 1.

Since YtEt(M) is a martingale and Et(M) > 0, Yt will be a semimartingale and let

Yt = Y0 +At +

∫ t

0

ZsdMs + Lt

be the semimartingale decomposition of Y , where Zs is a predictable process and L is a
local martingale orthogonal to M .

Lemma 1.1. The process Yt = E
[
Et,T (M)

∣∣Ft] satisfies the following linear backward
stochastic differential equation (BSDE):{

Yt = Y0 −
∫ t
0
Zsd〈M〉s +

∫ t
0
ZsdMs + Lt,

YT = 1.

Proof. Applying Ito’s formula for YtEt(M) we obtain:

YtEt(M) = Y0 +

∫ t

0

Es(M)dAs +

∫ t

0

Es(M)ZsdMs +

∫ t

0

Es(M)dLs+

+

∫ t

0

Ys−Es(M)dMs +

∫ t

0

ZsEs(M)d〈M〉s.
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Since YtEt(M) is a local martingale we obtain

∫ t

0

Es(M)dAs +

∫ t

0

ZsEs(M)d〈M〉s =

∫ t

0

Es(M)d
(∫ s

0

Zud〈M〉u +As

)
≡ 0

and therefore
∫ t
0
Zsd〈M〉s + At ≡ 0 and At ≡ −

∫ t
0
Zs〈M〉s. So we need to insert this

expression in semimartingale decomposition of Y :

Yt = Y0 −
∫ t

0

Zsd〈M〉s +

∫ t

0

ZsdMs + Lt.

�

Now we are ready to prove Novikov’s ([1]) criterion:

Theorem 1.1. For continuous local martingale M , if Ee
1
2 〈M〉T <∞, then E(M) is a

uniformly integrable martingale.

Proof. For simplicity, we will prove theorem when the filtration (Ft)t≥0 is continuous,
which means that every local martingale with respect to this filtration is continuous.
Then we will make a remark for the case of right continuous filtration.

Notice that EY0 = EET (M) and the stochastic exponential E(M) is uniformly inte-
grable, if and only if, EY0 = 1. So using the BSDE tool and Lemma 1 we only need to
show that EY0 = 1. Let β > 0 be any constant. According to the Ito formula for the
process e−βYt+

1
2 〈M〉t we obtain the following chain of equalities:

e−βYt+
1
2 〈M〉t = e−βY0 +

∫ t

0

e−βYs+
1
2 〈M〉s

(
βZs +

1

2

)
d〈M〉s+

+
β2

2

∫ t

0

e−βYs+
1
2 〈M〉sZ2

sd〈M〉s +
β2

2

∫ t

0

e−βYs+
1
2 〈M〉sd〈L〉s + local martingale =

= e−βY0 +
1

2

∫ t

0

e−βYs+
1
2 〈M〉s(βZs + 1)2d〈M〉s +

β2

2

∫ t

0

e−βYs+
1
2 〈M〉sd〈L〉s+

+ local martingale.

From this we deduce that for any constant β > 0, e−βYt+
1
2 〈M〉t is a local submartingale,

but since it is majorized by integrable random variable e
1
2 〈M〉T , it is a submartingale. So

we can write the submartingale inequality:

(1) Ee−βY0 ≤ e−βE
[
e

1
2 〈M〉T

]
.

According to Jensen’s inequality e−βEY0 ≤ Ee−βY0 . So using this, from inequality (1)
we obtain:

eβ(1−EY0) ≤ Ee 1
2 〈M〉T .

Taking limit as β → ∞ we get that EY0 ≥ 1, which in our case is equivalent to the
EET (M) = EY0 = 1. This means that E(M) is a uniformly integrable martingale.

Remark 1.1. In case of right continuous filtration the Ito formula representation of
e−βYt+

1
2 〈M〉t requires an additional term

(2)
∑

0<s≤t

e−βYs−+ 1
2 〈M〉s

(
e−β4Ys + β 4 Ys − 1

)
where 4Ys denotes the jumps of the process Y . Since e−β4Ys + β 4 Ys − 1 ≥ 0, the
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process in (2) will be increasing, so e−βYt+
1
2 〈M〉t remains to be submartingale. After

that the proof continues by the exactly same way as it was done in case of continuous
filtration.

�
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