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S. ALIYEV, F. RAHIMOV, AND M. NAVIDI

ON ASYMPTOTIC BEHAVIOR OF CONDITIONAL PROBABILITY
OF CROSSING THE NONLINEAR BOUNDARY BY A PERTURBED
RANDOM WALK

‘We prove a theorem on the limit behavior of the conditional probability of crossing the
nonlinear boundary by a perturbed random walk with a distribution which belongs
to the domain of attraction of the stable law with index « € (1, 2].

1. INTRODUCTION.

Let a sequence &, n > 1, of independent identically distributed random variables with
E |&1] < oo be given on the probability space (€2, F, P), and let the distribution F of the
random variable £ have an interval-support X C R = (—o00,00), for which F(X) =1
and v = E§1 e X.

Assume that the function A (z),2 € X, is determined on X and is continuous. More-
over, it = A (v) > 0. We set

n _ Sn .
S = ;gk,sn = and T, =nA (Sy) n>1.

Consider the first passage time
To=inf{n>1:T, > f,(n)}, (1)

where f, (t), t > 0, a > 0, is some family of nonlinear boundaries, and we set inf {©} =
00.

Many important stopping times, arising in nonlinear renewal theory and in sequential
analysis are of the form (1). In this case,, T}, is the statistics of likelihood ratio test, and
To 18 the number of necessary observations ([7], [8], [9]).

Asymptotic properties and limit theorems for 7, were studied in papers [1]-[4] (see
also monographs [5], [7], [8]).

In the present paper for a sufficiently wide class of functions A (z) and boundaries
fa (t), we will study the limit behavior of the conditional probability P (Ta >n|S, = x)
of crossing the nonlinear boundary by a perturbed random walk T,,, when n = n (a) — oo
and x = x (a) — v as a — oo. This problem was studied in the case of a finite variance
D¢ < oo for a linear boundary f,, (t) = a in [8] and for a nonlinear boundary f, (t) # a
in [2].

For A (z) = z, the limit behavior of the indicated conditional probability of crossing a
nonlinear boundary was studied in paper [1], where it was supposed that the distribution
of the step of a random walk belongs to the domain of attraction of a stable distribution
with a parameter o € (1,2].

Notice that the conditional probabilities of crossing the boundary arise in the problems
on the asymptotic behavior of local probabilities of crossing the boundary by a random
walk ([3]).
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2. CONDITIONS AND FORMULATION OF THE MAIN RESULT.

We assume that the function A (z) is continuously differentiable in a neighborhood of
the point z = v with A (v) > 0 and A’ (v) # 0.

For the boundary f, (t), we assume that it satisfies the following regularity conditions:

1) For each a, the function f, () increases monotonically, is continuously differentiable
for t > 0, and f, (1) T 00 as a — oo;

2) For any function n = n (a) — oo satisfying the condition L f, (n) — pu=A(v) >0
as a — oo, the relation f, (n) — 6 € [0, u) holds as a — oc;

3) For each a, the function f/ (t) weakly oscillates at infinity, i.e. ]}i({:)) —las - —1,
n — oo.

We note that the family of functions of the form f, (t) = at®, 0 < 8 < 1, satisfies
conditions 1)-3). It is easy to show that condition 2) is valid for this family with 6 = Bpu.
Other examples of such functions are given in papers [3], [4].

We assume that the distribution F' of a random variable £&; belongs to the domain of
attraction of a stable law Gy, (z) with characteristic index « € (1,2], i.e.

Sp —
P(ngx)HGa(m),asnaoo, (2)
where z € R, A(t) = t'/*L(t), and L (t), t > 0, is a slowly varying function at infinity
[6]-
The assumptions on the function A (x) yield
Tn = Zp +€n, (3)
where

20 =3 X Xi= A+ A () (&~ )
k=1

and
en=n[A(S,) —AW)—A () (S, —v) ]
From the strong law of large numbers, it follows that

T,
Sn 950 and L A@W)=EX; >0 asn— .
n n
Representation (3) shows that the sequence T;,,n > 1, is a perturbed random walk,
i.e. it is the sum of an ordinary random walk (Z,) and a random perturbation (e,) .
Introduce the following notation:
J = inf (Z,, — nb),

n>1
U(ry=P(J>r),r€R;
P (t) = Me™,
da (n,2) = nA (z) — fa (n);
lo (n, ) :P(Ta >nlS, :x)

and
L(n,z,r) = P(Jn >r| S, zx), r € R,
where
Jp= min (T,, — T,,—; —i0) .

1<i<n
We note that, for each z € (—00,00), the function L (n,z,r) doesn’t increase and is
continuous from the left at each point r € (—o0,0).
The following proposition holds.
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Theorem. Assume that the conditions enumerated above are satisfied and, for some

mteger m > 1,
/ lo (t)]™ dt < oc. (4)

Let x =2 (a) > v and n=n(a) = 0o as a — o0 so that vt —v = O (A(n) /n) and
0q (n,z) = O (1).

Then

L(n,z,r) = ¥(r) asa — oo

for allr > 0.

Corollary. Let the conditions of the theorem be fulfilled and J, (n,z) — r > 0. Then

lo (n,z) = ¥ (r) as a — oo.

It follows from condition (3) that the sum S,, has a bounded continuous density P, (x)
for all n > m.

We also note that relation (4) implies that the function ¥ (r) is continuous at each
point r > 0, and Theorem 2.7 in [8] yields

V(r)= (=0 h(r),
where Pz 6> )
=710 >
"= TpE
and
T=inf{n>1:27, —6n>0}.
The function h (r),r > 0, is the limit distribution density for the overshoot of a
random walk Z,, — n#, n > 1 for the level [8].

3. AUXILIARY FACTS.

To prove the theorem, we need the following facts formulated in the form of lemmas.
For 1 <k <n-—1andn>m, we set

Qnik = Qui (B|2) =/ Gnk (21, .., z|x) F (dxy) ... F (dzyg),
B

where
Pn_k (n:c— Xn: :ck)
Gnk (1, ..., 2 /x) = Tj):l, if P,(nz)>0 |,
, if P, (nz) =0

B € 3 (R") is the o-algebra of Borel sets in R¥ and F (z) = P (& < z).

We note that Q. is the conditional probability distribution of a random vector
(€1,...,&) under condition that S, = x.

Lemma 1. Let conditions (2) and (4) be satisfied. Then

1) For each k, the conditional distribution Qi weakly converges as n — oo to an
unconditional distribution of a random vector (€1,...,&k) , and the convergence is uniform
inz:z—v=0(A(Mn)/n);

2) For any § € (0,1), there exists a constant M = M (J) such that

qnk (xlv s ,(Ek|l’) <M

forallzy,...;zp, k< (1 —=8)n,n>mandx:x—v=0(A(n)/n).

The statement of this lemma is proved in paper [1] (see also [8]).

Lemma 2. Let conditions (2), (4) be satisfied. Letx = x (a) — v andn = n (a) — oo

as a — oo so that t—v = O (A (n) /n). Then the joint conditional distribution of random
variables

Ik =T — Tn—i7 i = lvkv
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under condition that S, = x weakly converges to an unconditional joint distribution of
random variables Z, . .., Z.
Proof. Assume

and
k
i=1
It follows from the first part of Lemma 1 that, for each fixed k, the conditional distribu-
tion (Mn1y- -+, Mnk) Weakly converges to an unconditional distribution (§1 — v, ..., & — v).
It is clear that, for S, =z and 1 < k <n,
Jnk = (n— k) (A (En) - A (gn_k)) + kA (z). (5)
It is easy to see that
( )(S _Sn k Z Mni : nk:7 (6)

i=n—k+1

where the symbol & 4 7 means the equality in distribution.

It follows from (5) and (6) that the joint conditional distribution of random variables
Jni, 1 < k < n — 1 under condition that S, = x coincides with the joint conditional
distribution of random variables

Wik = (n — k) {A(@-A@-ﬁrnk)} FEA(2), 1<k=n—1.

Assume Une (6) = (n— k) [A (z) —A (m - ﬁt)] + kA (z).

Taking into account that x = z (a) — v as a — oo, the mean-value theorem for each

fixed k yields
Uni (t) = A" (v) t + kA (v) as a — o0 (7)
uniformly with respect to ¢ from the bounded set in (—o0, 00) .

Then it follows from (7) that, for each k, the conditional distribution of the vector
(W1, ..., W) under condition that S, = z weakly converges to an unconditional
distribution (Z1,...,Zk), where Z,, = A’ (v) (S — kv) + kA (v), since the conditional
distribution T,,; under condition that S, = x weakly converges to an unconditional
distribution S — kv for each k.

Lemma 3. Let x = x(a) — v andn = n(a) — 00 as a — o0 so that x — v =
O (A(n)/n). Then, for 6 € [0,A(v)),

1) e1 = €1(a,8,y) = P (Jni — 0 < y,Fi € (nd, n—l] | Sp=2) — 0 as a — oo uni-
formly in y from a bounded set of R and x:x—v =0 (A(n)/n), f

2) 9 = ea(a,k,0,y) = P(Jm—u9<y,5|z€(k nd] |§n:x) — 0 as k — oo uni-
formly in y from a bounded set of R and x: x —v = O (A(n) /n) for sufficiently large
a.

Proof. Assuming T, = T,, — nf and b = n (A (z) — 0) — y, we have

e1 =P (T)_; > b,3i € (nd, n—1]| =)=
=P (Tj >b,3j €[1,n(1-9)) =1z). (8)
By the second part of Lemma 1, relation (8) yleldb
e1 <MP (T; >b,3i € [1,n(1—-0))) =
=MP (t, <n(1-9)), (9)
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where
ty =inf{n >1:T, > b}
is the first passage time of a random walk for the level b.
By (3), it follows from Lemma 2.4 in [8] that
ty an 1
— =

5 ,u_easa—>oo. (10)
Taking into account that b ~ n (A (v) — 0) as a — oo, it follows from (10) that
ty a.n
— —lasa— o0
n

Hence, we obtain easily that, for any ¢ € (0,1),
Pty <n(l—240)) —0as a— oo.

Statement 1) of the proved lemma follows from (9).
We now prove statement 2). It suffices to show that

EgzP(Wm—i9<y,Eli€ ( k,nd] \gn:x) — 0,k — oo.
From the differentiability of the function A (z) in a neighborhood of the point z = v,
it follows that there exist an integer /N and a positive number vy > 0 such that, for ¢ < nd

and n > N on the set {w nil gy},

(n—1) {A () - A (x— ﬁrn)} ’ < 2|A (@)| [T

or

Wi — i (11— 0)] < 2|A ()] [Tl (11)
It follows from inequality (11) that the event C' = {w:W,; <y} implies the event
A={w:|Thi| >~ (1 —=40)n} or the event

i(p—0)—y
B= | > ———F—— C AuUB).
i > Gz} v
It is easy to understand that if 4 > 0 is a sufficiently small number, then, for each
i < nd, the event A implies the event B : A C B.
Further, the equality

implies that, on the set B,

T _g | =0 -
S T
Hence, we find
5 i(p—0)—
|Si—v| > m [Sn=v]. (12)

It follows from the convergence x = x (a) — v as a — oo that there exist the numbers
ag, ko, and g such that, for all ¢ > kg and a > ag,

i(p—0) -
2|A7 (v )\
Then it follows from (12) and (13) that, for ¢ > ko and a > ag, the event B implies
theeventD:{w:|§i—1/’ >70}: B CD.
Thus, it follows from the above arguments that, for sufficiently large a and k and small
6 > 0, we have

— |z —v| > 0. (13)

IN

e =P (C,3i € (k, nd] | Sy =)
< P(B,3i€ (k, nd] | Sp=2) <



10 S. ALIYEV, F. RAHIMOV, AND M. NAVIDI

< P(D,Jdie(knd] |S,=x). (14)
From the second part of Lemma 1, we obtain
P(D,3i € (k, nd] | Sp=x) <
< P(D,3ie€ (k, nd]) <

< MP ([Si —v| > 0,3 > k). (15)
It follows from the strong law of large numbers that
P(|§i—z/’)>70, Ji > k) — 0 as k — oo. (16)

From (14), (15), and (16), we get statement 2) of Lemma 3.

4. PROOF OF THE THEOREM.
Assume
Ly (n,z,r) :P(Jm—er,l <i<k| §n:x), Jni =Tp — Ty,
Jp = 1I%1ii£1k (Z; — i6)
and
Up(r)=P(Jy>r)=P(Z;—i0>r, 1 <i<k).
It follows from Lemma 2 that, for each k& and r > 0,
Ly (n,z,7) — Wi (r) as a — 0. (17)
Since ¥y, (1) — ¥ (r) as k — oo, it remains to show that, for sufficiently large k,
es =es(n,z,r) =Ly (n,x,r) — L(n,z,7) — 0 as a — oo. (18)
For any d € (0,1), we have
0<e3s<P(Jpi—i0<r, Fic(k,n-1] | S, =2) <
< P(Jpi—i0<r,3i€(k, nd]|Sy=2x)+
+P (Jni —i0 <r,3i € (nd,n—1] | Sp =) =e2 +e1,
where €1 and &9 are from Lemma 3.
Therefore, Lemma 3 yields (18).

The statement of the theorem follows from (17) and (18).
Proof of the Corollary. Following [1], we have

lo(n,z) =P (Tpy < fa(k), 1<k<n—-1]S,=21)=
:P(Tn—Tn,kZTn—fa(n—k), 1§k§n—1|§n:x):
=P (Jor = nA () = fan+ (fa(n) = fa(n—k)),1<k<n—-1|5, =xz).

Hence, recalling the notation d, (n,x) = nA (z) — f, (n) and taking into account that,
for some intermediate point m = m (n, k) from the segment [n — k, n],

fa(n) = fa(n = k) =kfq (m),

we get
lo (n,2) :P(Jnk > 6y (n,x) +kf,(m), 1<k<n—-1|S, :m).
Denote
Tu= i (o = kfy (m)
and

Ly(nz,r)=P(J, >r| S, =x).
It is clear that
lo (n,2) = L' (n, 2,04 (n,7)).
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By the scheme of the proof of relation (18), it is easy to show that, for each fixed
k>1,
L (n,z,r)— L (n,z,r) — 0 as a — oo.
The statement of the corollary follows from the theorem.
Remark. The theorem and the corollary were established for the case A (x) = z in
[1] and for the case of f, (t) = a and D& < oo in [8].

The authors thank the reviewer for useful remarks.
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