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N. S. AIUBOVA

LIMIT THEOREMS FOR ONE STATISTIC OF FBM IN THE MODEL

OF REAL OBSERVATIONS

In this article the central limit theorem as Hurst index H ∈
(
0, 3

4

]
and the non-central

limit theorem as Hurst index H ∈
(
3
4
, 1

)
for statistics of fraction Brownian motion

in the model of real observations are obtained.

1. Introduction

A centered Gaussian random process {ξH(t), t ∈ R} with the covariance function

BH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

is called a fraction Brownian motion (FBM) with Hurst parameter H ∈ (0, 1). For
H = 1

2 an FBM is a standard Wiener process. For H > 1
2 an FBM has a property of

long-range dependence and for H < 1
2 it is short-range dependent. An FBM is widely

used in the contemporary models of a hydrology, meteorology, finance mathematics and
other sciences. The problem of the statistical estimation of the Hurst parameter was
considered by the many authors. An overview of several methods to estimate the Hurst
parameter is given in [1]. The most popular methods are based on the Baxter sums [2],
[3], [4]. The Levy-Baxter theorems provide for consistence of those estimations. The
Baxter sums methods permit to obtain the non-asymptotic confidence regions for the
estimated parameters.

Recently, interest in problem of estimating by observations with errors has increased.
For example, in the monograph [5] the application of regression models with measurement
errors to radiation risks assessment is considered. The estimation of the Hurst parameter
of fractional Brownian motion by observations with errors was investigated in articles
[6],[7].

2. Model of real observations

The real observation of the value of a random process at a point is carried out by
a device that has a certain inertia. Therefore, when measuring the value of a random
process ξ(·) at a moment t, the device gives the value of the integral

∫
O(t)

ξ(s)ϕ(s)ds,

where O(t) a certain neighborhood of the point t, ϕ(s) is a function that characterizes
the device [8].

Let δ ∈ (0, 1
3 ), ∆ > 1 + 2δ; ϕ ∈ L1([−δ, δ]) is known nonnegative function,∫ δ

−δ ϕ(s)ds = 1.
Let

ηk,H =

∫ k∆+δ

k∆−δ
ξH(s)ϕ(s− k∆)ds, k ∈ Z.

ξk,H = ηk+1,H − ηk,H , k ∈ Z;
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In article [9] with statistics

(1) SN,H =

N−1∑
k=0

ξ2
k,H , N ≥ 1

consistent estimate of the Hurst parameter of the fractional Brownian motion is con-
structed. Note that (ξk,H) is stationary Gaussian random sequence, Eξk,H = 0; the
function κ(H) = Eξ2

0,H , H ∈ (0, 1) is nondecreasing and continuous on the interval

(0, 1), κ(0+) = 0, κ(1−) = ∆2 [9].
In this paper for statistics SN,H , N ≥ 1 the central limit theorem as H ∈

(
0, 3

4

]
and

the non-central limit theorem as H ∈
(

3
4 , 1
)

are obtained.

3. Asymptotic normality of SN,H as H ∈
(
0, 3

4

]
Let r(n) = Eξ0,Hξn,H , n ≥ 0. In article [9] it is proved that

(2) r(n) =
1

2

∫
A

(((n−1)∆+s−t)2H−2(n∆+s−t)2H+((n+1)∆+s−t)2H)ϕ(s)ϕ(t)dsdt,

where H ∈ (0, 1), A = [−δ, δ]2, n ≥ 2;

(3) r2(n) ≤ (2H(2H − 1))2

4((n− 2) + 1)4−4H
∆4, n ≥ 3

Then apply the results of the article [10] in the case of J = 1; Xn, n ∈ Z is a sta-
tionary Gaussian sequence with zero mean and unit variance. Let r̃(l) = EX0Xl, l ∈ Z;
H(x) = H2(x) = x2 − 1, x ∈ R is a second-degree Hermite polynomial; the degree of the

polynomial is k = 2, c1 = 0, c2 = 1, cm = 0, m ≥ 3; ZN0 = 1
AN

∑N
j=1H2(Xj), where

AN are corresponding norming constants. In this case, Theorem 3.1 and Theorem 3.2
respectively follow from Theorem 1 and Theorem 1 ’[10].

Theorem 3.1. Let stationary Gaussian sequence Xn, n ∈ Z satisfies the condition∑
N∈Z

r̃2(n) <∞.

Let AN =
√
N. Then exists

lim
N→∞

2

N

N∑
i,j=1

r̃2(i− j) = 2σ2
2 , σ

2 = 2σ2
2 ,

and ZN0 converges weakly to σZ∗0 , where Z∗0 is a standard Gaussian random variable.

Theorem 3.2. Let the correlation function of a stationary Gaussian sequence Xn, n ∈ Z
satisfies the condition

N∑
j=1

r̃2(l) = L(N)

and exists

lim
N→∞

1

L(N)

N∑
j=1

r̃l(j)

for all l ≥ k, where function L(N) is the function of slow change. Let AN =
√
NL(N).

Then exists

lim
N→∞

2

NL(N)

N∑
i,j=1

r̃2(i− j) = 2σ2
2 , σ

2 = 2σ2
2 ,
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and ZN0 converges weakly to σZ∗0 , where Z∗0 is a standard Gaussian random variable.

Let Xj =
ξj−1,H√
κ(H)

, j ∈ Z. Note that Xj , j ∈ Z. is a stationary Gaussian sequence with

zero mean, unit variance and correlation function

r̃(l) = EX0Xl =
1

κ(H)
Eξ−1,Hξl−1,H =

r(l)

κ(H)
, l ∈ Z

If H ∈ (0, 3
4 ) then 4− 4H > 1. Due to inequality (3)

∞∑
l=1

r̃2(l) =
1

κ2(H)

∞∑
l=1

r2(l) <∞.

From the Theorem 3.1 for H ∈ (0, 3
4 ) it follows

Theorem 3.3. Let H ∈ (0, 3
4 ). Then a sequence of random variables

1√
N

N∑
j=1

(X2
j − 1) =

1√
N

N−1∑
j=0

(
ξ2
j,H

κ(H)
− 1

)
=

1

κ(H)
√
N

(SN,H − ESN,H)

is asymptotically normal with zero mean and variance

σ2 = lim
N→∞

2

N

N∑
i,j=1

r̃2(i− j).

Let’s proof the Lemma:

Lemma 3.1. For any H ∈
[

3
4 , 1
)

there exists a positive constant C(H) such that

(4) r2(n) ∼ C(H)

n4−4H
, n→∞.

Proof. Note that the expression

Bn = ((n− 1)∆ + s− t)2H − 2(n∆ + s− t)2H + ((n+ 1)∆ + s− t)2H ,

under the integral sign on the right side of equality (3), is equal to the second order
increment of the function f(x) = x2H on an interval [(n− 1)∆ + s− t, (n+ 1)∆ + s− t].

Let z = (n− 1)∆ + s− t, (s, t) ∈ A = [−δ, δ]2. Then

Bn = f(z)− 2f(z + ∆) + f(z + 2∆) =

∫ z+∆

z

ds

∫ s+∆

s

f ′′(u)du.

Since −2δ ≤ s− t ≤ 2δ, then

2H(2H − 1)

((n+ 1)∆ + 2δ)2−2H
≤ f ′′(u) =

2H(2H − 1)

u2−2H
≤ 2H(2H − 1)

((n− 1)∆− 2δ)2−2H
.

For any v ∈ [z, z + ∆] let’s integrate term-by-term this double inequality in an interval
[v, v+ ∆] with respect to variable u, then integrate term-by-term in an interval [z, z+ ∆]
with respect to variable v. We obtain double inequality

2H(2H − 1)∆2

((n+ 1)∆ + 2δ)2−2H
≤
∫ z+∆

z

dv

∫ v+∆

v

2H(2H − 1)

u2−2H
du ≤ 2H(2H − 1)∆2

((n− 1)∆− 2δ)2−2H
.

Let’s multiply all parts of this inequality by 1
2ϕ(s)ϕ(t), (s, t) ∈ A and integrate on a set

A. Taking into account that
∫
A
ϕ(s)ϕ(t)dsdt = 1 and applying an equality (3), we obtain

that
H(2H − 1)∆2

((n+ 1)∆ + 2δ)2−2H
≤ r(n) ≤ H(2H − 1)∆2

((n− 1)∆− 2δ)2−2H
,
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it follows that

H2(2H − 1)2∆4

((n+ 1)∆ + 2δ)4−4H
≤ r2(n) ≤ H2(2H − 1)2∆4

((n− 1)∆− 2δ)4−4H
.

From the last double inequality it follows that the relation of equivalence (4) holds as
C(H) = H2(2H − 1)2∆4H .

The lemma is proven. �

Let H = 3
4 . Let’s prove that the function L(N) =

∑N
l=1 r̃

2(l) = 1
κ(H)

∑N
l=1 r

2(l) is a

function of slow change. To find the limit

lim
N→∞

∑N
l=1 r

2(l)

lnN

Stolz theorem applies:

lim
N→∞

∑N
j=1 r

2(j)

lnN
= lim
N→∞

r2(N + 1)

ln(N + 1)− lnN
= lim
N→∞

Nr2(N + 1) = C

(
3

4

)
,

due to Lemma 3.1. So, L(N) ∼ C( 3
4 ) lnN, N → ∞, whence it follows that a function

L(N), N ≥ 1 is a function of slow change.
It is similarly proved that for l > 2

lim
N→∞

1

L(N)

N∑
j=1

rl(j) = lim
N→∞

1

C( 3
4 ) lnN

N∑
j=1

rl(j) = 0.

Now from Theorem 3.2 it follows

Theorem 3.4. Let H = 3
4 . Then a sequence of random variables

1√
C( 3

4 )N lnN

N∑
j=1

(
X2
j − 1

)
=

1√
C( 3

4 )N lnN

N−1∑
j=0

(
ξ2
j,H

κ(H)
− 1

)
=

1

κ(H)
√
C( 3

4 )N lnN
(SN,H − ESN,H)

is asymptotically normal with zero mean and variance

σ2 = lim
N→∞

2

C( 3
4 )N lnN

N∑
i,j=1

r̃2(i− j).

4. Non-central limit theorem for SN,H as H ∈ ( 3
4 , 1)

In the article [13], in the case of a slow decrease to zero of the covariance function, a
non-central limit theorem for nonlinear functions from Discrete-time Gaussian stationary
processes is obtained. Using Theorem 1 from this article we get

Theorem 4.1. For H ∈ ( 3
4 , 1) the sequence of random variables

1

N2H−1
· SN,H − ESN,H

κ(H)
, N ≥ 1

is weakly convergent to a

1

D

∫
R2

ei(x1+x2) e
i(x1+x2) − 1

i(x1 + x2)
|x1|

α−1
2 |x2|

α−1
2 dW (x1)dW (x2),

the Wiener-Ito multiple integer relative to a random spectral measure W of the white
noise process, where D = 2Γ(α) cos(πα2 ), α = 2− 2H.
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Proof. In Theorem 1 of [13] let k = 2, H(x) = H2(x) = x2 − 1, x ∈ R. Lemma 1 ensures
that the conditions of Theorem 1 of [13] are fulfilled. Indeed, for H ∈ ( 3

4 , 1) constant

α = 2− 2H < 1
k = 1

2 ,

r(N) ∼ H(2H − 1)∆2H

Nα
, N →∞.

It follows, from Theorem 1 of [13], that the sequence of random variables

1

N2H−1
· SN,H − ESN,H

κ(H)
, N ≥ 1

converges in distribution to a random variable

(5)
1

D

∫
ei(x1+x2) e

i(x1+x2) − 1

i(x1 + x2)
|x1|

α−1
2 |x2|

α−1
2 dW (x1)dW (x2),

where D = 2Γ(α) cos(πα2 ). �
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