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OLEKSANDR PONOMARENKO AND YURIY PERUN

SPECTRAL ANALYSIS OF SOME CLASSES OF
MULTIVARIATE RANDOM FIELDS WITH ISOTROPIC

PROPERTY

In this paper we consider two classes of generalized random fields of sec-
ond order on R

n with values in Hilbert space H with isotropic property:
first - exponentially convex and isotropic random fields and second -
homogeneous and isotropic random fields. The spectral representations
for such fields and their covariance are obtained.

1. Introduction

It is well-known that spectral theory of random functions of second-order
is strictly related with theory of positive definite kernel and functions (see,
for instance [1], [2]).

The spectral theory of one-dimensional homogeneous and isotropic comp-
lex-valued random fields on n-dimensional vector space R

n was studied in
the works of M.I. Yadrenko and represented at his monograph [2]. In the
foundation of this theory lies the classical theorem of I. Shoenberg about
integral representation of continuous positive definite radial functions on R

n

[3].
In this paper we obtain the operator analogue of Shoenberg theorem

about integral representation of operator-valued weak continuous positive
definite radial functions in Hilbert space H and spectral representation for
strong continuous generalized random field of second order in H defined on
R

n with homogeneous and isotropic properties.
The classes of one-dimensional exponentially convex random functions

(processes and fields) were considered in the papers [4]-[6]. The covariance
functions such random functions depend on sum of their arguments. Multi-
variate exponentially convex random functions with values in Hilbert space
H were considered in the paper [7], [8]. The analogue of Shoenberg theo-
rem about integral representation of positive definite exponentially convex
radial complex-valued continuous functions was obtained by A. Nussbaum
[9].

In this paper we consider operator version of A. Nussbaum theorem about
integral representation operator-valued exponentially convex radial function
in Hilbert space and use this result for studying of new class of random fields
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with isotropic property - the class of exponentially convex and isotropic
random fields in Hilbert space H . The spectral representations of such
random fields are obtained.

2. Spectral representations of multivariate homogeneous

and isotropic random fields

Let L2(Ω) be Hilbert space of all complex-valued random variable of sec-
ond order, which defined on some probability space (Ω,F ,P) and H be a
complex Hilbert space. The set L(H, L2(Ω)) of all linear continuous map-
pings of the space H into L2(Ω) may be considered as the set of generalized
random elements of second order in H which defined on (Ω,F ,P). Such
generalized random elements may be realized as usual random elements in
some extension of the space H (see [10]).

Denote by B(H) Banach algebra of all linear bounded operators in H and
denote by B+(H) the convex cone of all nonnegative Hermitian operators
in B(H).

The expectation m = EΞ ∈ H and covariance operator [Ξ, Ψ] ∈ B(H) for
generalized random elements Ξ, Ψ ∈ L(H, L2(Ω)) are uniquely determinated
by the relations

(u|m) = E(Ξu), ([Ξ, Ψ]u|ν) = E(Ξu)(Ψν), u, ν ∈ H,

where (·|·) is an inner product in H . Note that [Ξ, Ψ] is sesquilinear form
on L(H, L2(Ω)) and [Ξ, Ξ] ∈ B+(H).

If dimH = d < ∞ and {ej}d
j=1 is orthonormal basis in H , then random

element Ξ ∈ L(H, L2(Ω)) may be identified with random vector ξ = {ξj}d
j=1,

with ξj = Ξej and EΞ - with vector Eξ = {Eξj}d
j=1 and covariance operator

[Ξ, Ψ], Ψ ∈ L(H, L2(Ω)) - with matrix {Eξjϕk}d
j,k=1, where ϕk = Ψek, k =

1, .., d. The family of generalized random elements {Ξx, x ∈ R
n}, Ξx ∈

L(H, L2(Ω)) is called a (generalized) random field of second order in H . The

field Ξx is continuous if it is continuous as function Ξ̃ : R
n → L(H, L2(Ω))

with respect to strong operator topology of the space L(H, L2(Ω)). Then
its mean mx = EΞx, x ∈ R

n and covariance kernel

Q(x, y) = [Ξx, Ξy], x, y ∈ R
n

are continuous respectively in norm of space H and in weak topology of
B(H).

Note that Q is positive definite operator kernel on R
n, i.e. for all integers

m ∈ N, vectors xk ∈ R
n, uk ∈ H, k = 1, . . . , m

m∑
k=1

m∑
j=1

(Q(xk, xj)uk|uj) ≥ 0

Let us suppose that mx ≡ 0. Denote by SO(n) the group of all rotations
of R

n around zero point.
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Definition 2.1. Random feld Ξx, x ∈ R
n in H is called an isotropic field if

its covariance kernel Q is invariant with respect to all rotations g ∈ SO(n):

Q(gx, gy) = Q(x, y), x, y ∈ R
n.

Random field Ξx, x ∈ R
n in H is called homogeneous if its covariance

kernel is invariant with respect to all shifts in R
n: for all z, x, y ∈ R

n

Q(x + z, y + z) = Q(x, y).

From this definition it follows that:

1) the covariance kernel Q(x, y) of homogeneous random field Ξx de-
pends only on difference of its arguments x − y;

2) the covariance kernel Q(x, y) of homogeneous and isotropic random
field depends only on distance |x − y| of its arguments where | · | is
Eucledian norm in R

n, i.e. it exists such B(H)-valued function K
on [0,∞)

Q(x, y) = K(|x − y|), x, y ∈ R
n.

Such function K is called a covariance function of field Ξx. The
last fact is consequence of invariance of Q with respect to all hard
motions of space R

n.

Theorem 2.1. If Ξx, x ∈ R
n is continuous homogeneous and isotropic ran-

dom field in Hilbert space H, then its covariance function K : R+ → B(H)
admits the following spectral representation

(1) K(r) =

∫ ∞

0

Yn(λr)G(dλ), r ≥ 0,

where Yn(t) is spherical Bessel function

(2) Yn(t) = (
2

t
)

n−2
2 Γ(

n

2
)Jn−2

2
(t)

(Jm(t) denotes there the Bessel function of first kind of order m and Γ de-
notes gamma function), G is operator B+(H)-valued measure on σ-algebra
of Borel sets B(R+) on semiline R+ and G(R+) = K(0).
Proof. Because the field Ξx is homogeneous its covariance function

Q(x − y, 0) = [Ξx, Ξy]

is Fourier transformation of uniquely defined operator B+(H)-valued Radon
measure F on σ-algebra of Borel sets B(Rn):

(3) Q(x − y, 0) =

∫
n

exp{i(z|x − y)}F (dz), x, y ∈ R
n,

where (·|·) is inner product in R
n and i is imaginary unit (see, for example

[7], [10]).
Isotropic property of the field Ξx is equivalent then to invariance of the

spectral measure F of field Ξx with respect to all rotation g ∈ SO(n) :
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F (Δ) = F (gΔ), Δ ∈ B(Rn). This fact is cosequence of uniqueness of mea-
sure F and exchange of arguments in integral (3).

The passage to spherical coordinates in representation (3) gives through
invariantness of F the following equality

(4) F (dz) =
1

Wn(|z|)dMn(|z|)G(d|z|),

where Wn(|z|) is area of sphere Sn(|z|) of radius |z| in R
n, dMn(|z|) is

element of area for surface of this sphere and G(d|z|) is value of measure F
of spherical layer {x ∈ R

n : |z| < |x| < |z| + d|z|}.
Then representation (1) follows from the equality

(5)
1

Wn(λ)

∫
Sn(λ)

exp{i(z|x − y)}Mn(dz) = Yn(λ|x − y|), λ > 0.

Remark 2.1. Operator B(H)-valued weakly continuous positive definite
function V (x) on R

n is radial, i.e. depends only on norm of its arguments,
V (x) = K(|x|), x ∈ R

n, K : R+ → B(H), if and only if it has integral
representation (1).

This consequence is operator analogue of Shoenberg theorem [3] about
integral representation of complex-valued positive definite radial function
on R

n and follows from the fact that class of covariance functions of homo-
geneous random fields coinsides with class of B(H)-valued positive definite
functions on R

n (see [10]).
Remark 2.2. The spectral measure G of homogeneous and isotropic ran-
dom field Ξx ∈ R

n in H is uniquely reproduced through covariance function
K(r), r ≥ 0 of Ξx by the formula

(6) G([0, λ]) =

∫ ∞

0

Jn
2
(λr)(λr)

n
2 [

K(r)

r2
n−2

2 Γ(n
2
)
]dr, λ ≥ 0

The equality (6) may be obtained by the same way as in one-dimensional
case (see [2]).

Remark 2.3 In the case n = 2 the representation (1) has the following
simple form

K(r) =

∫ ∞

0

J0(λr)G(dλ)

and in the case n = 3 the form

K(r) = 2

∫ ∞

0

sinλr

λr
G(dλ).
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Theorem 2.2. Continuous homogeneous and isotropic random field Ξx ∈
R

n in space H admits the spectral representation

(7) Ξx = cn

∞∑
m=0

h(m,n)∑
l=1

Sl
m(θ1, . . . , θn−2, ϕ)

∫ ∞

0

(λr)
2−n

2 Jm+ n−2
2

(λr)Φl
m(dλ),

where (r, θ1, . . . , θn−2, ϕ) are spherical coordinates of vector x in R
n,

Sl
m(θ1, . . . , θn−2, ϕ)

are orthogonal spherical harmonics of degree m and

h(m, n) =
(2m + n − 2)(m + n − 3)!

(n − 1)! m!

is a number of such harmonics,Φl
m is a sequence of random L(H, L2(Ω))-

valued measures on B(R+) such that EΦl
m(Δ) = 0 and

(8) [Φl
m(Δ1), Φ

q
p(Δ2)] = δmpδlqG(Δ1 ∩ Δ2),

δmq is a Croneker symbol and cn = 2n−1Γ(n
2
)π

n
2 .

Proof. Using the formula (1) for [Ξx, Ξy] = K(|x − y|) and the formula of
summation for spherical harmonics [11] we have that K(|x − y|) may by
represented through spherical coordinates of vectors x and y,

x = (r, θ1, . . . , θn−2, ϕ), y = (r′, θ′1, . . . , θ
′
n−2, ϕ

′)

by the equality

K(|x − y|) = c2
n

∫ ∞

0

∞∑
m=0

h(m,n)∑
l=1

Sl
m(θ1, . . . , θn−2, ϕ)Sl

m(θ′1, . . . , θ
′
n−2, ϕ

′)×

(9) [(λr)
2−n

2 Jm+ n−2
2

(λr)][(λr′)
2−n

2 Jm+ n−2
2

(λr′)]G(dλ).

Now the spectral representation (7) follows from (9) by application of the-
orem 3 [12] about integral representation of generalized random functions
in locally convex spaces.
Remark 2.4. In the case of plane, n = 2 with polar system of coordinate
(r, ϕ) we have that planar continuous homogeneous and isotropic random
field admits the spectral representation

(10) Ξ(r,ϕ) =
∞∑

m=−∞
exp{imϕ}

∫ ∞

0

Jm(λr)Φm(dλ).

The representation (2) follows from (9) because c2 =
√

2π, h(m, 2) = 2,

and for given m spherical harmonics have the form (2π)
−1
2 exp{imϕ} and

(2π)
−1
2 exp{−imϕ}.
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3. Spectral representation of exponentially convex and

isotropic random fields

Definition 3.1 Random field Ξx ∈ R
n in space H is said to be an expo-

nentially convex field (or additively stationary or symmetric field in other
terminology) if its covariance kernel Q(x, y), x, y ∈ R

n depends only on sum
of arguments x + y.

Continuous exponentially convex random field Ξx in H and its covariance
function K(x + y) = Q(x, y) admit the following spectral representations

(11) Ξx =

∫
n

exp{(λ|x)}Φ(dλ), K(z) =

∫
n

exp{(λ|z)}F (dλ), x, z ∈ R
n

where Φ is L(H, L2(Ω))-valued orthogonal random measure on B(Rn), F is
finite B+(H)-valued Radon measure on B(Rn) and

[Φ(Δ1), Φ(Δ2)] = F (Δ1 ∩ Δ2), Δ1, Δ2 ∈ B(Rn)

(see [7], [8]).
Its easy to see that if exponentially convex random field Ξx, x ∈ R

n

in H is also isotropic then its covariance function K(z) depends only on
|z|, K(z) = K(|z|) and its spectral measure F in (11) is invariant with
respect to all rotations g ∈ SO(n).
Theorem 3.1. If Ξx, x ∈ R

n is continuous exponentially convex and
isotropic random field in Hilbert space H, then its covariance function K(z),
z ∈ R

n admits the following spectral representation

(12) K(z) =

∫ ∞

0

Yn(iλ|z|)G(dλ), z ∈ R
n

where Yn is spherical Bessel function (2) and G is uniquely defined operator
B+(H)-valued measure on B(R+).

In the case of plane, n = 2

(13) K(z) =

∫ ∞

0

Y0(iλ|z|)G(dλ),

and in the case n = 3

(14) K(z) = 2

∫ ∞

0

siniλ|z|
iλ|z| G(dλ).

Proof. One way of proof of this theorem is to use method analogous to the
proof of theorem 2.1. We represent the other way.

Let us consider complex-valued quadratic form ku(z) = (K(z)u|u), u ∈ H
on space H which generated by function K : R

n → B(H). The function
ku(z), z ∈ R

n under each fixed vector u ∈ H is continuous complex-valued
positive definite exponentially convex radial function on R

n (which depend
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only on |z|) and by Nussbaum theorem [9] it admits the following represen-
tation

ku(z) =

∫ ∞

0

Yn(iλ|z|)μu(dλ)

μu is uniquely defined positive finite measure on B(R+) for every u ∈ H .
By polarization formula for space H quadratic form ku(z), u ∈ H uniquely

defined sesquilinear form ku,ν(z) = (K(z)u|ν), u, ν ∈ H for which

(15) ku,ν(z) =

∫ ∞

0

Yn(iλ|z|)μu,ν(dλ),

where μu,ν(dλ) as function of (u, ν) ∈ H ×H is sesquilinear form for which

μu,ν(Δ) =
1

4
{μu+ν(Δ) − μu−ν(Δ) + iμu+iν(Δ) − iμu−iν(Δ)}

for Δ ∈ B(R+). The form μu,ν(Δ) is bounded because

|μu,ν(Δ)| ≤ |(K(0)u|ν)| ≤ ‖K(0)‖‖u‖‖ν‖.
Then it exists uniquely defined B+(H)-valued measure G on B(R+) such
that

μu,ν(Δ) = (G(Δ)u|ν), u, ν ∈ H, Δ ∈ B(R+)

Then (12) follows from (15).
The equalities (13) and (14) are consequence of (12).

Remark 3.1 Weakly continuous operator function K : R
n → B(H) is

positive definite exponentially convex and radial function if and only if it
admits the integral representation (12).

This consequence is operator version of foregoing Nussbaum theorem
about integral description of complex-valued exponentially convex and ra-
dial functions. The result follows from the fact that class of such operator
functions is identical to the class of covariance function of exponentially
convex and isotropic random fields in space H .
Theorem 3.2 Under the assumption of theorem 3.1 random field Ξx, x ∈ R

n

admits the spectral representation

(16)

Ξx = cn

∞∑
m=0

h(m,n)∑
l=1

Sl
m(θ1, . . . , θn−2, ϕ)

∫ ∞

0

(iλr)
2−n

2 Jm+ n−2
2

(iλr)Φl
m(dλ),

which are related to spectral representation (7) of homogeneous and isotropic
random field with the same notations (in particular, (r, θ1, . . . , θn−2, ϕ) is
spherical coordinates of vector x in R

n).
In the case of plane, n = 2, with polar coordinates (r, ϕ) spectral repre-

sentation (16) have the form
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(17) Ξ(r,ϕ) =
∞∑

m=−∞
exp{imϕ}

∫ ∞

0

Jm(iλr)Φm(dλ).

The proof of representation (16) is analogous to the proof of representa-
tion (7) with using instead of spectral expansion (1) the spectral expansion
(12). The formula (17) is consequence of representation (16) because in the
case of n = 2 we have that c2 =

√
2π, h(m, 2) = 2 and for each m corre-

sponding spherical harmonics have the form (2π)
−1
2 eimϕ and (2π)

−1
2 e−imϕ.

Let Ξt,x be a continuous exponentially convex random field in H on
(−∞,∞) × R

n where t is time variable and x ∈ R
n is space variable and

field Ξt,x is isotropic with respect to space variable x. We may obtain the
following result by using arguments similar to proofs of theorem 2.1, 2.2,
3.1, 3.2.
Theorem 3.3 The covariance function of random field Ξt,x admits the spec-
tral representation

(18) [Ξt,x, Ξs,y] =

∫ +∞

−∞

∫ +∞

0

exp{μ(t + s)}Yn(iλ|x − y|)F (dμdλ)

where F is uniquely defined B+(H)-valued measure on R
n+1 = (−∞,∞) ×

R
n. Random field Ξt,x admits the following spectral representation

Ξt,x = cn

∞∑
m=0

h(m,n)∑
l=1

Sl
m(θ1, . . . , θn−2, ϕ)×

(19)

∫ +∞

−∞

∫ ∞

0

etμ(iλr)
2−n

2 Jm+ n−2
2

(iλr)Φl
m(dμdλ),

where (r, θ1, . . . , θn−2, ϕ) is spherical coordinates of vector x and Φl
m is se-

quence of random L(H, L2(Ω))- valued measures with structural measure F ,
i.e.the equality (8) take place with Δ1, Δ2 ∈ B(R × R+).
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