MARIYA PERESTYUK

ON UNIFORM CONVERGENCE OF WAVELET EXPANSIONS OF SOME RANDOM PROCESSES

In the paper there are found conditions for uniform convergence with probability one of wavelet expansion of \(g \)-sub-Gaussian random processes under additional condition for norm of such process

1. Introduction

It this paper I proceed with research presented in [1] and derive conditions for uniform convergence of wavelet expansions of \(g \)-sub-Gaussian random processes on the finite interval in case when norm \(\tau_g \) of such process

\[X = \{ X(t), t \in R \} \]

increases for positive \(t \).

2. Main results

Definition 1. [2] Let \(g = \{ g(x), x \in R \} \) be a continuous even convex function; \(g \) is called an \(N \)-function if \(g(0) = 0, g(x) > 0 \) as \(x \neq 0 \) and

\[\lim_{x \to 0} \frac{g(x)}{x} = 0, \lim_{x \to \infty} \frac{g(x)}{x} = \infty. \]

Condition Q. [3] An \(N \)-function \(g \) satisfies condition Q if \(\lim \inf_{x \to 0} \frac{g(x)}{x^2} = C > 0 \). It may happen that \(C = \infty \).

Definition 2. [2, 3] Let \(g \) be an \(N \)-function, which satisfies condition Q. Let \(\{ \Omega, L, P \} \) be a standard probability space. A random variable \(\xi = \{ \xi(\omega), \omega \in \Omega \} \) belongs to the space \(\text{Sub}_g(\Omega) \) (is \(g \)-sub-Gaussian) if \(E \xi = 0, E \exp \{ \lambda \xi \} \) exists for all \(\lambda \in R \) and there exists a constant \(a > 0 \) such that the following inequality holds for all \(\lambda \in R : E \exp \{ \lambda \xi \} \leq \exp \{ g(a\lambda) \} \).

The space \(\text{Sub}_g(\Omega) \) is a Banach space with respect to the norm

\[\tau_g(\xi) = \sup_{\lambda \neq 0} g^{-1}(\ln E \exp \{ \lambda \xi \}) \]

\[\lambda \]

Definition 3. [2] A random process \(\{ X(t), t \in T \} \) belongs to the space \(\text{Sub}_g(\Omega) \) (is \(g \)-sub-Gaussian) if the random variable \(X(t) \in \text{Sub}_g(\Omega) \) for all \(t \in T \).

Let \(\varphi = \{ \varphi(x), x \in R \} \) be an \(f \)-wavelet and \(\psi = \{ \psi(x), x \in R \} \) be the \(m \)-wavelet, which corresponds to \(\varphi \).

Define a family of functions \(\{ \varphi_{jk}, j \in Z, k \in Z \} \) in the following way:

\[\varphi_{jk}(x) = 2^j/2 \cdot \varphi(2^j x - k), \psi_{jk}(x) = 2^j/2 \cdot \psi(2^j x - k). \]

2000 Mathematics Subject Classification. Primary 65T60, 60G17.

Key words and phrases. Wavelet expansions, uniform convergence, \(g \)-sub-Gaussian random processes.
It is known that the family of functions \(\{ \varphi_{0k}, \psi_{jk}, j = 0, 1, \ldots k \in \mathbb{Z} \} \) is an orthonormal basis in \(L_2 (R) \).

Definition 4. [1] Let \(\varphi \) be an \(f \)-wavelet (\(\psi \) be an \(m \)-wavelet). The assumption \(S \) holds for \(\varphi \) (or \(\psi \)) if there exists a function \(\Phi = \{ \Phi (x), x \geq 0 \} \) such that \(\Phi (x) \) decreases, \(|\varphi (x)| \leq \Phi (|x|) \) (or \(\psi (x) \leq \Phi (|x|) \)) almost everywhere and \(\int R \Phi (|x|) \ dx < \infty \).

The following theorem is a particular case of the theorem 4.1 from the paper [1].

Theorem 1. Let \(X = \{ X (t), t \in R \} \) be a separable \(g \)-sub-Gaussian random process, \(B_l = [a_l, a_{l+1}], a_{l+1} - a_l = e, l \in \mathbb{Z}, a_l \to +\infty \) as \(l \to +\infty \), \(a_l \to -\infty \) as \(l \to -\infty \). Assume that there exists an increasing continuous function \(\sigma = \{ \sigma (h), h > 0 \} \) such that \(\sup_{|t-s| \leq h} \tau_g (X (t) - X (s)) \leq \sigma (h) \).

Let \(c = \{ c (t) , t \in R \} \) be a continuous even positive function such that for sufficiently large \(x \) we have: \(c (ax) \leq c (x) A (a), A (a) \in (0; \infty) \). Denote \(\delta_l = \sup_{t \in B_l} (c (t))^{-1}, \chi_l = \sup_{l \in B_l} \tau_g (X (t) - X (a_l+1)), Z_l = \tau_g (X (a_l+1)), l \in \mathbb{Z} \).

Assume that for any \(\varepsilon > 0 \):

\[
\int_0^\varepsilon a_g \left(\ln \left(\left(2 \sigma^{-1} (u) \right)^{-1} + 1 \right) \right) \ du < \infty, \tag{1}
\]

and

\[
\sum_{l \in \mathbb{Z}} \delta_l Z_l < \infty, \tag{2}
\]

\[
\sup_{l \in \mathbb{Z}} \frac{\chi_l}{Z_l} \leq \beta < \infty, \tag{3}
\]

\[
\sum_{l \in \mathbb{Z}} \delta_l \int_0^{\chi_l} a_g \left(\ln \left(\frac{a_{l+1} - a_l}{2 \sigma^{-1} (u)} + 1 \right) \right) \ du < \infty, \tag{4}
\]

where \(a_g (x) = \frac{x}{g^{(-1)} (x)} \). Let \(\varphi \) be an \(f \)-wavelet and \(\psi \) be the \(m \)-wavelet, which corresponds to \(\varphi \), and suppose that the assumption \(S \) holds for \(\varphi \) and \(\psi \) with respect to a function \(\Phi \) and

\[
\int R c (x) \Phi (|x|) \ dx < \infty. \tag{5}
\]

Then with probability one there exist

\[
a_{0k} = \int R X (t) \varphi_{0k} (t) \ dt \quad \text{and} \quad b_{jk} = \int R X (t) \psi_{jk} (t) \ dt, \quad k \in \mathbb{Z}, j = 0, +\infty
\]
and wavelet expansion \(X_m(t) = \sum_{k \in \mathbb{Z}} \alpha_{0k} \varphi_{0k}(x) + \sum_{j=0}^{m-1} \sum_{k \in \mathbb{Z}} \beta_{jk} \psi_{jk}(x) \) converges to \(X(t) \) as \(m \to \infty \) uniformly on each interval \([a, b] \) with probability one \((-\infty < a < b < +\infty)\).

Theorem 2. Let the assumptions (1) and (2) of the Theorem 1 hold and assume that

\[
\sum_{l \in \mathbb{Z}} \delta_l \chi_l a_g \left(\ln \left(1 + (a_{l+1} - a_l) \right) \right) < \infty, \tag{6}
\]

\[
\sum_{l \in \mathbb{Z}} \delta_l \int_0^{\chi_l} a_g \left(\ln \left(\frac{a_{l+1} - a_l}{2\sigma^{(-1)}(u)} + 1 \right) \right) du < \infty. \tag{7}
\]

Also suppose that \(\tau_g(X(t)) = \tau_g(X(-t)) > 0, t \neq 0, \) and norm \(\tau_g(X(t)) \) increases as \(t > 0 \).

Then the assertion of the Theorem 1 follows.

Proof. It follows from Lemma 2.2.3 of the book [2] that the function \(a_g(x) = \frac{x+y}{g^{(-1)}(x+y)} \) increases as \(x > 0 \). If \(x > 0 \) and \(y > 0 \) then

\[
a_g(x+y) = \frac{x+y}{g^{(-1)}(x+y)} = \frac{x}{g^{(-1)}(x+y)} + \frac{y}{g^{(-1)}(x+y)} \leq \frac{x}{g^{(-1)}(x)} + \frac{y}{g^{(-1)}(y)} = a_g(x) + a_g(y). \]

Therefore

\[
\int_0^{\chi_l} a_g \left(\ln \left(\frac{a_{l+1} - a_l}{2\sigma^{(-1)}(u)} + 1 \right) \right) du \leq \int_0^{\chi_l} a_g \left(\ln \left(1 + \left(\frac{a_{l+1} - a_l}{2\sigma^{(-1)}(u)} \right)^{-1} \right) \right) du \leq \chi_l a_g \left(\ln \left(1 + \left(\frac{a_{l+1} - a_l}{2\sigma^{(-1)}(u)} \right)^{-1} \right) \right) du
\]

and the assumption (4) follows from (6) and (7).

Since \(\sup_{l \in \mathbb{Z}} \frac{\chi_l}{\delta_l} = \sup_{l>0} \frac{\chi_l}{\delta_l} \), then

\[
\tau_g(X(t)) - X(a_{l+1}) \leq \tau_g(X(t)) + \tau_g(X(a_{l+1})) \leq 2\tau_g(a_{l+1})
\]

for any \(t \in B_l, l > 0. \) Therefore \(\frac{\chi_l}{\delta_l} \leq 2 \) and assumption (3) holds true.

Example 1. Let the assumptions of the Theorem 2 hold true for the function \(\sigma(u) = \frac{c}{(\ln(1+\frac{1}{2u}))}, \) where \(c > 0, \gamma > 0. \) Then \(\sigma^{(-1)}(u) = \)
\[
\frac{1}{2} \left(\exp \left(\frac{1}{\tau^{1/\gamma}} \right) \right) - 1 \\
\int_0^{\chi_l} a_g \left(\ln \left(1 + (2\sigma^{(-1)}(u))^{-1} \right) \right) \, du = \int_0^{\chi_l} a_g \left(\frac{c}{u} \right)^{1/\gamma} \, du.
\] (8)

Since \(a_g \left(\frac{x}{u} \right)^{1/\gamma} = \frac{(\frac{x}{u})^{1/\gamma}}{g^{(-1)} \left((\frac{x}{u})^{1/\gamma} \right)} \leq \frac{(\frac{x}{u})^{1/\gamma}}{g^{(-1)} \left(\frac{c}{\chi_l} \right)^{1/\gamma}} \), as \(u < \chi_l \) then

\[
\int_0^{\chi_l} a_g \left(\ln \left(1 + (2\sigma^{(-1)}(u))^{-1} \right) \right) \, du \leq \frac{c^{1/\gamma}}{g^{(-1)} \left(\frac{c}{\chi_l} \right)^{1/\gamma}} \cdot \frac{\chi_l^{1-\frac{1}{\gamma}}}{1 - \frac{1}{\gamma}}
\]
and assumption (7) holds true if

\[
\sum_{l \in Z} \delta_l \chi_l^{1-\frac{1}{\gamma}} \left(g^{(-1)} \left(\frac{c}{\chi_l} \right)^{1/\gamma} \right)^{-1} < \infty.
\] (9)

If \(g(x) = |x|^\alpha \), \(1 < \alpha \leq 2 \), then \(a_g \left(\frac{x}{u} \right)^{1/\gamma} = \left(\frac{x}{u} \right)^{\frac{1}{\gamma} - \frac{1}{\alpha}} \) and if \(\gamma > 1 - \frac{1}{\alpha} \) then

\[
\int_0^{\chi_l} a_g \left(\ln \left((2\sigma^{(-1)}(u))^{-1} + 1 \right) \right) \, du = \frac{c^{1-\frac{1}{\gamma}}}{\gamma \chi_l^{1-\frac{1}{\gamma} + \frac{1}{\gamma\alpha}}}
\]

Thus assumption (7) holds true if

\[
\sum_{l \in Z} \delta_l \chi_l^{1-\frac{1}{\gamma} + \frac{1}{\gamma\alpha}} < \infty.
\] (10)

Theorem 3. Let \(X = \{ X(t), t \in R \} \) be a separable \(g \)-sub-Gaussian random process, where \(g(x) = |x|^\alpha \), \(1 < \alpha \leq 2 \); \(X(t) = X(-t) \) with probability one; \(B_l = [a_l, a_{l+1}] \), \(l = 0, 1, 2, ..., a_0 = 0, a_{l+1} - a_l > \epsilon, a_l \to \infty, l \to \infty \), and

\[
\sup_{|t-s| \leq \epsilon} \tau_g \left(X(t) - X(s) \right) \leq \frac{c}{\left(\ln \left(1 + \frac{1}{2\alpha} \right) \right)^\gamma}, c > 0, \gamma > 1 - \frac{1}{\alpha}.
\]

Let \(\tau_g(X(t)) \) increase as \(t > 0 \) and

\[
\sum_{l=0}^{\infty} \delta_l Z_l < \infty,
\] (11)

\[
\sum_{l=0}^{\infty} \delta_l \chi_l \left(\ln \left(1 + (a_{l+1} - a_l) \right) \right)^{1-\alpha} < \infty,
\] (12)

\[
\sum_{l=0}^{\infty} \delta_l \chi_l^{1-\frac{1}{\gamma} + \frac{1}{\gamma\alpha}} < \infty.
\] (13)

Then with probability one \(X_m(t) \to X(t) \) as \(m \to \infty \) uniformly on each bounded interval \([a, b]\).

Theorem 3 follows from Example 1 and Theorem 2.
Remark 1. Since $\chi_l \leq 2Z_l$ then from the assumption
\[
\sum_{l=0}^{\infty} \delta_l Z_l (\ln (1 + (a_{l+1} - a_l)))^{1-\alpha} < \infty
\]
the assumptions (11)–(13) follow, if $\chi_l > c > 0$.

If $a_l = e^l$ and $\tau_g (X(t)) = t$ then $c(t) = t \cdot (\ln t)^\beta$, $t > 1$, and

\[
\Phi(|t|) = \frac{1}{p(|t| (\ln t)^v)}, \quad v > 1, \ |t| > 1.
\]

Conclusions. In the paper there are found conditions for uniform convergence with probability one of the wavelet expansion of g-sub-Gaussian random process such that $\tau_g (X(t))$ increases for $t > 0$.

I plan to obtain similar results for random processes from $\text{Sub}_g (\Omega)$ such that

\[
\tau_g (X(t) - X(s)) \leq c \cdot |t - s|^{\alpha}.
\]

References

Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine

E-mail address: Fenix@justice.com