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MODELLING OF THE QUEUING SYSTEM WITH AN INCREASING

DEMAND INTENSITY IN THE EMPTY STATE

The article is dedicated to formation of the served demand flow restoration function
and lost demand flow restoration function when the queuing system operates with

an increasing demand intensity in the empty state. The paper shows the relation

between the input flow and servicing.

1. Introduction

Every queuing system, as a rule, includes the input demand flow, service facility, a
queue for service and output flow. There is often no information about the time of the
demand arrival and duration of its serving. Therefore, in order to analyze the queuing
system, it is assumed [11] that the time of the demand arrival and the service time
are random variables which distribution laws are known. The theoretical analysis of
the system functioning is based on Markov models, that is, on the description of the
system functioning with the use of Markov process with a discrete set of states [4]. The
formation of such a model implies determination of [3] the states in which the process
may be, and selection of one of the modes [6] of its transient probability characteristics of
the transfer from one state to the other. The well-known technique for finding the main
characteristics is applied to the formed process, that are interpreted as characteristics of
the output system.

Until recently, the mathematical models describing the queuing system functioning
were constructed on the assumption that the input flow and servicing are independent.
In recent decades, the possibility of modeling the dependence of these two factors has
been searched for. We introduced one of the possible options for such a dependency in
our work, namely, through the speeding up of the demand arrival and increase of the
service intensity.

The results described in this article can be used for calculation of the main character-
istics of single-channel systems at the design stage.

The construction of the new queuing mathematical models remains relevant till today,
and the researches are conducted both in the areas of the applied modeling [8], and
development of its general theory [7].

It should be mentioned that the classical queuing theory, as a rule, postulates a certain
type of the input flow and service time distribution law, and the input flow does not
depend on servicing. However, the practice needs require construction of the models
considering the input flow [10] and service discipline changes [9].

The objective and main task of the article is to establish a relation between the
input flow and servicing when constructing a mathematical model for description of the
transient service process in the queuing systems in case of the workload increase (demand
increased intensity).
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2. Task assignment

Let the demand flow arrive to the service facility, and the time of the first demand
is a random variable having an exponent distribution with the parameter αλ, where
α > 1. The demand that arrived for serving is serviced during a random time having an
exponent distribution with the parameter µ. The time of the next application arrival is
a random variable having an exponent distribution with the parameter λ. If the system
is empty before arrival of a new demand, then the demand intensity is increased. If a
new demand arrives earlier than the previous one is served, then it is lost.

The function of Poisson flow restoration with the parameter αλ is equal to

H(t) := Ev(t) = αλt,

and restoration density (demand arrival intensity)

h(t) = H ′(t) = αλ.

Let v0(t) be a number of the served demands during the time t, and vB(t)—a number
of the demands lost during the time t. It is evident, that

H0(t) +HB(t) = E(v0(t)) + E(vB(t)) =

= E(v0(t) + vB(t)) = H(t) = αλt,

where H0(t), HB(t)—flow restoration functions of the served and lost demands.

3. Main material

Theorem 1. The flow restoration function of the served demands is the following:

H0(t) =
αλ(λ+ µ)

(α+ 1)λ+ µ
t− αλ(λ+ µ)

((α+ 1)λ+ µ)2
(1− e−((α+1)λ+µ)t).

Proof. Let’s have the twocomponents Markov process, which represent the number of
demands served during interval [0; t] and the state of the server (empty or not empty).

We denote by e0 the state of the empty server and by e1—non-empty server.
ξ—the time of the arrival of the demand. The time of the first demand is a random

variable having an exponent distribution with the parameter αλ (λ > 1, λ > 0). The time
of the next demand arrivals have an exponent distribution with the parameter λ(λ > 0).
η—the length of time the remand is served. It is a random variable having an exponent

distribution with the parameter µ (µ > 0).
Let Pn0(t) be the probability that this process at the time t is in the state e0, and

during this time n demands are served, Pn1(t)—be the probability that the process at
the time t is in the state e1, and during this time n demands are served. Then the
system behaviour analysis during the time interval (t, t + ∆t) and the formula of the
total probability leads to the following equalities

P 00(t+ ∆t) = P 00(t)P (ξ > ∆t) + o(∆t),

P 01(t+ ∆t) = P 01(t)P (min(ξ, η) > ∆t) + P 00(t)P (ξ < ∆t) + o(∆t),

Pn0(t+ ∆t) = Pn0(t)P (ξ > ∆t) + Pn−1,1(t)P (min(ξ, η) < ∆t) + o(∆t),

Pn1(t+ ∆t) = Pn1(t)P (min(ξ, η) > ∆t) + Pn0(t)P (ξ < ∆t) + o(∆t),

for n = 1, 2, . . . .
If to consider that

P (ξ < ∆t) = 1− e−αλ∆t = αλ∆t+ o(∆t),

P (ξ > ∆t) = e−αλ∆t = 1− αλ∆t+ o(∆t),

P (min(ξ, η) < ∆t) = 1− e−(λ+µ)∆t = (λ+ µ)∆t+ o(∆t),

P (min(ξ, η) > ∆t) = e−(λ+µ)∆t = 1− (λ+ µ)∆t+ o(∆t),



MODELLING OF THE QUEUING SYSTEM . . . 77

then the last equalities will be written as

P 00(t+ ∆t)− P 00(t) = −αλP 00(t)∆t+ o(∆t),

P 01(t+ ∆t)− P 01(t) = −(λ+ µ)P 01(t)∆t+ αλP 00(t)∆t+ o(∆t),

Pn0(t+ ∆t)− Pn0(t) = −αλPn0(t)∆t+ (λ+ µ)Pn−1,1(t)∆t+ o(∆t),

Pn1(t+ ∆t)− Pn1(t) = −(λ+ µ)Pn1(t)∆t+ αλPn0(t)∆t+ o(∆t),

for n = 1, 2, . . . . If to postulate the differentiability of the functions Pn0, Pn1 (n =
0, 1, . . . ) (as it well known from the theory of Markov chains) then, having divided each
of the previous equalities by ∆t and passing to the limit with ∆t → 0, we will have an
indefinite system of differential equations

P
′
00(t) = −αλP 00(t),

P
′
01(t) = −(λ+ µ)P 01(t) + αλP 00(t),

P
′
n0(t) = −αλPn0(t) + (λ+ µ)Pn−1,1(t),

P
′
n1(t) = −(λ+ µ)Pn1(t) + αλPn0(t),

for n = 1, 2, . . . .
Let

Φ0(t, s) :=
∞∑
n=0

Pn0(t)sn,

Φ1(t, s) :=

∞∑
n=0

Pn1(t)sn

be generating functions according to sequences (Pn0(t)),(Pn1(t)). Then multiplying the
equation

P
′
n0(t) = −αλPn0(t) + (λ+ µ)Pn−1,1(t),

for n = 1, 2, . . . by sn and adding them to the first one, we get the equation

∂

∂t
Φ0(t, s) = −αλΦ0(t, s) + s(λ+ µ)Φ1(t, s).

And multiplying the equation

P
′
n1(t) = −(λ+ µ)Pn1(t) + αλPn0(t)

for n = 0, 1, 2, . . . by sn and adding them we get the equation

∂

∂t
Φ1(t, s) = αλΦ0(t, s)− (λ+ µ)Φ1(t, s).

Thus, we get the system of differential equations

{
∂Φ0(t,s)

∂t = −αλΦ0(t, s) + s(λ+ µ)Φ1(t, s),
∂Φ1(t,s)

∂t = αλΦ0(t, s)− (λ+ µ)Φ1(t, s).

If to differentiate the first equation by t again, using the last system, then we get a
linear second order equation with constant coefficients

∂2Φ0(t, s)

∂t2
+ ((α+ 1)λ+ µ)

∂Φ0(t, s)

∂t
+ αλ(λ+ µ)(1− s)Φ0(t, s) = 0.

By analogy, we get one more linear equation from the second equation

∂2Φ1(t, s)

∂t2
+ ((α+ 1)λ+ µ)

∂Φ1(t, s)

∂t
+ αλ(λ+ µ)(1− s)Φ1(t, s) = 0.

Then the equation

ρ2 + ((α+ 1)λ+ µ)ρ+ αλ(λ+ µ)− sαλ(λ+ µ) = 0
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is a characteristic equation of the corresponding equations,

ρ1 =
−(α+ 1)λ− µ+

√
((α− 1)λ− µ)2 + 4αλ(λ+ µ)s

2
,

ρ2 =
−(α+ 1)λ− µ−

√
((α− 1)λ− µ)2 + 4αλ(λ+ µ)s

2
.

Considering that P 00(0) = 1, Pn0(0) = 0 (n = 1, 2, . . . ),

Pn1(0) = 0(n = 0, 1, 2, . . . ),

we have

Φ0(0, s) = 1, Φ1(0, s) = 0.

Then
∂Φ0(0, s)

∂s
= −αλ, ∂Φ1(0, s)

∂s
= αλ.

Hence we get

Φ0(t, s) =
ρ2 + αλ

ρ2 − ρ1
eρ1t − ρ1 + αλ

ρ2 − ρ1
eρ2t,

Φ1(t, s) = − αλ

ρ2 − ρ1
eρ1t +

αλ

ρ2 − ρ1
eρ2t.

Let

Pn(t) = Pn0(t) + Pn1(t)

be the probability that n demands (n = 0, 1, . . . ) will be served during the t time. Then
it is evident that the generating function of the sequence (Pn(t)) is

Φ(t, s) :=

∞∑
n=0

Pn(t)sn =

∞∑
n=0

(Pn0(t) + Pn1)sn =

= Φ0(t, s) + Φ1(t, s) =
ρ2

ρ2 − ρ1
eρ1t − ρ1

ρ2 − ρ1
eρ2t.

Finally, as the flow restoration function of the served demands can be presented as

H0(t) = E(v0(t)) =

∞∑
k=1

kPn(t) =
∂Φ(t, s)

∂s
|s=1,

then

H0(t) = Φ′s(t, 1) = (
ρ2

ρ2 − ρ1
eρ1t − ρ1

ρ2 − ρ1
eρ2t)′s|s=1 =

= (
ρ′1ρ2 − ρ1ρ

′
2

(ρ2 − ρ1)2
(eρ1t − eρ2t) +

t

ρ2 − ρ1
(ρ′1ρ2e

ρ1t − ρ1ρ
′
2e
ρ2t))|s=1.

Considering that

ρ1(1) = 0,

ρ2(1) = −(α+ 1)λ− µ,

ρ′1(1) =
αλ(λ+ µ)

(α+ 1)λ+ µ
,

ρ′2(1) = − αλ(λ+ µ)

(α+ 1)λ+ µ
,

we have

H0(t) =
αλ(λ+ µ)

(α+ 1)λ+ µ
t− αλ(λ+ µ)

((α+ 1)λ+ µ)2
(1− e−((α+1)λ+µ)t).

�
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4. Test verification

It is evident that when α = 1, then we have the simplest model of the queuing one-
channel system with losses. Indeed

H0(t) =
λ(λ+ µ)

2λ+ µ
t− λ(λ+ µ)

(2λ+ µ)2
(1− e−(2λ+µ)t).

Corollary 1. The lost demand flow restoration function is the following

HB(t) =
α2λ2

(α+ 1)λ+ µ
t+

αλ(λ+ µ)

((α+ 1)λ+ µ)2
(1− e−((α+1)λ+µ)t).

5. Conclusions

In the presented work the functions of the served demand flow restoration and the lost
demand flow restoration with an increasing demand intensity of an empty queuing system
have been constructed and the relation between the input flow and servicing has been
modelled. Of course, such a model can describe certain real situations more effectively
than with the use of the independence of the input flow and servicing.

The constructed Markov representation of the distributions made it possible to con-
struct Markov process and to find both stationary and transient characteristics.
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