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G. V. RIABOV

DUALITY FOR COALESCING STOCHASTIC FLOWS ON THE REAL

LINE

For a class of coalescing stochastic flows on the real line the existence of dual flows
is proved. A stochastic flow and its dual are constructed as a forward and backward

perfect cocycles over the same metric dynamical system. The metric dynamical

system itself is defined on a new state space for coalescing flows. General results are
applied to Arratia flows with drift.

1. Introduction

In the present work we study duality for coalescing stochastic flows on the real line
from the perspective of random dynamical systems. By a flow on R we understand a
family {ψs,t : −∞ < s ≤ t <∞} of mappings of R, ψs,t : R→ R, that are related by the
evolutionary property:

for all r ≤ s ≤ t, x ∈ R,
(1) ψs,t(ψr,s(x)) = ψr,t(x) and ψs,s(x) = x.

Respectively, a stochastic flow on R is a family {ψs,t : −∞ < s ≤ t <∞} of random map-
pings of R, ψs,t : Ω×R→ R, that satisfy the evolutionary property (1) without exceptions
in ω, are homogeneous (i.e. distributions of random vectors (ψs,t(x1), . . . , ψs,t(xn)) and
(ψs+h,t+h(x1), . . . , ψs+h,t+h(xn)) coincide), and possess independent increments (i.e. for
all t1 ≤ t2 ≤ . . . ≤ tn the random mappings ψt1,t2 , . . . , ψtn−1,tn are independent, see
section 2 for precise definitions). We consider only flows with continuous trajectories,
i.e. for each (s, x) ∈ R2 the function t→ ψs,t(x) is continuous on [s,∞).

Given a flow ψ on R, its dual is a flow on R that evolves backwards in time never
crossing trajectories of ψ. Formally, a backward flow on R is a family {ψ̃t,s : −∞ < s ≤
t < ∞} of mappings of R, ψ̃t,s : R → R, that are related by the backward evolutionary
property:

for all r ≤ s ≤ t, y ∈ R,
(2) ψ̃s,r(ψ̃t,s(y)) = ψ̃t,r(y) and ψ̃s,s(y) = y.

Again, we assume that functions s→ ψ̃t,s(y) are continuous on (−∞, t] for all (t, y) ∈ R2.

Definition 1.1. [2, 3] Backward flow ψ̃ is dual to the flow ψ, if for all s ≤ t, x, y ∈ R

(3) (ψs,t(x)− y)(x− ψ̃t,s(y)) ≥ 0.

If ψ is a stochastic flow on R, then a dual flow is a backward stochastic flow ψ̃ that
satisfies (3) without exceptions in ω (see section 2 for the rigorous definition of a backward
stochastic flow).

Following [17], a stochastic flow ψ is called coalescing if for some distinct x, y ∈ R
P(∃t > 0 : ψs,t(x) = ψs,t(y)) > 0.
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The flows we study possess stronger property: with probability 1 for all s < t images
ψs,t(R) are locally finite subsets of R. In other words, for s < t mappings x → ψs,t(x)
are random step functions. This contrasts the well-known case of stochastic flows of
homeomorphisms treated in [16]. For example, consider an Itô’s stochastic differential
equation

(4) dX(t) = a(X(t))dt+ b(X(t))dw(t),

where w is a Wiener process and coefficients a, b are globally Lipschitz. The equation (4)
can be solved simultaneously for all starting points (s, x) ∈ R2 giving rise to a stochastic
flow {ψs,t : −∞ < s ≤ t < ∞} of homeomorphisms of R [15, Section 4]. In this case

the dual flow is unique and is a flow of inverse mappings: ψ̃t,s = ψ−1s,t . Its properties are
described in detail in [16, Ch. 4]. When the mappings ψs,t are not homeomorphic both
existence and uniqueness of the dual flow may fail. For example, if the range ψs,t(R) is
bounded, then the dual flow does not exist. As another example consider the flow

ψs,t(x) =


x− (t− s), x ≥ 1− s
1−t
1−sx, |x| ≤ 1− s
x+ (t− s), x ≤ −1 + s

,

defined for 0 ≤ s ≤ t ≤ 1. Now there are infinitely many backward flows dual to the flow
ψ : for any λ ∈ [−1, 1] the backward flow {ψ̃t,s : 0 ≤ s ≤ t ≤ 1} defined by

ψ̃t,s(y) =


y + (t− s), y ≥ 1− t
1−s
1−t y, |y| ≤ 1− t,
y − (t− s), y ≤ −1 + t

for 0 ≤ s ≤ t < 1, and by

ψ̃1,s(y) =


y + (1− s), y > 0

(1− s)λ, y = 0

y − (1− s), y < 0

,

for 0 ≤ s ≤ t = 1, is dual to the flow ψ.
One of the most known and studied examples of a coalescing stochastic flow on R

is the Arratia flow. It describes a motion of a continuum family of Wiener processes
that start from every time-space point (s, x) ∈ R2, move independently before meeting
and coalesce at a meeting time. In [3] the existence of a corresponding stochastic flow
{ψs,t : −∞ < s ≤ t < ∞} was proved (see [6, 23, 17, 12, 22, 19, 4, 21] for a number
of modifications and generalizations). One consequence of independent motion before
meeting time is that with probability 1 for any s < t and a < b the set ψs,t([a, b]) is
finite. Duality for the Arratia flow was also developed in [3]. Mappings x → ψs,t(ω, x)
are not invertible, but there are two natural candidates for a dual flow:

• a family of right-continuous generalized inverses

v+t,s(y) = inf{x ∈ R : ψs,t(x) > y};
• a family of left-continuous generalized inverses

v−t,s(y) = inf{x ∈ R : ψs,t(x) ≥ y}.

For fixed t ∈ R and y1, . . . , yn ∈ R processes s → (v+t,s(y1), . . . , v+t,s(yn)) and s →
(v−t,s(y1), . . . , v−t,s(yn)) are coalescing Wiener processes that move (backwards) indepen-

dently before the meeting time. However, neither v+ nor v− is a backward stochastic
flow in the sense that with probability 1 the property (2) fails for each of them [3]. It
was suggested in [3] that a proper choice between v+ and v− gives rise to a backward
flow dual to ψ. We generalize and prove this statement in section 3. Thus, dual flow
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to the Arratia flow exists and is the Arratia flow. Despite the flow property for duals
of coalescing stochastic flows on R wasn’t study in general, the generalize inverses v+

and v− of the Arratia flow were successfully applied in [3, 13, 23, 12, 7, 8, 9]. In this
paper we fill the gap with the evolutionary property of dual flows for a class of coalescing
stochastic flows on R (see section 2 for the conditions we impose on a stochastic flow).

Another novelty of our work is the description of a dual flow as a random dynamical
system in the sense of [1]. Consider a probability space (F,A, µ) equipped with a mea-
surable group (θh)h∈R of measure-preserving transformations of F, and a perfect cocycle
ϕ over θ – a measurable mapping ϕ : [0,∞)×F×R→ R such that for all s, t ≥ 0, ω ∈ F,
x ∈ R,

(5) ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) and ϕ(0, ω, x) = x.

The perfect cocycle property (5) immediately implies that for all ω ∈ F

ψs,t(ω, x) = ϕ(t− s, θsω, x)

is a flow of mappings of R. In [21] general conditions on a coalescing stochastic flow
ψ were formulated under which ψ is generated by a random dynamical system in the
described way. The representation of a flow via a random dynamical system endows
a flow with a richer structure that allows to develop ergodic theory [1]. For example,
in [9] random dynamical systems were applied to study stationary points and invariant
measures for Arratia flows with drift. It is a natural question then whether a dual flow
is generated by a random dynamical system.

In our main result (theorem 2.1) we give conditions on a coalescing stochastic flow
ψ under which both the flow and its dual are generated by random dynamical systems.
Namely, starting from finite-point motions of ψ on a certain probability space (F,A, µ)
with a measurable group of measure preserving transformations (θh)h∈R we construct a
perfect cocycle ϕ and a backward perfect cocycle ϕ̃ such that ψs,t(ω, x) = ϕ(t−s, θsω, x) is

a stochastic flow on R with prescribed finite-point motions and ψ̃t,s(ω, x) = ϕ̃(t−s, θsω, x)
is a backward stochastic flow dual to ψ.

In section 2 we collect all the necessary definitions and formulate the main theorem.
Section 3 is devoted to the construction of a measurable space (F,A) together with a
measurable group of transformations (θh)h∈R and two perfect cocycles ϕ and ϕ̃ that
generate dual flows. The space F is actually a specific space of flows ω = {ωs,t : −∞ <
s ≤ t < ∞}, θh being a time shift: (θhω)s,t = ωs+h,t+h. The dual flow is constructed
as a measurable functional on F which can be of independent interest. In section 4 we
define a probability measure µ on (F,A) that is θh−invariant and is such that on the
space (F,A, µ) the canonical flow ψs,t(ω, x) = ωs,t(x) is the needed stochastic flow. By

construction, the flow ψ is generated by a random dynamical system ϕ and the flow ψ̃ is
generated by a backward random dynamical system ϕ̃. The distribution of ψ̃ is described
in section 5. We prove that ψ̃ is a backward stochastic flow on R and characterize its
finite-point motions. Finally, in section 6 we apply the theory to the Arratia flows with
drift. We show that the dual flow exists and is the Arratia flow with drift. This recovers
and strengthes results of [23, 9].

2. Preliminaries and the main result

We will consider sets R+ = [0,∞), H = {(s, t) ∈ R2 : s ≤ t}. The complement
of the set A is denoted by Ac. Integration with respect to the probability measure µ
will be denoted by Eµ. The Borel σ−field on a metric spaces X will be denoted by
B(X). By C0(Rn) we denote the space of continuous functions f : R → R such that
lim|x|→∞ f(x) = 0.

Below we formulate few important results on stochastic flows following mainly [17].
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The distribution of a stochastic flow is determined by its finite-point motions. Let
{P (n) : n ≥ 1} be a sequence of transition probabilities satisfying following three condi-
tions.

• (TP1) P (n) = {P (n)
t : t ≥ 0} is a Feller transition probability on (Rn,B(Rn)).

• (TP2) Given {i1, . . . , ik} ⊂ {1, . . . , n} let πi1,...,ik : Rn → Rk be a projection,
πi1,...,ik(x) = (xi1 , . . . , xik). Then for all t ≥ 0, x ∈ Rn and C ∈ B(Rk),

P
(n)
t (x, π−1i1,...,ikC) = P

(k)
t (πi1,...,ikx,C).

• (TP3) Let ∆ = {(y, y) : y ∈ R} be a diagonal in R2. Then for all t ≥ 0 and
x ∈ ∆

P
(2)
t (x,∆) = 1.

When conditions (TP1)-(TP3) are satisfied the sequence {P (n) : n ≥ 1} will be
called a compatible sequence of coalescing Feller transition probabilities on R. It will
describe finite-point motions of a stochastic flow. We use the definition of a stochastic
flow from [21]. In slightly different forms it appeared in [6, 17].

Definition 2.1. Let {P (n) : n ≥ 1} be a compatible sequence of coalescing Feller
transition probabilities on R. A stochastic flow on R with finite-point motions determined
by {P (n) : n ≥ 1} is a family {ψs,t(x) : −∞ < s ≤ t < ∞, x ∈ R} of random variables
(defined on a probability space (Ω,F ,P)), such that

• (SF1) the mapping (s, t, ω, x)→ ψs,t(ω, x) is B(H)⊗F⊗B(R)/B(R)-measurable;
• (SF2) for all s ≤ t, x ∈ R, ω ∈ Ω,

ψs,t(ω, ψr,s(ω, x)) = ψr,t(ω, x) and ψs,s(ω, x) = x;

• (SF3) given s ∈ R and a random vector ξ = (ξ1, . . . , ξn) measurable with respect

to the “past” σ−field Fψ−∞,s = σ({ψu,v(x) : u ≤ v ≤ s, x ∈ R}), for all t ≥ s and
B ∈ B(Rn)

P((ψs,t(ξ1), . . . , ψs,t(ξn)) ∈ B|Fψ−∞,s) = P
(n)
t−s(ξ,B) a.s.

Remark 2.1. The property (SF3) implies homogeneity and independence of increments:

for fixed x ∈ Rn the law of (ψs,t(x1), . . . , ψs,t(xn)) is P
(n)
t−s(x, ·); for t1 ≤ t2 ≤ . . . ≤ tn

mappings ψt1,t2 , . . . , ψtn−1,tn are independent. See [21] for an example showing that
(SF3) is stronger than these two properties. Also, in [21] it is proved that finite-
dimensional distributions of the flow ψ are uniquely determined by properties (SF1)-
(SF3).

Definition 2.2. Let {P (n) : n ≥ 1} be a compatible sequence of coalescing Feller

transition probabilities on R. A family {ψ̃t,s(y) : −∞ < s ≤ t < ∞, y ∈ R} of random
variables is a backward stochastic flow on R with finite-point motions determined by
{P (n) : n ≥ 1} if the family {ψs,t(x) : −∞ < s ≤ t <∞} defined by ψs,t(x) = ψ̃−s,−t(x)

is a stochastic flow on R with finite-point motions determined by {P (n) : n ≥ 1}.

If ψ is a stochastic flow on R, then for every ω the family of mappings {ψs,t(ω, ·) :

−∞ < s ≤ t < ∞} is a flow on R, i.e. (1) holds. If ψ̃ is a backward stochastic flow on

R, then for every ω the family of mappings {ψ̃t,s(ω, ·) : −∞ < s ≤ t <∞} is a backward
flow on R, i.e. (2) holds. Assume that a stochastic flow ψ and a backward stochastic

flow ψ̃ on R are defined on a certain probability space. We will say that ψ̃ is dual to
ψ, if for every ω the backward flow {ψ̃t,s(ω, ·) : −∞ < s ≤ t < ∞} is dual to the flow
{ψs,t(ω, ·) : −∞ < s ≤ t <∞} in the sense of definition 1.1.

To construct stochastic flows and their duals we use a convenient framework of random
dynamical systems. We briefly recall the main notions and relations with stochastic flows.
For an account of the topic we refer to [1].
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Definition 2.3. [1, App. A.1] A metric dynamical system is a probability space (Ω,F ,P)
equipped with a measurable group of measure preserving transformations (θh)h∈R. That
is, the mapping

(ω, h)→ θhω

is F ⊗ B(R)/F-measurable; for all s, h ∈ R and ω ∈ Ω,

θs+hω = θsθhω and θ0ω = ω;

for all h ∈ R, P ◦ θ−1h = P.

Definition 2.4. [1, Def. 1.1.1] Let (Ω,F ,P, (θh)h∈R) be a metric dynamical system. A
perfect cocycle over θ is an B(R+)⊗F ⊗ B(R)/B(R)-measurable mapping

ϕ : R+ × Ω× R→ R,

such that for all s, t ≥ 0, x ∈ R, ω ∈ Ω,

ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) and ϕ(0, ω, x) = x.

A backward perfect cocycle over θ is an B(R+)⊗F ⊗ B(R)/B(R)-measurable mapping

ϕ̃ : R+ × Ω× R→ R,

such that for all s, t ≥ 0, x ∈ R, ω ∈ Ω,

ϕ̃(t+ s, ω, x) = ϕ̃(t, ω, ϕ̃(s, θtω, x)) and ϕ̃(0, ω, x) = x.

Given a perfect cocycle ϕ over θ it is immediate that the relation

ψs,t(ω, x) = ϕ(t− s, θsω, x)

defines ω−wisely a flow of mappings of R, and the mapping (s, t, ω, x) → ψs,t(ω, x) is
jointly measurable. Thus, to prove that ψ is a stochastic flow on R one has to check the
property (SF3) with some compatible sequence of coalescing Feller transition probabi-
lities. Same observation is applicable to the backward cocycle ϕ̃ and a backward flow of
mappings

ψ̃t,s(ω, x) = ϕ̃(t− s, θsω, x).

Our main result will be proved under more assumptions on finite-point motions of the
stochastic flow ψ (see [21] for the discussion of these assumptions and their consequences).

• (TP4) For all t > 0, x, y ∈ R

P
(1)
t (x, {y}) = 0.

• (TP5) For all real a < b and ε > 0

lim
t→0

t−1 sup
x∈[a,b]

P
(1)
t (x, (x− ε, x+ ε)c) = 0

Remark 2.2. Under the condition (TP5) the Feller process corresponding to P (1)

has a.s. continuous trajectories [11, Ch. 4, Prop. 2.9]. We denote by P(n)
x the

distribution in C([0,∞),Rn) of a Feller process with transition probability P (n)

and a starting point x. The canonical process on C([0,∞),Rn) will be denoted

by {X(n)(t) = (X
(n)
1 (t), . . . , X

(n)
n (t)) : t ≥ 0}, so that for all 0 < t1 < . . . < tk,

x ∈ Rn and A1, . . . , Ak ∈ B(Rn)

P(n)
x (X(n)(t1) ∈ A1, . . . , X

(n)(tk) ∈ Ak) =

=

∫
A1

. . .

∫
Ak−1

P
(n)
tk−tk−1

(uk−1, Ak)P
(n)
tk−1−tk−2

(uk−2, duk−1) . . . P
(n)
t1 (x, du1).
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• (TP6) Given reals a < b and t > 0 there exists an increasing continuous function
ma,b,t : R→ R such that for all x1, x2 with a ≤ x1 < x2 ≤ b,

P(2)
(x1,x2)

(∀s ∈ [0, t] a ≤ X(2)
1 (s) < X

(2)
2 (s) ≤ b) ≤ ma,b,t(x2)−ma,b,t(x1).

To formulate the result we introduce two functions:

(6) wa,b(ε, δ) = inf{t > 0 : sup
x∈[a,b]

P
(1)
t (x, (x− ε, x+ ε)c) ≥ δt}.

(7)

fa,b,t(ε) = sup
x1,x2,x3:

a≤x1≤x2≤x3≤b,
x3−x1≤ε

P(3)
(x1,x2,x3)

(∀s ∈ [0, t] a ≤ X(3)
1 (s) < X

(3)
2 (s) < X

(3)
3 (s) ≤ b).

The following is the main theorem of the paper.

Theorem 2.1. Let {P (n) : n ≥ 1} be a compatible sequence of coalescing Feller transition
probabilities on R satisfying conditions (TP1)-(TP6). Assume that for any reals a < b
and t > 0

(8) lim inf
ε,δ→0

fa,b,t(8ε)

wa,b(ε, δ)
= 0.

Then there exists a metric dynamical system (F,A, µ, (θh)h∈R), a perfect cocycle ϕ over
θ and a backward perfect cocycle ϕ̃ over θ, such that

(1) the flow ψs,t(ω, x) = ϕ(t − s, θsω, x) is a stochastic flow on R with finite-point

motions determined by {P (n) : n ≥ 1};
(2) the backward flow ψ̃t,s(ω, x) = ϕ̃(t − s, θsω, x) is a backward stochastic flow on

R;
(3) the backward stochastic flow ψ̃ is dual to the stochastic flow ψ.

Moreover, the finite-point motions of ψ̃ are determined by a sequence {P̃ (n) : n ≥ 1}
which is a unique compatible sequence of coalescing Feller transition probabilities on R
that satisfy the duality relation

P̃
(n)
t (y, (x1, x2)× (x2, x3)× . . .× (xn,∞)) =

= P
(n)
t (x, (−∞, y1)× (y1, y2)× . . .× (yn−1, yn))

for all n ≥ 1, t ≥ 0 and x, y ∈ Rn such that x1 < y1 < x2 < y2 < . . . < xn < yn.

Next three sections are devoted to the proof. In section 3 we construct the measurable
space of flows (F,A) together with a group of shifts (θh)h∈R and two perfect cocycles

ϕ and ϕ̃ that give rise to dual flows ψ and ψ̃. In section 4 we define a measure µ on
(F,A) that makes (F,A, µ, (θh)h∈R) a metric dynamical system and such that ψ becomes
a stochastic flow with prescribed finite-point motions. In section 5 we prove that under
the measure µ, ψ̃ is a backward stochastic flow and characterize its finite-point motions.
The construction is applied to the Arratia flow with drift in section 6.

3. Space of flows F

In this section we construct a space F of coalescing flows on R that carries a metric
dynamical system described in theorem 2.1. A generic element ω ∈ F is a flow of mappings
of R, ω = {ωs,t : −∞ < s ≤ t < ∞} that satisfies properties (C1)-(C5) below. We
equip F with the cylindrical σ−field A and define a group of shifts (θh)h∈R, a perfect
cocycle ϕ and a backward perfect cocycle ϕ̃ over θ in such a way that mappings

ψs,t(ω, x) = ϕ(t− s, θsω, x)

and
ψ̃t,s(ω, x) = ϕ̃(t− s, θsω, x)
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are a pair of forward and backward flows in duality (in the sense of the definition 1.1).
Let Cx([s,∞)) be the space of all continuous functions f : [s,∞)→ R with f(s) = x.

We consider the product
∏

(s,x)∈R2 Cx([s,∞)). An element ω ∈
∏

(s,x)∈R2 Cx([s,∞)) is a

collection of functions t→ ωs,t(x), t ∈ [s,∞), indexed by all time-space points (s, x) ∈ R2.
We will denote ω = {ωs,t : −∞ < s ≤ t <∞}.

Definition 3.1. The space F is the set of all elements ω ∈
∏

(s,x)∈R2 Cx([s,∞)) that

satisfy the following five conditions.

• (C1) For all r ≤ s ≤ t, x ∈ R

ωs,t(ωr,s(x)) = ωr,t(x).

• (C2) For all s < t the image ωs,t(R) is a locally finite subset of R with

supωs,t(R) =∞, inf ωs,t(R) = −∞.

• (C3) For every s ∈ R the set Rs(ω) = ∪r<sωr,s(R) is dense in R.
• (C4) For all s ≤ t and x ∈ R the one-sided continuity

ωs,t(x) ∈ {ωs,t(x−), ωs,t(x+)}

holds.
• (C5) For all s ≤ t and x 6∈ Rs(ω),

ωs,t(x) = ωs,t(x+).

Remark 3.1. Each element ω ∈ F is indeed a flow of mappings of R : evolutionary
property is postulated in (C1) while the condition ωs,s(x) = x follows from the inclusion
ωs,·(x) ∈ Cx([s,∞)).

Remark 3.2. Condition (C1) and continuity of trajectories t→ ωs,t(x) imply that map-
pings x → ωs,t(x) are increasing. In particular, one-sided limits in (C4) and (C5)
exist.

Remark 3.3. All sets Rs(ω) are countable. Indeed, the evolutionary property (C1) im-
plies Rs(ω) = ∪n≥1ωs− 1

n ,s
(R). The latter set is countable as by (C2) each set ωs− 1

n ,s
(R)

is countable.

Remark 3.4. Definition 3.1 is similar to [21, Def. 2.1]. Below we will show that (C1)-
(C5) actually imply conditions from [21, Def. 2.1], so that F is a subset of the space F
from [21]. This allows to transfer results on measurability from [21, L. 2.1].

Remark 3.5. The space F is non-empty. We will show this in sections 4 and 6 by
constructing a modification of the Arratia flow with drift as an F−valued random element.
It is an interesting problem to give a direct example of a flow ω ∈ F.

In the next lemma we collect properties of a generic flow ω ∈ F needed to equip F
with a nice measurability structure.

Lemma 3.1. Consider an arbitrary flow ω ∈ F and real numbers s, t, x with s < t. Then

(1) there exists h > 0 such that either

∀y ∈ [x− h, x] ωs,t(y) = ωs,t(x)

or

∀y ∈ [x, x+ h] ωs,t(y) = ωs,t(x);

(2) there exists r ∈ (s, t) and y ∈ R \ Rr(ω) such that ωs,t(x) = ωr,t(y).
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Proof. (1) Assume that ωs,t(x) = ωs,t(x+). Using (C2) we can find ε > 0 such that

(ωs,t(x), ωs,t(x) + ε) ∩ ωs,t(R) = ∅.
Let h > 0 be such that ωs,t(y) < ωs,t(x) + ε for all y ∈ [x, x + h]. Necessarily
we have ωs,t(y) = ωs,t(x) for all y ∈ [x, x + h]. Similarly, in the case ωs,t(x) =
ωs,t(x−) there exists h > 0 such that ωs,t(y) = ωs,t(x) for all y ∈ [x − h, x]. In
the view of (C4) these two cases are the only possible.

(2) Assume that ωs,t(x) = ωs,t(x+). There exists z > x such that ωs,t(z) = ωs,t(x).
Using continuity of trajectories we can find r ∈ (s, t) such that ωs,r(z) > ωs,r(x).
The range Rr(ω) is countable, so there exists y ∈ (ωs,r(x), ωs,r(z)) \ Rr(ω). By
monotonicity and evolutionary property (C1), ωr,t(y) = ωs,t(x).

�

As it was mentioned above, A is the smallest σ−field on F that makes all mappings

ω → ωs,t(x)

A/B(R)-measurable. Lemma 3.1 implies that the space F is a subset of the space of flows
from [21, Def. 2.1]. The following result then follows from [21, L. 2.1]

Lemma 3.2. [21, Lemma 2.1] Let H = {(s, t) ∈ R2 : s ≤ t}. The mapping

H× F× R 3 (s, t, ω, x)→ ωs,t(x) ∈ R
is B(H)⊗A⊗ B(R)/B(R)−measurable

Corollary 3.1. Let θh : F→ F be the shift defined by

(θhω)s,t(x) = ωs+h,t+h(x).

Then the mapping
R× F 3 (h, ω)→ θhω ∈ F

is B(R)⊗A/A−measurable. In other words, (θh)h∈R is a measurable group of transfor-
mations of F.

Corollary 3.2. The mapping ϕ : R+ × F× R→ R,

ϕ(t, ω, x) = ω0,t(x),

is a measurable perfect cocycle over θ.

Perfect cocycle ϕ naturally defines a flow of mappings of R by

ψs,t(ω, x) = ϕ(t− s, θsω, x).

As it is mentioned in section 2, the perfect cocycle property implies the evolutionary
property (SF2) (definition 2.1) of ψ without exceptions in ω. In our construction, the
flow reduces to

ψs,t(ω, x) = ωs,t(x)

and the evolutionary property holds without expections by the property (C1) of the def-
inition of the space F. Now we proceed with the construction of the dual flow. Advantage
of the presented construction is that the dual flow is constructed ω−wise and for every ω
it is indeed a flow of mappings of R. Moreover, the dual flow is generated by a backward
perfect cocycle over θ. As discussed in the introduction, there are two natural candidates
for the dual flow:

• the family of right-continuous generalized inverses

(9) v+t,s(ω, y) = inf{x ∈ R : ωs,t(x) > y};
• the family of left-continuous generalized inverses

(10) v−t,s(ω, y) = inf{x ∈ R : ωs,t(x) ≥ y}.
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Neither of them is a flow of mappings as the evolutionary property (C1) fails (see [3]
for examples). Below we show that a proper choice between v+ and v− gives rise to a
dual flow. At first we need few properties of generalized inverses.

Lemma 3.3. Consider a flow ω ∈ F. Then

(1) generalized inverses v±t,s(ω, y) are well-defined and finite for all t ≥ s and y ∈ R;

(2) for each starting point (t, y) ∈ R2 mappings s → v±t,s(ω, y) are continuous on

(−∞, t] with v±t,t(ω, y) = y;
(3) a backward flow of mappings f = {ft,s : −∞ < s ≤ t <∞} is dual to the flow ω

if and only if
v−t,s(ω, y) ≤ ft,s(y) ≤ v+t,s(ω, y)

for all t ≥ s and y ∈ R.

Proof. In the proof we omit the dependence of v± on ω.

(1) By definition, v±t,t(y) = y. Let t > s and y ∈ R. By condition (C2) there are
x1, x2 ∈ R such that ωs,t(x1) < y < ωs,t(x2). Monotonicity of ωs,t implies

[x2,∞) ⊂ {x : ωs,t(x) > y} ⊂ {x : ωs,t(x) ≥ y} ⊂ (x1,∞).

Infima in (9) and (10) are finite:

x1 ≤ v−t,s(y) ≤ v+t,s(y) ≤ x2.

(2) We prove continuity of v+s,t(y) at a point s < t. Proofs for v− and s = t are
similar. Let ε > 0. Using (C3) we can find r < s and x1 < x2 such that

v+t,s(y)− ε < ωr,s(x1) < v+t,s(y) < ωr,s(x2) < v+t,s(y) + ε.

By continuity of trajectories t → ωr,t(x) there exists δ ∈ (0,min(s − r, t − s))
such that for all u ∈ [s− δ, s+ δ]

(11) v+t,s(y)− ε < ωr,u(x1) < v+t,s(y) < ωr,u(x2) < v+t,s(y) + ε.

Then from the definition of v+ and the evolutionary property of ω,

ωr,s(x1) < v+t,s(y)⇒ ωs,t(ωr,s(x1)) = ωr,t(x1) ≤ y

⇒ ωu,t(ωr,u(x1)) ≤ y ⇒ ωr,u(x1) ≤ v+t,u(y).

Similarly, ωr,u(x2) ≥ v+t,u(y) and

ωr,u(x1) ≤ v+t,u(y) ≤ ωr,u(x2).

From inequalities (11) we deduce that for all u ∈ [s− δ, s+ δ],

|v+t,u(y)− v+t,s(y)| ≤ ε.
Statement 3 is merely a reformulation of the definition 1.1 of duality.

�

The following definition is taken from [3].

Definition 3.2. A point (t, y) ∈ R2 is said to be left regular for a flow ω ∈ F, if for all
u ≥ t ωt,u(y) = ωt,u(y−). Otherwise a point (t, y) ∈ R2 is said to be left irregular for ω.

Remark 3.6. A point (t, y) is left regular for ω if and only if there exist two rational
sequences (un)n≥1 and (yn)n≥1 such that un > t, yn < y, limn→∞ un = t and ωt,un(yn) =
ωt,un(y) (see Lemma 3.1). In view of the property (C4), if a point (t, y) is left irregular
for ω, then there exist two rational sequences (un)n≥1 and (yn)n≥1 such that un > t,
yn > y, limn→∞ un = t and ωt,un(yn) = ωt,un(y).

In the next theorem we construct a backward flow of mappings ψ̃(ω) = {ψ̃t,s(ω, ·) :

−∞ < s ≤ t <∞ such that for every ω ψ̃ is dual to ω. The result extends [3, Section 6].
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Theorem 3.1. For all s ≤ t, y ∈ R and ω ∈ F set

ψ̃t,s(ω, y) =

{
v+t,s(ω, y), if the point (t, y) is left regular for ω

v−t,s(ω, y), if the point (t, y) is left irregular for ω

Then

(1) the mapping (s, t, ω, y)→ ψ̃t,s(ω, y) is jointly measurable;

(2) for every ω ∈ F, ψ̃(ω) = {ψ̃t,s(ω, ·) : −∞ < s ≤ t < ∞ is a backward flow dual
to ω;

(3) for all ω ∈ F, t ≥ s, y ∈ R and h ∈ R,

(12) ψ̃t,s(θhω, y) = ψ̃t+h,s+h(ω, y).

Proof. Note that (12) is an immediate consequence of the definitions. Since (h, ω) →
θhω is jointly measurable, the joint measurability of ψ̃t,s(ω, y) follows from the joint
measurability of

(s, ω, y)→ ψ̃0,s(y).

Let
A = {(ω, y) ∈ F× R : (0, y) is left regular for ω}.

Measurability of A follows from the representation

A =
⋂

q∈Q,q>0

⋃
x∈Q

(
F× (x,∞) ∩ {(ω, y)|ω0,q(y) = ω0,q(x)}

)
.

Since ψ̃0,s(ω, y) = v±0,s(ω, y) depending on whether (ω, y) ∈ A or not, it is enough to
check joint measurability of

(s, ω, y)→ v±0,s(y).

The latter follows from equivalences

v+0,s(ω, y) < c⇔ ∃ rational q < c : ωs,0(q) > y;

v−0,s(ω, y) < c⇔ ∃ rational q < c : ωs,0(q) ≥ y.
The property 1) is proved.

Now we check that for any ω ∈ F the family of mappings {ψ̃t,s(ω, ·) : −∞ < s ≤
t < ∞} is a backward flow of mappings of R, i.e. that the evolutionary property holds.

Since ψ̃t,t(ω, y) = y, it is enough to consider the case r < s < t. Denote ỹ = ψ̃t,s(ω, y),

x = ψ̃t,r(ω, y), x̃ = ψ̃s,r(ω, ỹ).
Assume x < x̃ and let z ∈ (x, x̃). From inequalities

z > x = ψ̃t,r(ω, y) ≥ v−t,r(ω, y)

and
z < x̃ = ψ̃s,r(ω, ỹ) ≤ v+s,r(ω, ỹ)

it follows that ωr,t(z) ≥ y, ωr,s(z) ≤ ỹ. Assume that ωr,s(z) < ỹ. Since ỹ ≤ v+t,s(ω, y),
we have ωs,t(ωr,s(z)) = ωr,t(z) ≤ y. Hence, ωr,t(z) = y. Denote z̃ = ωr,s(z). We have
obtained relations

ψ̃t,r(ω, y) < z, ωr,t(z) = y

z̃ < ψ̃t,s(ω, y), ωs,t(z̃) = y

Then ψ̃t,r(ω, y) < z ≤ v+r,t(ω, y) and ψ̃t,r(ω, y) 6= v+t,r(ω, y). The point (t, y) is left irregular

for ω. But also v−t,s(ω, y) ≤ z̃ < ψ̃t,s(ω, y) and ψ̃t,s(ω, y) 6= v−t,r(ω, y). The point (t, y) is
left regular for ω, which is impossible.

Obtained contradiction shows that ωr,s(z) = ỹ = ψ̃t,s(ω, y), z ≥ v−s,r(ω, ỹ). From
inequalities

ψ̃s,r(ω, ỹ) > z ≥ v−s,r(ω, ỹ)
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it follows that the point (s, ỹ) is left regular for ω. there exists ŷ < ỹ such that ωs,t(ŷ) =
ωs,t(ỹ). Further,

ŷ < ỹ = ψ̃t,s(ω, y) ≤ v+t,s(ω, y)

and ωs,t(ŷ) ≤ y. On the onther hand,

ωs,t(ŷ) = ωs,t(ỹ) = ωr,t(z) ≥ y.
It means that

ωr,t(z) = ωs,t(ỹ) = ωs,t(ŷ) = y,

and

ỹ = ψ̃t,s(ω, y) > ŷ ≥ v−t,s(ω, y).

Since ψ̃t,r(ω, y) < z ≤ v+t,r(ω, y), we deduce that again the point (t, y) is both left regular
and left irregular for ω. The case x < x̃ is impossible.

Considerations in the case x > x̃ are similar.
�

Corollary 3.3. The mapping

ϕ̃ : R+ × F× R→ R, ϕ̃(t, ω, x) = ψ̃t,0(ω, x)

is a perfect backward cocycle over θ.

4. Coalescing stochastic flow as a random element in F

In this section starting from a sequence {P (n) : n ≥ 1} of transition probabilities for
the n−point motions we construct a probability measure on the space (F,A) that makes
ψs,t(ω, x) = ωs,t(x) a stochastic flow with finite-point motions defined by {P (n) : n ≥ 1}.
This proves part (1) of theorem 2.1.

We construct the measure µ as the distribution of a stochastic flow with finite-point
motions determined by {P (n) : n ≥ 1} and all realizations from the space F. Our
construction details the one from [21]. In [21, Th. 1.1] under assumptions (TP1)-
(TP6) a stochastic flow {ψs,t : −∞ < s ≤ t < ∞} with finite-point motions de-

termined by {P (n) : n ≥ 1} was constructed in such a way that all its realizations
{ψs,t(ω, ·) : −∞ < s ≤ t <∞} satisfied the following properties:

(i) conditions (C1),(C3),(C5) of the definition 3.1;
(ii) for all s < t and a < b images ψs,t(ω, [a, b]) are finite;
(iii) for any s < t and x ∈ R there exist r < t and y 6∈ Rr(ψ) such that ψs,t(ω, x) =

ψr,t(ω, y).
Properties (i) and (iii) are covered by (F1)-F(4) in [21, Def. 2.1]. We refer to [21,

Section 3] for the proof of (i) and (iii). The property (ii) is covered by (SP4) in [21, L.
3.2]. It remains to check that outside a set of probability zero properties (C2), (C4)
are satisfied.

The property (C2) is satisfed on the event

E =

∞⋂
n=1

(
{sup
k∈Z

ψ−n,n(k) =∞} ∩ { inf
k∈Z

ψ−n,n(k) = −∞}
)
.

Indeed, assume that for some ω ∈ E and some s ≤ t the image ψs,t(ω,R) is bounded from
above. Then there exists c ∈ R such that for all x ∈ R ψs,t(ω, x) ≤ c. Consider an integer
n ≥ max(|s|, |t|). Since ω ∈ E there exists k ∈ Z such that ψ−n,n(ω, k) > ψt,n(ω, c). On
the other hand the evolutionary property implies

ψ−n,t(ω, k) = ψs,t(ω, ψ−n,s(ω, k)) ≤ c,
and

ψ−n,n(ω, k) = ψt,n(ω, ψ−n,t(ω, k)) ≤ ψt,n(ω, c).
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Obtained contradiction shows that for any ω ∈ E all images ψs,t(ω,R) are unbounded
from above. Similarly, for any ω ∈ E all images ψs,t(ω,R) are unbounded from below.
Together with the property (ii) above we deduce that on the event E the property (C2)
is satisfied. The probability of the event E is equal to 1 since Feller property (TP1) and
continuity of trajectories (TP4) imply

lim
x→∞

P
(1)
t (x, [c,∞)) = 1 and lim

x→−∞
P

(1)
t (x, (−∞, c]) = 1

for all t ≥ 0 and c ∈ R (the proof is postponed to the appendix).
Condition (C4) is satisfied at all points (s, y) with y 6∈ Rs(ψ), because the property

(C5) holds. So, it is enough to check (C4) at all points (t, x) where x = ψs,t(y),
s < t. By the property (iii) above we can assume that y 6∈ Rs(ψ). Moreover, using
ψs,t(y) = ψs,t(y+) and (ii) we can assume (s, y) ∈ Q2 (see the proof of the lemma 3.1).
Thus, it is enough to check that for any (s, y) ∈ Q2 with probability 1 the flow ψ does
not have two-sided discontinuities at any point of the trajectory ψs,·(y). The main issue
here is that the point of discontinuity can be random. We overcome this by considering
only trajectories of the flow that started from certain finite grids around the trajectory
ψs,·(y) (the construction of grids is adopted from [23]). The assumption (8) allows to
choose sizes of grids in such a way that the existence of a two-sided discontinuity at some
point ψs,t(y) implies the existence of a triple of trajectories that started from the grid
and did not coalesce in a fixed time. The latter probability can be estimated using the
function fa,b,t.

The function fa,b,t can be applied to triples of trajectories that take values in a fixed
segment [a, b]. The following property will be helpful in choosing this segment:

(iv) given rationals v1 < v2 < v3 and p1 < p2 for infinitely many integers N ≥ 1 and
all j = 0, . . . , N − 1 one has

v1 < ψqj ,t(v2) < v3 for all t ∈ [qj , qj+1],

where qj = p1 + j(p2−p1)
N , 0 ≤ j ≤ N .

We will prove this property using one consequence from (TP5): for each ε > 0

lim
t→0

t−1P( max
r∈[0,t]

|ψ0,r(v2)− v2| > ε) = 0

(see [21, (3.1), L.3.2] for the proof). Let ε = min(v2 − v1, v3 − v2). For each n ≥ 1 there
exists tn > 0 such that for all t ≤ tn

P( max
r∈[0,t]

|ψ0,r(v2)− v2| > ε) ≤ t

2n
.

Let kn >
p2−p1
tn

be an integer. The probability of the event

Hn =

kn−1⋃
j=0

{ for some t ∈ [qj , qj+1] ψqj ,t(v2) < v1 or ψqj ,t(v2) > v3}

is estimated as

P(Hn) ≤ knP( max
r∈[0, p2−p1

kn

|ψ0,r(v2)− v2| > ε) ≤ p2 − p1
2n

.

By the Borel-Cantelli lemma events Hc
n occur infinitely often.

Now we can prove that (C4) holds for almost all realizations of ψ. We will check that
for all M ≥ 1 and η ∈ Q, η > 0, outside an event of probability zero for all t ∈ [s, s+M−η]

ψs,t+η(y) ∈ {ψt,t+η(ψs,t(y)−), ψt,t+η(ψs,t(y)+)}.
Introduce a set

Am = {∀u ∈ [s, s+M + η]∀x ∈ (ψs,u(y)− 1, ψs,u(y) + 1) sup
t∈[u,s+M+η]

|ψu,t(x)| ≤ m}
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(it is measurable since one can restrict u, x to take rational values without changing the
event).

Observe that Am ↑ Ω, m→∞. Indeed, for fixed ω we can find rational numbers u, v
such that for all t ∈ [s, s+M + η]

u < ψs,t(y)− 1 < ψs,t(y) + 1 < v.

Using the property (iv) above we can find integer N such that for all j = 0, . . . , N − 1
and t ∈ [qj , qj+1]

u− 2 < ψqj ,t(u− 1) < u, v < ψqj ,t(v + 1) < v + 2,

where qj = s+ j(M+η)
N . By continuity of trajectories there exists m ≥ 1 such that for all

j = 0, . . . , N − 1 and t ∈ [qj ,M + η]

−m ≤ ψqj ,t(u− 1) ≤ ψqj ,t(v + 1) ≤ m.
By evolutionary property and construction of the points {q0, . . . , qN} we get that the
event Am happens.

Further, let εn, δn → 0 be such that

f−m,m,η/2(8εn)

w−m,m(εn, δn)
→ 0, n→∞.

We check that w−m,m(εn, δn) → 0. Assume it is not the case. Passing to subsequences
we may assume that

inf
n≥1

w−m,m(εn, δn) > 0.

Using the definition of the function w−m,m we find t > 0 and a sequence xn ∈ [−m,m]
such that

P
(1)
t (xn, (xn − εn, xn + εn)c) < δnt.

In particular,

(13) lim
n→∞

P
(1)
t (xn, (xn − εn, xn + εn)c) = 0.

Extracting another subsequence we may assume that xn → x ∈ [−m,m]. The Feller
property implies the weak convergence [14, L. 19.3]

P
(1)
t (xn, ·)→ P

(1)
t (x, ·), n→∞.

Now (13) implies that P
(1)
t (x, {x}) = 1 which contradicts (TP4). So,

lim
n→∞

w−m,m(εn, δn) = 0.

Let K = M(1 + [w−m,m(εn, δn)−1]). Consider points qj = s + jM
K , ξj = ψs,qj (y),

0 ≤ j ≤ K. Introduce two events

Bm,n = {∀j ∈ {0, . . . ,K − 1}∀l ∈ {−1, 0, 1} |ψqj ,qj+1
(ξj + 2εnl)− (ξj + 2εnl)| < εn}

Cm,n = {∃j ∈ {0, . . . ,K−1} ψqj ,qj+η/2(ξj−4εn) < ψqj ,qj+η/2(ξj) < ψqj ,qj+η/2(ξj+4εn)}
For large enough n, we have εn <

1
4 , and w−m,m(εn, δn) < 1. Then

P(Am ∩ Cm,n) ≤ Kf−m,m, η2 (8εn) ≤ 2M
f−m,m, η2 (8εn)

w−m,m(εn, δn)

and
P(Am \Bm,n) ≤ 3K sup

|x|≤m
P

(1)
M
K

(x, (x− εn, x+ εn)c) ≤ 3Mδn,

where the last inequality follows from M
K < w−m,m(εn, δn). Then

P(Am ∩Bm,n \ Cm,n) ≥ P(Am)− 2M
f−m,m, η2 (8εn)

w−m,m(εn, δn)
− 3Mδn
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and

P
( ⋃
m≥1

(
Am ∩ lim sup

n→∞

(
Bm,n \ Cm,n

)))
= 1

Assume that the latter event happens, but for some t ∈ [s, s+M − η] we have

(14) ψt,t+η(ψs,t(y)−) < ψs,t+η(y) < ψt,t+η(ψs,t(y)+).

Let m and n be such that the event Am ∩ (Bm,n \ Cm,n) happens and M
K < η

2 . There is
j ∈ [0,K − 2] such that qj ≤ t < qj+1. By the definition of the event Bm,n

ξj − 3εn < ψqj ,qj+1
(ξj − 2εn) < ξj − εn < ψqj ,qj+1

(ξj) <

< ξj + εn < ψqj ,qj+1(ξj + 2εn) < ξj + 3εn.

It follows that

ψqj ,t(ξj − 2εn) < ψqj ,t(ξj) = ψs,t(y) < ψqj ,t(ξj + 2εn).

From (14) we deduce

ψqj ,t+η(ξj − 2εn) < ψqj ,t+η(ξj) = ψs,t+η(y) < ψqj ,t+η(ξj + 2εn).

Further,
ξj+1 − 4εn < ξj − 3εn < ψqj ,qj+1

(ξj − 2εn),

ξj+1 + 4εn > ξj + 3εn < ψqj ,qj+1
(ξj + 2εn),

and
ψqj+1,t+η(ξj+1 − 4εn) ≤ ψqj+1,t+η(ψqj ,qj+1(ξj − 2εn)) =

= ψqj ,t+η(ξj − 2εn) < ψs,t+η(y) = ψqj+1,t+η(ξj+1) <

< ψqj+1,t+η(ψqj ,qj+1
(ξj + 2εn)) ≤ ψqj+1,t+η(ξj+1 + 4εn)

But t+η > qj+1+ η
2 which means that the event Cm,n happens. This contradiction shows

that outside an event of probability zero the flow {ψs,t : −∞ < s ≤ t < ∞} satisfies all
conditions of the definition 3.1 and can be considered as an F−valued random element.
Under assumptions of theorem 2.1 there is a unique probability measure µ on the space
(F,A) such that (F,A, µ, (θh)h∈R) is a metric dynamical system, ϕ is a forward perfect
cocycle over θ that generates a stochastic flow on R with finite point motions determined
by transition probabilities {P (n) : n ≥ 1}. In particular, part (1) of theorem 2.1 is proved.

5. Distribution of the dual flow

As shown in the section 2, the metric dynamical system (F,A, µ, (θh)h∈R) carries a

backward perfect cocycle ϕ̃, such that for every ω ∈ F the backward flow {ψ̃t,s(ω, ·) :
−∞ < s ≤ t < ∞} is dual to the flow {ψt,s(ω, ·) : −∞ < s ≤ t < ∞}. In this section

we prove that ψ̃ is a backward stochastic flow and describe transition semigroups for its
finite point motions. This finishes the proof of the theorem 2.1.

Transition semigroups for the dual flow ψ̃ will be described as dual semigroups to
transition semigroups fo the flow ψ in the sense of [18, Section 2, §3]. Let

Hn(x, y) = 1x1<y1<x2<y2<...<xn<yn , x, y ∈ Rn.
We will check that for all s ≤ t, n ≥ 1 and x, y ∈ Rn

(15) EHn(ψs,t(x), y) = EHn(x, ψ̃t,s(y)),

where ψs,t(x) = (ψs,t(x1), . . . , ψs,t(xn)), ψ̃t,s(y) = (ψ̃t,s(y1), . . . , ψ̃t,s(yn)). In terms of
finite-point motions the equation (15) reads

(16)
P̃

(n)
t−s(y, (x1, x2)× (x2, x3)× . . .× (xn,∞)) =

= P
(n)
t−s(x, (−∞, y1)× (y1, y2)× . . .× (yn−1, yn)).

It will be shown that transition semigroups {P̃ (n) : n ≥ 1} are uniquely defined by (16).



DUALITY FOR COALESCING STOCHASTIC FLOWS 69

Observe that the σ−field σ({ψ̃v,u : s ≤ u ≤ v}) is contained in Fψs,∞. Distribution of

the dual flow ψ̃ will be characterized using the following result.
Let s ≤ t, n ≥ 1, ξ1, . . . , ξn are Fψs,∞−measurable random variables and x1 < x2 <

. . . < xn. Then

(17)
µ(x1 < ψ̃t,s(ξ1) < x2 < ψ̃t,s(ξ2) < x3 < . . . < xn < ψ̃t,s(ξn)|Fψs,∞) =

= P
(n)
t−s((x1, . . . , xn), (−∞, ξ1)× (ξ1, ξ2)× . . .× (ξn−1, ξn)).

Indeed, inequalities v−t,s(y) ≤ ψ̃t,s(y) ≤ v+t,s(y) imply inclusions

{ψs,t(x1) < ξ1 < ψs,t(x2) < . . . < ξn−1 < ψs,t(xn) < ξn} ⊂

⊂ {x1 < ψ̃t,s(ξ1) < x2 < ψ̃t,s(ξ2) < x3 < . . . < xn < ψ̃t,s(ξn)} ⊂
⊂ {ψs,t(x1) ≤ ξ1 ≤ ψs,t(x2) ≤ . . . ≤ ξn−1 ≤ ψs,t(xn) ≤ ξn}.

The relation (17) then follows from the definition of ψ and the property (TP4).
Our assumption on the meeting of two trajectories implies that for all t > 0, x, y ∈ R

(18) µ(ψ̃t,0(y) = x) = 0.

Indeed, by construction of the dual flow and the property (TP4)

µ(ψ̃t,0(y) = x) ≤ µ(v−t,0(y) < x+ ε, v+t,0(y) > x− ε) ≤

≤ µ(ψ0,t(x+ ε) ≥ y ≥ ψ0,t(x− ε)) ≤

≤ P(2)
x−ε,x+ε(∀s ∈ [0, t] X

(2)
1 (s) < X

(2)
2 (s)).

By the property (TP6) the latter probability tends to zero as ε→ 0.

For every n ≥ 1 and t ≥ 0 we introduce a family {P̃ (n)
t (y, ·) : y ∈ Rn} of probability

measures on (Rn,B(Rn)) by

P̃
(n)
t (y,B) = µ((ψ̃t,0(y1), . . . , ψ̃t,0(yn)) ∈ B), B ∈ B(Rn).

Then conditions (TP2), (TP3) are satisfied.

Inductively on n we will check that each {P̃ (n)
t : t ≥ 0} is a Feller transition probability

on Rn, and that P̃
(n)
t (y, ·) is the distribution of (ψ̃t+h,h(y1), . . . , ψ̃t+h,h(yn)) for all t, h ∈ R

and y ∈ Rn. Consider the case n = 1. Using (17) with n = 1 and non-random ξ = y we
get

µ(ψ̃t,s(y) > x) = P
(1)
t−s(x, (−∞, y)) = µ(ψ̃t−s,0(y) > x) = P̃

(1)
t−s(y, (x,∞)).

Consequently, for all h ∈ R the distribution of ψ̃t+h,h(y) is P̃
(1)
t (y, ·). Further, applying

(17) with ξ = ψt+s,s(y) we get

P̃
(1)
t+s(y, (x,∞)) = µ(ψ̃t+s,0(y) > x) = Eµµ(ψ̃s,0(ψ̃t+s,s(y)) > x|Fψs,∞) =

= EµP (1)
s (x, (−∞, ψ̃t+s,s(y))) =

=

∫
R
P (1)
s (x, (−∞, z))P̃ (1)

t (y, dz) =

∫
R
P̃ (1)
s (z, (x,∞))P̃

(1)
t (y, dz).

This proves the Chapman-Kolmogorov equation for the family P̃ (1). In order to check
Feller property, consider a continuously differentiable function with compact support
f : R→ R, supp(f) ⊂ [a, b]. From the representation∫

R
f(x)P̃

(1)
t (y, dx) =

∫ b

a

f ′(z)P̃
(1)
t (y, (z,∞))dz =

=

∫ b

a

f ′(z)P
(1)
t (z, (−∞, y))dz,
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the property (TP4) and the dominated convergence theorem, we deduce that the func-
tion

y →
∫
R
f(x)P̃

(1)
t (y, dx)

belongs to C0(R). By a standard density argument, P̃ (1) is a Feller transition probability
on R.

Assume that the result is proved for all k ≤ n−1. Let y ∈ Rn. By consistency property
(TP2) and coaelscing condition (TP3) it is enough to consider the case y1 < y2 < . . . <

yn. We prove that the law of (ψ̃t+h,h(y1), . . . , ψ̃t+h,h(yn)) is P̃
(n)
t (y, ·) once we check that

for any x ∈ Rn

µ(ψ̃t+h,h(y1) > x1, . . . , ψ̃t+h,h(yn) > xn) = P̃
(n)
t (y,

n∏
j=1

(xj ,∞)).

By monotonicity of trajectories and inductive assumption it is enough to consider the
case x1 < x2 < . . . < xn. Equation (18) and monotonicity of trajectories implies the
representation

µ(ψ̃t+h,h(y1) > x1, . . . , ψ̃t+h,h(yn) > xn) = µ(ψ̃t+h,h(y1) > xn)+

+µ(xn−1 < ψ̃t+h,h(y1) < xn < ψ̃t+h,h(yn)) + . . .+

+µ(x1 < ψ̃t+h,h(y1) < x2 < ψ̃t+h,h(y2) < . . . < xn < ψ̃t+h,h(yn)).

Now all assertions follow from inductive assumption and (17) similarly to the case n = 1.
Theorem 2.1 is proved.

6. Example. Arratia flows with drift

In this section we apply the developed constructions to the Arratia flow with drift. At
first we recall the construction of corresponding transition probabilities (see [17, 10, 21]
for details).

Let a : R→ R be a Lipschitz function with the Lipschitz constant L :

(19) |a(x)− a(y)| ≤ L|x− y|, x, y ∈ R.
Consider a system of stochastic differential equations

(20)


dX1(t) = a(X1(t))dt+ dW1(t),

. . . ,

dXn(t) = a(Xn(t))dt+ dWn(t),

where w1, . . . , wn are independent Wiener processes. For every initial value x ∈ Rn there
is a unique strong solution of (20). By P (n),ind. we denote a corresponding transition
probability. Transition probabilities for the Arratia flow with drift are constructed from
{P (n),ind. : n ≥ 1} by coalescing finite-point motions at a meeting time. Formally this is
done in the following theorem from [17] (see also [21, L. 4.1]).

Theorem 6.1. [17, Th. 4.1] There exists a unique compatible sequence {P (n) : n ≥ 1}
of coalescing Feller transition probabilities that satisfy the following property.

Consider a starting point x = (x1, . . . , xn) ∈ R and two Rn−valued processes: {Y (t) :
t ≥ 0} – a Feller process with starting point x and transition probabilities {P (n),ind. : t ≥
0}, and {X(t) : t ≥ 0} – a Feller process with starting point x and transition probabilities
{P (n) : t ≥ 0}. Further, let

τY = inf{t ≥ 0 : ∃i < j Yi(t) = Yj(t)}, τX = inf{t ≥ 0 : ∃i < j Xi(t) = Xj(t)},
be first meeting times for trajectories of processes Y and X, correspondingly. Then
stopped processes {Y (t ∧ τY ) : t ≥ 0} and {X(t ∧ τX) : t ≥ 0} are identically distributed.
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Definition 6.1. A stochastic flow ψ is an Arratia flow with drift a, if its finite-point
motions are determined by transition probabilities P (n) from theorem 6.1.

Throughout this section {P (n) : n ≥ 1} denote the sequence of transition probabilities

for finite-point motions of the Arratia flow with drift a. By P(n)
x we denote the distribution

in C([0,∞),Rn) of n trajectories from the Arratia flow with drift a. Properties (TP4)-
(TP6) for semigroups P (n) were proved in [21, Section 4.1]. In the next lemma we verify
the condition (8) from the theorem 2.1. Recall the function

wα,β(ε, δ) = inf{t > 0 : sup
x∈[α,β]

P
(1)
t (x, (x− ε, x+ ε)c) ≥ δt}

defined in (6). To apply the theorem 2.1 we need an estimate on the asymptotic behaviour
of the function wα,β . We do this by comparing wα,β with the function

g(x) =

√
2

π
x2
∫ ∞
x

e−
z2

2 dz.

There exists x∗ > 0 such that g is strictly increasing on [0, x∗] and strictly decreasing on
[x∗,∞). Let

g−1 : (0, g(x∗)]→ [x∗,∞)

be the inverse of g. Asymptotics of g is well known [5, L. 1.1.3]:

g(x) ∼
√

2

π
xe−

x2

2 , x→∞.

Consequently,

(21) g−1(ε) ∼
√

2| ln ε|, ε→ 0.

Lemma 6.1. Consider arbitary α < β and t > 0.

(1) For any p ∈ (1, 32 ) there is a constant C = C(α, β, t, p) > 0 such that for any
reals x1, x2, x3

P(3)
x1,x2,x3

(∀s ∈ [0, t] α ≤ X(3)
1 (s) < X

(3)
2 (s) < X

(3)
3 (s) ≤ β) ≤ C(x3 − x1)

3
p

(2) Let M = supα≤x≤β |a(x)|. Assume that ε, δ > 0 be such that ε2δ < 32g(x∗),

ε < 4(1+M) log 2
L and (

ε

4g−1( ε
2δ
32 )

)2

<
ε

4(1 +M)
.

Then

wα,β(ε, δ) ≥
(

ε

4g−1( ε
2δ
32 )

)2

.

Proof. (1) As above, M = supα≤x≤β |a(x)|. Denote the event of interest by A,

A = {f ∈ C([0,∞),R3) : ∀s ∈ [0, t] α ≤ f1(s) < f2(s) < f3(s) ≤ β}.
Also, let Qx1,x2,x3 be the Wiener measure, i.e. the distribution in C([0,∞),R3) of the
process w(t) = (w1(t), w2(t), w3(t)), where w1, w2, w3 are independent Wiener processes,
wj(0) = xj , 1 ≤ j ≤ 3. By the Girsanov theorem and the Hőlder inequality,

P(3)
x1,x2,x3

(∀s ∈ [0, t] α ≤ X(3)
1 (s) < X

(3)
2 (s) < X

(3)
3 (s) ≤ β) =

= EQx1,x2,x3 1Ae
∑3
j=1(

∫ t
0
a(wj(s))dwj(s)− 1

2

∫ t
0
a(wj(s))

2ds) ≤

≤ Qx1,x2,x3(A)
1
p

(
EQx1,x2,x3 1Ae

∑3
j=1(

∫ t
0
qa(wj(s))dwj(s)− q2

∫ t
0
a(wj(s))

2ds)

) 1
q

≤
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≤ e 3
2M(q−1)Qx1,x2,x3

(A)
1
p

(
EQx1,x2,x3 1Ae

∑3
j=1(

∫ t
0
qa(wj(s))dwj(s)− 1

2

∫ t
0
(qa(wj(s)))

2ds)

) 1
q

≤

≤ e 3
2M(q−1)Qx1,x2,x3(A)

1
p ≤ e 3

2M(q−1)C(x3 − x1)
3
p ,

where the last inequality follows from [20, Section 3].
(2) Let x ∈ [α, β]. Consider positive t < ( ε

4g−1( ε
2δ
32 )

)2. Denote by {W (t) : t ≥ 0} a

Wiener process starting from zero, and let {X(t) : t ≥ 0} be a solution of the stochastic
differential equation {

dX(t) = a(X(t))dt+ dW (t)

X(0) = x
.

Then {X(t) : t ≥ 0} is a Feller process with initial value X(0) = x and transition

probability {P (1)
t : t ≥ 0}. Denote ξ = max[0,t] |W |. For every s ∈ [0, t] we have

|X(s)− x| =
∣∣∣∣ ∫ s

0

a(X(r))dr +W (s)

∣∣∣∣ ≤ |W (s)|+ s|a(x)|+
∫ s

0

|a(X(r))− a(x)|dr ≤

≤ ξ + tM + L

∫ s

0

|X(r)− x|dr.

By Gronwall inequality,

|X(t)− x| ≤ (ξ + tM)eLt.

From the assumptions on ε and δ,

t <
ε

4(1 +M)
<

log 2

L
.

Hence,

|X(t)− x| ≤ 2(ξ + tM) < 2ξ +
ε

2
.

It follows that

P
(1)
t (x, (x− ε, x+ ε)c) = P(|X(t)− x| ≥ ε) ≤ P

(
ξ ≥ ε

4

)
;

= 2P
(
|W (t)| ≥ ε

4

)
=

32t

ε2
g

(
ε

4
√
t

)
By assumption

ε

4
√
t
> g−1

(
ε2δ

32

)
.

So,
1

t
sup

x∈[α,β]
P

(1)
t (x, (x− ε, x+ ε)c) < δ.

Since the latter is true for any t < ( ε

4g−1( ε
2δ
32 )

)2 we deduce that

wα,β(ε, δ) ≥
(

ε

4g−1( ε
2δ
32 )

)2

.

�

Corollary 6.1. There exists a metric dynamical system (F,A, µ, (θh)h∈R), a perfect co-
cycle ϕ and a backward perfect cocycle ϕ̃, such that

(1) the flow ψs,t(ω, x) = ϕ(t− s, θsω, x) is the Arratia flow with drift a;

(2) the backward flow ψ̃t,s(ω, x) = ϕ̃(t − s, θsω, x) is a backward Arratia flow with
drift −a;

(3) the backward stochastic flow ψ̃ is dual to the stochastic flow ψ.
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Proof. Given α < β we put p = 5
4 and define f(ε) = Cε3, where C is found in lemma

6.1. The theorem 2.1 is applicable, if we take εn = 2−n and δn = 1
n . Indeed, εn, δn → 0,

and for large enough n conditions of lemma 6.1 are verified:

lim
n→∞

f(8 · 2−n)

wα,β(2−n, n−1)
≤ 2048C lim

n→∞
2−ng−1

(
1

32n4n

)2

=

= 2048C lim
n→∞

2n log 4 + 2 log(32n)

2n
= 0,

where we used equivalence (21).
We only need to check that finite-point motions of the dual flow are given by tran-

sition probabilities of the Arratia flow with the drift −a. Let pt(x, y) be the transition
probability for the one-point motion of the Arratia flow with drift a, i.e.

P
(1)
t (x,B) =

∫
B

pt(x, y)dy.

By the theorem 2.1 the one-point motion of the dual flow has the transition probability

p̃t(y, x) = −
∫ y

−∞

∂pt(x, z)

∂x
dz.

From this the equality
∂pt(x, y)

∂x
= −∂p̃t(y, x)

∂y

follows. It is then straightforward to check that

∂p̃t(y, x)

∂t
= −a(y)

∂p̃t(y, x)

∂y
+

1

2

∂2p̃t(y, x)

∂y2
,

i.e. the one-point motion (ψ̃0,−t(y))t≥0 of the dual flow is a weak solution of the equation{
dX̃(t) = −a(X̃(t))dt+ dW (t)

X̃(0) = y

Independence before meeting time follows from the representation (16) and an analogous
property of the forward flow.

�

7. Appendix

Lemma 7.1. Let {Pt : t ≥ 0} be a Feller transition probability on R such that corre-
sponding Feller process has continuous trajectories. Then for any c ∈ R and t ≥ 0

lim
x→∞

Pt(x, [c,∞)) = 1 and lim
x→−∞

Pt(x, (−∞, c]) = 1

Proof. We consider the case x→∞. By Px we denote the distribution in C([0,∞);R) of
the Feller process {X(t) : t ≥ 0} with initial value X(0) = x and transition probabilities
{Pt : t ≥ 0}.

Let ε > 0. By continuity of trajectories there exists d < −|c| such that

P0( max
s∈[0,t]

|X(s)| ≥ |d|) ≤ ε.

By the Feller property,

lim
x→∞

Pt(x, (d, c)) = 0.

Then

lim sup
x→∞

Pt(x, (−∞, c)) = lim sup
x→∞

Pt(x, (−∞, d]).
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Let τ = inf{t ≥ 0 : X(t) = 0}. Since d < 0 we have for all x > 0

Pt(x, (−∞, d]) = Px(X(t) ≤ d) = Ex1τ<tPt−τ (0, (−∞, d]) ≤ P0( max
s∈[0,t]

|X(s)| ≥ |d|) ≤ ε.

This proves the convergence Pt(x, (−∞, c))→ 0, x→∞.
�
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