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OXANA A. MANITA, MAXIM S. ROMANOV, AND STANISLAV V. SHAPOSHNIKOV

ESTIMATES OF DISTANCES BETWEEN SOLUTIONS OF

FOKKER–PLANCK–KOLMOGOROV EQUATIONS WITH PARTIALLY

DEGENERATE DIFFUSION MATRICES

Using a metric which interpolates between the Kantorovich metric and the total varia-
tion norm we estimate the distance between solutions to Fokker–Planck–Kolmogorov

equations with degenerate diffusion matrices. Some relations between the degener-

acy of the diffusion matrix and the regularity of the drift coefficient are analysed.
Applications to nonlinear Fokker–Planck–Kolmogorov equations are given.

We study the Cauchy problem for the Fokker–Planck–Kolmogorov equation

(1) ∂tµ = L∗A,bµ, µ|t=0 = µ0,

where µ0 is a probability measure on Rd, the operator LA,b is given by

LA,bu(x, t) =

d∑
i,j=1

aij(x, t)∂xi∂xju(x, t) +

d∑
i=1

bi(x, t)∂xiu(x, t),

and L∗A,b is its formal adjoint.

We assume that A(x, t) = (aij(x, t))i,j≤d is a nonnegative symmetric matrix (called the
diffusion matrix) with Borel measurable entries, b(x, t) = (bi(x, t))di=1 : [0, T ]×Rd → Rd
is a Borel measurable mapping (called the drift coefficient) and a solution µ = µt(dx) dt
is given by a family of probability measures µt on Rd.

The goal of this paper is to estimate the distance (with respect to a suitable metric)
between two solutions µ = µt(dx) dt and σ = σt(dx) dt to Fokker–Planck–Kolmogorov
equations

∂tµ = L∗A,bµµ and ∂tσ = L∗A,bσσ

with different drifts bµ and bσ. The diffusion matrix A is allowed to be fully degenerate.
Furthermore, we analyse some relations between the degeneracy of the diffusion matrix
and the regularity of the drift coefficient. Let us consider two different cases: A = I and
A = 0. In the first case the estimate

‖µt − σt‖TV ≤ ‖µ0 − σ0‖TV +
(∫ t

0

∫
Rd
|bµ − bσ|2 dσs ds

)1/2
,

where ‖ ‖TV is the total variation norm, was established in [6, Remark 2.3] for locally
bounded coefficients biµ, b

i
σ ∈ L1(µ + σ). Note that equations with different diffusion

matrices were also investigated in [6]. In the second case, for Lipschitzian drifts bµ and
bσ the estimate

W (µt, σt) ≤W (µ0, σ0) + C

∫ t

0

∫
Rd
|bµ − bσ| dσs ds,

where W is the Kantorovich metric

W (µ1, µ2) = sup
{∫

Rd
ϕd(µ1 − µ2) : |ϕ| ≤ 1, |ϕ(x)− ϕ(y)| ≤ |x− y|

}
,
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can be derived directly from the expressions for the solutions µt and σt. We emphasize
that the last estimate does not hold for merely continuous drifts bµ and bσ. Moreover,
the Kantorovich metric cannot be replaced by the total variation norm. The aim of our
paper is to study the intermediate case:

LA,bu =

p∑
i=1

∂2xiu+

d∑
i=1

bi∂xiu, 0 ≤ p ≤ d.

In particular, we obtain the following estimate. Suppose that bµ (not bσ) is a Lipschitz
mapping with respect to (xp+1, . . . , xd); then the estimate

dp(µt, σt) ≤ Kdp(µ0, σ0) +K

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − biσ| dσs ds+

+K
(∫ t

0

∫
Rd

p∑
i=1

|biµ − biσ|2 dσs ds
)1/2
·

·
(

1 +

∫ t

0

∫
Rd

[ p∑
i=1

|biµ − biσ|2 +

d∑
i=p+1

|biµ − biσ|
]
dσs ds

)1/2
holds true under the condition that

∑p
i=1(|biµ|2 + |biσ|2) and

∑d
i=p+1(|biµ| + |biσ|) are

integrable with respect to µ+ σ. Here the metric dp is defined in the following way:

dp(µ
1, µ2) = sup

ψ

∫
Rd
ψ d(µ1 − µ2),

where ψ ∈ C(Rd), |ψ| ≤ 1 and |ψ(x+hp)−ψ(x)| ≤ |hp| for all hp = (0, . . . , 0, yp+1, . . . , yd).
The main novelty is the case of degenerate Fokker–Planck–Kolmogorov equations for
measures with nonsmooth unbounded coefficients. In addition, we obtain new existence
and uniqueness conditions for nonlinear Fokker–Planck–Kolmogorov equations. Since
the equations in question are degenerate, the solutions µ and σ do not possess densities
with respect to Lebesgue measure. Thus, the approach from [6] cannot be applied here
and we use the approximative Holmgren method that was developed in [4] and [5]. The
main difficulty is to obtain the gradient estimate for the solution of the adjoint equation.
The drifts bµ and bσ are irregular mappings and we cannot obtain the required estimate
by the maximum principle directly. Let us remark that we do not assume that bµ and
bσ are locally bounded or locally integrable with respect to Lebesgue measure. Thus,
even in the case p = d our result seems to be new. Some of these results were presented
without proofs in [12].

Equations with partially degenerate diffusion matrices arise in the Vlasov–Fokker–
Planck systems and play a crucial role in physics (see, for instance [15], [7]). The
uniqueness of solutions of linear equations with degenerate diffusion matrices is investi-
gated in [3]. Some estimates of the total variation and Kantorovich distances between
solutions are given in [6] and [10]. In [9], the authors present quantitative stability esti-
mates for solutions to degenerate Fokker–Planck equations in Lp. Pointwise bounds for
the difference of two transition densities of diffusions are given in [8]. In [2], a survey
of results about Fokker–Planck–Kolmogorov linear equations is presented. In [13] and
[11], the existence and uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov
equations are studied.

Let us explain precisely our framework.
A Borel measure µ on [0, T ]×Rd is given by a family of probability measures (µt)t∈[0,T ]

if µt ≥ 0, µt(Rd) = 1, for every Borel set B the mapping t → µt(B) is measurable and
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for every u ∈ C∞0 ((0, T )× Rd) one has∫
[0,T ]×Rd

u dµ =

∫ T

0

∫
Rd
u(x, t)µt(dx) dt.

We write µ(dxdt) = µt(dx) dt or µ = µt dt.
We say that a measure µ = µt dt given by a family of probability measures µt satisfies

the Cauchy problem

(2) ∂tµ = L∗A,bµ, µ|t=0 = µ0

if aij , bi ∈ L1([0, T ] × U, µ) for every ball U ⊂ Rd and for every function u such that

u(x, t) ≡ 0 if |x| ≥ R for some R > 0 and u ∈ C1,2
t,x ((0, T ) × Rd)

⋂
C([0, T ] × Rd) the

equality

(3)

∫
Rd
u(x, t)µt(dx) =

∫
Rd
u(x, 0) dµ0 +

∫ t

0

∫
Rd

[
∂tu+ LA,bu

]
µs(dx) ds

holds for every t ∈ [0, T ].
Suppose that for a number λ > 0 and some integer p with 0 ≤ p ≤ d one has

(H1) 〈A(x, t)ξ, ξ〉 ≥ λ
∑p
i=1 ξ

2
i for all x, ξ ∈ Rd and t ∈ [0, T ], where the right hand

side equals zero if p = 0.
Let µ be a bounded Borel measure on [0, T ] × Rd. For p ≥ 1 we denote by µp the

projection of µ to the first p coordinates x1, . . . , xp and t, that is, µp(B) = µ(B ×Rd−p)
for every Borel set B ⊂ [0, T ]× Rp.

Proposition 1. Let p ≥ 1. Suppose that µ = µt dt, is a solution to the Cauchy prob-
lem (2) and µt is a family of probability measures on Rd. Suppose also that the diffusion
matrix A satisfies condition (H1) and aij , bi ∈ L1(µ, [0, T ] × Rd). Then the measure
µp has a density %(t, x1, . . . , xp) with respect to Lebesgue measure on (0, T ) × Rd and %

belongs to L
(p+1)/p
loc ((0, T )× Rp).

Proof. Since aij , bi belong to L1(µ, [0, T ]×Rd), we see that the identity in the definition
of a solution holds true for every smooth bounded u that depends only on x1, . . . , xp and
t. It follows that for every u ∈ C∞0 ((0, T )× Rp) we have∫ T

0

∫
Rp

[∂tu+

p∑
i,j=1

ãij∂xi∂xju] dµpt dt ≤ C(sup |u|+ sup |∇xu|),

where ãij = E(aij |Fp) and Fp is generated by t, x1, . . . , xp. Applying [2, Theorem 6.3.1]

we obtain that (detÃ)1/(p+1) ·µp has a density % ∈ L(p+1)/p
loc ((0, T )×Rp). By (H1) we can

find a set I ⊂ (0, T )×Rp such that µp(I) = 1 and 〈Ã(t, x1, . . . , xp)ξ, ξ〉 ≥ λ|ξ|2 for every

(t, x1, . . . , xp) ∈ I and every ξ ∈ Rp. This implies that detÃ(t, x1, . . . , xp) ≥ λp > 0 for
every (t, x1, . . . , xp) ∈ I and µp has a density. �

Suppose also that

(H2) aij are bounded continuous functions having two bounded continuous spatial
derivatives and

d∑
k=p+1

(SA(x, t)S)kk ≥ γ
d∑

k=p+1

|tr(∂xkA(x, t)S)|2

for some γ > 0 and every symmetric matrix S.
We emphasize that according to [16, Lemma 3.2.3] the last inequality holds if p = 0.

Let us illustrate the case p ≥ 1.
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Example 1. Let the diffusion matrix A have the form(
R 0
0 0

)
where R is a symmetric p × p matrix, 〈Rξ, ξ〉 ≥ λ|ξ|2 for every ξ ∈ Rp and R depends
only on x1, . . . , xp. It is clear that A satisfies (H1) and (H2).

Example 2. Let A have the following form(
R 0
0 Q

)
where R = (rij) is the same as above, Q = (qij) is a symmetric and nonnegative matrix.
Let us check that A satisfies (H2). Note that

(SAS)kk =
∑

1≤ij≤d

aijsiksjk =
∑

1≤i,j≤p

rijsiksjk +
∑

p+1≤i,j≤d

qijsiksjk,

where the last term can be represented in the form (ZQZ)kk, Z = (sml)p+1≤m,l≤d.
Applying [16, Lemma 3.2.3] we obtain the inequality

tr(ZQZ) ≥ γ
∑
k

|tr(∂xkQZ)|2

for some γ > 0. Since R does not depend on xp+1, . . . , xd, we see that

d∑
k=p+1

|tr(∂xkA(x, t)S)|2 =
∑
k

|tr(∂xkQZ)|2.

It follows that (H2) is fulfilled.

Example 3. Let A have the form (
R Y
Y Q

)
where symmetric and nonnegative matrixes R = (rij)1≤i,j≤p and Q = (qij)p+1≤i,j≤d do
not depend on xp+1, . . . , xd and A satisfies (H1). Let us prove that A satisfies (H2).
Condition (H1) implies that (SAS)kk ≥ λ

∑p
i=1 s

2
ik. Furthermore, the inequality

8−1|tr(∂xkA(x, t)S)|2 ≤
∑

1≤i≤p,p+1≤j≤d

|∂xkyij |2|sij |2

holds for every k ≥ p + 1. Taking into account that |∂xkyij | are bounded functions we
obtain (H2).

Example 4. Assume that the matrix A has the same form as in Example 3, Q depends
on x1, . . . , xd, R does not depend on xp+1, . . . , xd. Assume also that the inequality

〈Aξ, ξ〉 ≥ λ
p∑
i=1

ξ2i + α

d∑
i,j=p+1

qijξiξj

holds for every ξ ∈ Rd. Let us show that A satisfies (H2).
Indeed, for every symmetric matrix S we have

d∑
k=p+1

d∑
i,j=1

skia
ijsjk ≥ λ

d∑
k=p+1

p∑
i=1

s2ik + α

d∑
i,j,k=p+1

qijsiksjk.



ESTIMATES OF DISTANCES BETWEEN SOLUTIONS . . . 45

On the other hand, we obtain the inequality

d∑
k=p+1

( d∑
i,j=1

∂xka
ijsji

)2
≤

d∑
k=p+1

[
8
( ∑
1≤i≤p,p+1≤j≤d

∂xky
ijsji

)2
+ 2
( ∑
i,j=p+1

∂xkq
ijsji

)2]

≤ C

 ∑
1≤i≤p,p+1≤j≤d

|∂xkyij |2|sij |2 +

d∑
i,j,l=p+1

qijsilsjl

 .

Thus, (H2) is fulfilled.

Example 5. Suppose that ai0j0xk
6= 0, for some i0, j0 ≤ p and k > p; then A does not

satisfy (H2). Let S = (sij), si0j0 = sj0i0 = 1 and sij = 0 otherwise. It is easy to prove
that

d∑
k=p+1

(SA(x, t)S)kk = 0 and

d∑
k=p+1

|tr(∂xkA(x, t)S)|2 > 0.

Recall that

dp(µ
1, µ2) = sup

{∫
Rd
ψ d(µ1 − µ2) : ψ ∈ C(Rd), |ψ(x)| ≤ 1, |ψ(x+ hp)− ψ(x)| ≤ |hp|

}
.

Let us formulate our main result.

Theorem 1. Assume that µ = µt dt and σ = σt dt are two solutions to the Cauchy
problems (2) with the initial conditions µ0 and σ0 and with the operators LA,bµ and
LA,bσ , where A satisfies (H1), (H2). Assume also that there exists Λ > 0 such that

|bµ(x, t)− bµ(x+ hp, t)| ≤ Λ|hp| ∀hp = (0, . . . , 0, yp+1, . . . , yd)

and
p∑
i=1

|biµ|2,
p∑
i=1

|biσ|2,
d∑

i=p+1

|biµ|,
d∑

i=p+1

|biµ| belong to L1(µ+ σ).

Then there exists a number K = K(T, λ,Λ, γ) > 0 such that the estimate

dp(µt, σt) ≤ Kdp(µ0, σ0) +K

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − biσ| dσs ds

+K
( p∑
i=1

∫ t

0

∫
Rd
|biµ − biσ|2 dσs ds

)1/2
·

·
(

1 +

∫ t

0

∫
Rd

[ p∑
i=1

|biµ − biσ|2 +

d∑
i=p+1

|biµ − biσ|
]
dσs ds

)1/2
.

holds for every t ∈ [0, T ].

The proof of Theorem 1 is based on two lemmas below.

Lemma 1. Suppose that ψ and h are smooth bounded functions having bounded deriva-
tives and

|ψ| ≤ 1, |∂xkψ| ≤ 1, |∂xkh| ≤ Λ,

for some Λ > 0 and every k = p+ 1, p+ 2, . . . , d. Let f be a smooth bounded solution to
the Cauchy problem

∂tf +

d∑
i,j=1

aij∂xi∂xjf +

d∑
i=1

hi∂xif = 0, f(T, x) = ψ(x).
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Then

|f(x, t)|2 +

d∑
k=p+1

|∂xkf(x, t)|2 ≤ (1 + d− p)eM(T−t),

M = 4−1(d− p)2Λ
(
p2Λλ−1 + 1

)
+ 4−1γ−1.

Proof. It is easily shown that the function v = (f2 +
∑d
k=p+1 |∂xkf |2)/2 satisfies the

equation

∂tv +

d∑
i,j=1

aij∂xi∂xjv +

d∑
i=1

hi∂xiv = Q,

where

Q =
∑

1≤i,j≤d

aij∂xif∂xjf +

d∑
k=p+1

∑
1≤i,j≤d

aij∂xi∂xkf∂xj∂xkf

−
d∑

k=p+1

∑
1≤i,j≤d

∂xka
ij∂xi∂xjf∂xkf −

d∑
k=p+1

∑
1≤i≤d

∂xkh
i∂xif∂xkf.

Let u = (∂xif)1≤i≤d, up = (∂xif)1≤i≤p and S = (∂xi∂xjf). The expression Q can be
represented in the form

Q = 〈Au, u〉+

d∑
k=p+1

(SAS)kk −
d∑

k=p+1

tr(∂xkAS)∂xkf −
d∑

k=p+1

d∑
i=1

∂xkh
i∂xif∂xkf.

Taking into account the estimates

d∑
k=p+1

d∑
i=1

∂xkh
i∂xif∂xkf

=

d∑
k=p+1

p∑
i=1

∂xkh
i∂xif∂xkf +

d∑
k=p+1

d∑
i=p+1

∂xkh
i∂xif∂xkf

≤ (d− p)pΛ|up|v1/2 + (d− p)2Λv ≤ λ|up|2 + v
(

4−1(d− p)2p2Λ2λ−1 + (d− p)2Λ
)

and
d∑

k=p+1

tr(∂xkAS)∂xkf ≤ γ
d∑

k=p+1

|tr(∂xkAS)|2 + 4−1γ−1v,

we obtain the inequality

Q ≥ −Mv, M = 4−1(d− p)2p2Λ2λ−1 + (d− p)2Λ + 4−1γ−1.

Consequently, the function v satisfies the inequality

∂tv +

d∑
i,j=1

aij∂xi∂xjv +

d∑
i=1

hi∂xiv +Mv ≥ 0

and the required estimate follows from the maximum principle (see Theorem 3.1.1 [16]).
�

Lemma 2. Let p ≥ 1 and µ be a bounded nonnegative Borel measure on [0, T ] × Rd.
Suppose that the projection µp of the measure µ to the first p coordinates x1, . . . , xp and t
has a density % ∈ Lqloc((0, T )×Rd), where q > 1. Suppose also that a measurable function
f ∈ Lr(µ), where r ≥ 1, satisfies the following condition:
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(*) there exists Λ > 0 such that

|f(x, t)− f(x+ hp, t)| ≤ Λ|hp| ∀ hp = (0, . . . , 0, yp+1, . . . , yd).

Then there exists a sequence of smooth bounded functions fn with bounded derivatives
such that ‖f − fn‖Lr(µ) → 0 and

|fn(x, t)− fn(x+ hp, t)| ≤ 4Λ|hp| ∀ hp = (0, . . . , 0, yp+1, . . . , yd).

Proof. For simplicity we use the notation z = (x1, . . . , xp) and y = (xp+1, . . . , xd).
First let us prove that f can be approximated by a function g such that g satisfies the

condition (*), g(z, y, t) = 0 if |z| > R, t < κ or t > T − κ, and |g(z, y, t)| ≤ C for some
R > 0, κ > 0 and C > 0.

Let IN (z, t) = 1 if |z| < 1/N , t ∈ [N−1, T − N−1], and IN (z, t) = 0 otherwise. Let
us consider the function gN (z, y, t) = IN (t, z)GN (f(z, y, t)), where GN (v) = v if |v| ≤ N
and GN (v) = Nsign v if |v| > N . Since |GN (v1) − GN (v2)| ≤ |v1 − v2|, the function
gN satisfies (*). By the estimate |gN | ≤ |f | and the Lebesgue dominated convergence
theorem we have ‖gN − f‖Lr(µ) → 0 as N →∞.

Now we prove that the function g can be approximated by a function η such that η
satisfies the condition (*) with 2Λ, |η| ≤ C, η(z, y, t) = 0 if |z| > R or |y| > R1, t < κ or
t > T − κ for some positive numbers R, R1, κ and C.

Let ϕ ∈ C∞0 (Rd−p), 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ 1, ϕ(y) = 1 if |y| ≤ 1 and ϕ(y) = 0 if
|y| > 2. Let us approximate g by ηM (z, y, t) = ϕM (y)g(z, y, t), where ϕM (y) = ϕ(y/M).
Applying the condition (*) we obtain |g(t, z, y)| ≤ |g(t, z, 0)| + Λ|y| ≤ C + Λ|y|. Let
CM−1 < Λ. Then we obtain the estimates

|ηM (z, y, t)− ηM (z, y′, t)| ≤ (CM−1 + Λ)|y − y′| ≤ 2Λf |y − y′|.

Moreover, ‖ηM − g‖Lr(µ) → 0 as M →∞.
Finally, let us prove that η can be approximated by functions fn with the required

properties. We can assume that η is a smooth function with respect to y.
Let ε > 0 and δ > 0. Let η(z, y, t) = 0 if t < κ or t > T − κ and

ηδ(z, y, t) =

∫ T

0

∫
Rp
ωδ(z − v, t− s)η(v, y, s) dv ds,

where ωδ(x, t) = δ−p−1ω1(x/δ)ω2(t/δ) and ω1 ∈ C∞0 (Rp), ω2 ∈ C∞0 (R), 0 ≤ ω1 ≤ 1,
0 ≤ ω2 ≤ 1, ‖ω1‖L1 = 1, ‖ω2‖L1 = 1. There exists a family of Borel sets {Bj}Jj=1 such

that Bj ⊂ Rd−p, Bj ∩ Bi = ∅, {y : |y| ≤ R} ⊂ ∪jBj and supz,y∈Bj |z − y| ≤ ε. Let us

take a point yj ∈ Bj . Applying condition (ii) we obtain

‖ηδ − η‖rLr(µ) ≤
J∑
j=1

∫
([0,T ]×Rp)×Bj

|ηδ(z, yj , t)− η(z, yj , t)|r dµ+ C(r)Λrεr

≤ J
∫
[0,T ]×Rp

|ηδ(z, yj , t)− η(z, yj , t)|r dµp + C(r)Λrεr

Since the mapping (t, z) → η(z, y, t) is bounded and µp = % dx dt, where % ∈ Lqloc and
q > 1, we can find a number δ > 0 such that ‖ηδ − η‖rLr(µ) ≤ ε+ C(r)Λrεr. �

Proof of Theorem 1. Let f be a solution to the Cauchy problem

∂tf +

d∑
i,j=1

aij∂xi∂xjf +

d∑
i=1

hi∂xif = 0, f(x, T ) = ψ(x),
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where h and ψ satisfy the conditions of Lemma 1. Substituting u for f in (3), for the
difference of the solutions µ = µt dt and σ = σt dt we obtain the equality∫
Rd
ψ d(µt−σt) =

∫
Rd
f d(µ0−σ0)+

∫ t

0

∫
Rd
〈bµ−h,∇f〉 dµs ds−

∫ t

0

∫
Rd
〈bσ−h,∇f〉 dσs ds.

Applying the maximum principle and Lemma 1 we obtain

|f(x, t)| ≤ 1,

d∑
k=p+1

|∂xkf(x, t)|2 ≤ C2
1

for some C1 > 0. By the definition of dp we have∫
Rd
f d(µ0 − σ0) ≤ (1 + C1)dp(µ0, σ0).

Applying the Cauchy inequality we get∫ t

0

∫
Rd
〈bµ − h,∇f〉 dµs ds

≤
(∫ t

0

∫
Rd

p∑
i=1

|biµ − hi|2 dµs ds
)1/2(∫ t

0

∫
Rd

p∑
i=1

|∂xif |2 dµs ds
)1/2

+ C1

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − hi| dµs ds.

Furthermore, we have

−
∫ t

0

∫
Rd
〈bσ − h,∇f〉 dσs ds

≤
(∫ t

0

∫
Rd
|biµ − biσ|2 dσs ds

)1/2(∫ t

0

∫
Rd

p∑
i=1

|∂xif |2 dσs ds
)1/2

+ C1

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − biσ| dσs ds−
∫ t

0

∫
Rd
〈bµ − h,∇f〉 dσs ds,

where the last term is estimated in the following way:

−
∫ t

0

∫
Rd
〈bµ − h,∇f〉 dσs ds

≤
(∫ t

0

∫
Rd

p∑
i=1

|biµ − hi|2 dσs ds
)1/2(∫ t

0

∫
Rd

p∑
i=1

|∂xif |2 dσs ds
)1/2

+ C1

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − hi| dσs ds.

Let us estimate the expression∫ t

0

∫
Rd

p∑
k=1

|∂xkf(x, t)|2 d(µs + σs) ds.

Substituting u for f2 in (3) we obtain∫
Rd
ψ2 dµt =

∫
Rd
f2 dµ0 +

∫ t

0

∫
Rd

2〈A∇f,∇f〉+ 2f〈bµ − h,∇f〉 dµs ds.
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Applying the inequalities |f | ≤ 1 and

|〈bµ−h,∇f〉| ≤
d∑
i=1

|biµ−hi||∂xif | ≤
λ

2

p∑
i=1

|∂xif |2 +
1

2λ

p∑
i=1

|biµ−h|2 +C1

d∑
i=p+1

|biµ−hi|,

we get the estimate ∫ t

0

∫
Rd

p∑
i=1

|∂xif |2 dµs ds ≤
1

λ
+R1(h),

where

R1(h) =

∫ t

0

∫
Rd
λ−2

p∑
i=1

|biµ − h|2 + 2C1λ
−1

d∑
i=p+1

|biµ − hi| dµs ds.

By the same argument we obtain the bound∫ t

0

∫
Rd

p∑
i=1

|∂xif |2 dσs ds ≤
1

λ
+R2(h).

where

R2(h) =

∫ t

0

∫
Rd
λ−2

p∑
i=1

|biσ − h|2 + 2C1λ
−1

d∑
i=p+1

|biσ − hi| dσs ds.

Note that
R2(h) ≤ Q1 +Q2(h),

where

Q1 =

∫ t

0

∫
Rd

2λ−2
p∑
i=1

|biµ − biσ|2 + 2C1λ
−1

d∑
i=p+1

|biµ − biσ| dσs ds,

Q2(h) =

∫ t

0

∫
Rd

2λ−2
p∑
i=1

|biµ − hi|2 + 2C1λ
−1

d∑
i=p+1

|biµ − hi| dσs ds.

Applying Lemma 2 (or the standard approximation in the case p = 0) we find a sequence
of smooth vector fields hn such that

lim
n→∞

∫ t

0

∫
Rd

2λ−2
p∑
i=1

|biµ − hin|2 +

d∑
i=p+1

|biµ − hin| d(µs + σs) ds = 0.

It follows that R1(hn) → 0 and Q2(hn) → 0 as n → ∞. Substituting h for hn in the
previous estimates and letting n→∞, we obtain the bound∫

Rd
ψ d(µt − σt) ≤ (1 + C1)dp(µ0, σ0)

+
(∫ t

0

∫
Rd

p∑
i=1

|biµ − biσ|2 dσs ds
)1/2( 1

λ
+Q1

)1/2
+ C1

∫ t

0

∫
Rd

d∑
i=p+1

|biµ − biσ| dσs ds.

This completes the proof. �

We now apply the obtained estimates to nonlinear Fokker–Planck–Kolmogorov equa-
tions.

Denote by P(Rd) the space of all probability measures on Rd.
Let V ∈ C2(Rd), V ≥ 0 and lim|x|→∞ V (x) = +∞. Let α > 0. Denote by Bα,τ (V )

the set of all mappings µt : [0, τ ] → P(Rd) such that t → µt(B) is a Borel measurable
function for every Borel set B and

sup
t∈[0,τ ]

∫
Rd
V (x)µt(dx) ≤ α.
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Proposition 2. Bα,τ (V ) is a complete metric space with respect to the metric

r(µ, σ) = sup
t∈[0,τ ]

dp(µt, σt).

Proof. Note that P(Rd) equipped with dp is a complete metric space. Moreover, for
every ϕ ∈ C1

0 (Rd) we have

sup
t∈[0,τ ]

∣∣∣∫
Rd
ϕd(µt − σt)

∣∣∣ ≤ C(ϕ)r(µ, σ).

Assume that µn ∈ Bα,τ (V ) is a Cauchy sequence. Then for each t ∈ [0, τ ] the sequence
µn,t converges to some measure µt. It is obvious that∫

Rd
V dµt ≤ α.

Then it is enough to prove that t → µt(B) is measurable for every Borel set B. Note
that

gn(t) =

∫
Rd
ϕdµn,t

is a Borel measurable function for all n and ϕ ∈ C1
0 (Rd). In addition, the sequence gn

converges uniformly to

g(t) =

∫
Rd
ϕdµt.

This yields that g is Borel measurable for every ϕ ∈ C1
0 (Rd). Applying the estimate

‖V ‖L1(µt) ≤ α we obtain that g(t) is Borel measurable for every bounded continuous
function ϕ. According to the monotone class theorem (see [1, Theorem 2.12.9]) we
conclude that g(t) is Borel measurable for every bounded Borel measurable function ϕ.
In particular, the mapping t→ µt(B) is measurable for every Borel set B. �

We now prove the existence of a solution to the Cauchy problem for a linear Fokker–
Planck–Kolmogorov equation in the case where the diffusion matrix is partially degen-
erate and the drift coefficient is not continuous.

Proposition 3. Assume that A = (aij(x, t)) satisfies (H1) and (H2). Suppose that

|b(x, t)| ≤ C1 + C1V (x), LA,bV (x, t) ≤ C2 + C2V (x)

and µ0 is a probability measure, V ∈ L1(µ0). Assume also that there exists Λ > 0 such
that

|b(x, t)− b(x+ hp, t)| ≤ Λ|hp| ∀hp = (0, . . . , 0, yp+1, . . . , yd).

Then there exists a solution µ = µt dt to the Cauchy problem (1) such that each µt is a
probability measure on Rd.

Proof. We partially apply the reasoning from [2, Theorem 6.7.3]. Let us consider the
operator

L1/n = LA,b + n−1(1 + |D2V (x)|)−1
d∑

k=p+1

∂2xk .

We have L1/nV ≤ C ′2 + C ′2V , the coefficients of L1/n are locally bounded, the diffusion
matrix is locally nondegenerate. Moreover, C ′2 does not depend on n. According to [2,
Theorem 9.4.8] there exists a probability solution µn = µn,t dt to the Cauchy problem
∂tµn = L∗1/nµn, µn|t=0 = µ0. By [2, Theorem 7.1.1] we obtain

sup
t,n

∫
V dµn,t <∞.
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Repeating the reasoning from the second part of Theorem 6.7.3 in [2] one can find a
subsequence {µnk} that converges weakly to some measure µ = µt dt, where {µt} is a
family of probability measures. Moreover, for each t the sequence µnk,t converges to µt.
According to Proposition 1 the measure µpnk has a density %nk with respect to Lebesgue
measure on Rp × [0, T ]. Moreover, for every ball U ⊂ Rp and every interval J ⊂ (0, T )
there exists a constant C(U, J) such that

‖%nk‖L(p+1)/p(U×J) ≤ C(U, J)

and C(U, J) does not depend on k. Here we use the assumption |b(x, t)| ≤ C1 +C1V (x)
that guaranties the global integrability of b with respect to µnk . One can pick a subse-
quence {nk} such that for every ball U ⊂ Rp and every interval J ⊂ (0, T ) the sequence
{%nk} converges weakly to some function % in L(p+1)/p(U×J). The function % is a density
of µp.

In order to prove that µ is a solution it is enough to verify that for every ϕ ∈ C∞0 (Rd)
and t ∈ (0, T )

lim
n→∞

∫ t

0

∫
Rd
L1/nϕdµnk,s ds =

∫ t

0

∫
Rd
LA,bϕdµs ds.

Since the coefficients are bounded and

sup
x,t
|LA,bϕ(x, t)− L1/nϕ(x, t)| ≤ 1/n,

it is enough to prove that for every 0 < δ < t < T

lim
n→∞

∫ t

δ

∫
Rd
LA,bϕdµnk,s ds =

∫ t

δ

∫
Rd
LA,bϕdµs ds.

Recall that the functions aij are continuous and bounded. Thus, in place of the expression
Lϕ we can consider only the term 〈b,∇ϕ〉. Let ω ∈ C∞0 (Rp), ω ≥ 0 and ‖ω‖L1(Rp) = 1.
Set z = (x1, . . . , xp), y = (xp+1, . . . , xd), ωm(z) = mpω(mz), and

bm(z, y, t) =

∫
Rp
b(u, y, t)ωm(z − u) du.

The mapping bm is smooth with respect to (z, y) and |bm(z, y, t)− bm(z, v, t)| ≤ Λ|y−v|.
Assume that the support of ϕ belongs to the set |z| ≤ R, |y| ≤ R. Let ε ∈ (0, 1). There
exists a family of Borel sets {Bj}Mj=1 such that Bj ⊂ Rd−p, Bj ∩Bi = ∅, {y : |y| ≤ R} ⊂
∪jBj and supz,y∈Bj |z − y| ≤ ε. Let yj ∈ Bj . Assume that the L(p+1)/p-norms of the

densities % and %nk on Q = {|z| ≤ R} × [δ, t] are estimated by a constant C(δ, t). Then∫ t

δ

∫
|b(z, y, s)− bm(z, y, s)||∇ϕ| dµnk,s ds ≤

≤ sup
x
|∇ϕ|

M∑
j=1

∫ t

δ

∫
|z|≤R

|b(z, yj , s)− bm(z, yj , s)|%nk dz ds+ 2Λε(t− δ).

Note that∫ t

δ

∫
|z|≤R

|b(z, yj , s)− bm(z, yj , s)|%nk dz ds ≤ ‖b( · yj , · )− bm( · yj , · )‖Lp+1(Q)C(δ, t),

where for sufficiently large numbers m the right side is less than ε/M . Thus, for every
ε > 0 there exists a number m0 such that for all m > m0

sup
k

∣∣∣∫ t

δ

∫
〈b− bm,∇ϕ〉 dµnk,s ds

∣∣∣ ≤ 2ε.
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The same estimate holds for the measure µ. Finally, we observe that for every m

lim
k→∞

∫ t

δ

∫
〈bm,∇ϕ〉 dµnk,s ds =

∫ t

δ

∫
〈bm,∇ϕ〉 dµs ds,

which completes the proof. �

Suppose that

(NH1) A = (aij) satisfies (H1) and (H2).
LetMτ be the set of all measures µ = µt dt on [0, τ ]×Rd, where (µt)t∈[0,τ ] is a family

of probability measures on Rd. Let M0 be a subset of Mτ . Assume that for every
µ ∈M0 we are given Borel measurable functions bi(t, x, µ). Set

Lµ =

d∑
i,j=1

aij(t, x)∂xi∂xj +

d∑
i=1

bi(t, x, µ)∂xi .

We say that µ = µt dt ∈M0 is a solution to the Cauchy problem on [0, τ ]× Rd

(4) ∂tµ = L∗µµ, µ|t=0 = µ0,

for the nonlinear Fokker–Planck–Kolmogorov equation if µ is a solution to the Cauchy
problem (2) on [0, τ ] × Rd for the linear Fokker–Planck–Kolmogorov equation with the
operator Lµ.

Suppose that

(NH2) for every α > 0 there exists Λ = Λ(α) > 0 such that for every σ ∈ Bα,T (V )
we have

|b(t, x, σ)− b(t, x+ hp, σ)| ≤ Λ|hp| ∀ hp = (0, . . . , 0, yp+1, . . . , yd).

Theorem 2. Suppose that (NH1) and (NH2) are fulfilled and there exist positive numbers
C1, C2 and C3 such that for every α > 0, τ ∈ (0, T ] and σ, µ ∈ Bα,τ (V ) we have

|b(t, x, σ)| ≤ C1 + C1

√
V (x), LσV (t, x) ≤ C2 + C2V (x),

|b(t, x, µ)− b(t, x, σ)| ≤ C3(1 +
√
V (x))dp(µt, σt)

for all (t, x) ∈ [0, τ ]×Rd. Then for every probability measure µ0, such that V ∈ L1(µ0),
there exist numbers τ ∈ (0, T ] and α > 0 for which the Cauchy problem (4) has a unique
solution in the space Bα,τ (V ).

Proof. Consider the mapping F defined as follows:

µ = F (σ)⇔ ∂tµ = L∗σµ, µ|t=0 = ν.

According to Proposition 3 and [2, Theorem 9.8.7](see also [3]) F is well-defined on
Bα,τ (V ). Let µ = F (σ). By [2, Theorem 7.1.1] we get∫

Rd
V dµt ≤ eC2t + eC2t

∫
Rd
V dν.

Setting

α = eC2T + eC2T

∫
Rd
V dν.

we have F : Bα,τ (V )→ Bα,τ (V ) for every τ ∈ (0, T ]. By Theorem 1 we obtain

r(F (σ1), F (σ2)) ≤ Cτr(σ1, σ2),

where C depends on C1, C2, T , Λ(α) and α. Consequently, the mapping F is contractive
if τ < 1/C. By the Banach contracting mapping theorem, in Bα,τ (V ) there exists a
unique solution µ. �
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Example 6. Let z, u ∈ Rp, y, v ∈ Rd−p, x = (z, y). Set

Lµ = ∆z + 〈b(z, y, µ),∇x〉, b(z, y, µ) =

∫
K(z, y, u, v)µ(dudv),

where K is Borel measurable, bounded and

|K(z, y, u, v)−K(z, y′, u, v′)| ≤ Λ
(
|y − y′|+ |v − v′|

)
.

Then all conditions of Theorem 2 are fulfilled with V (x) = |x|2 and in a suitable set
Bα,τ (V ) there exists a unique solution µ = µt dt to the Cauchy problem ∂tµ = L∗µtµ,
µ|t=0 = µ0. We emphasize that the equation is degenerate, so a solution can be a singular
measure, and the drift coefficient need not be continuous in z.
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