
Theory of Stochastic Processes
Vol. 23 (39), no. 2, 2018, pp. 1–6

N. ALEMOHAMMAD

VALUE AT RISK FORECASTING OF GOLD PRICE: A

COMPARISON BETWEEN THE GARCH AND LST-GARCH MODELS

Value at risk is one of the most important measure in finance. This paper evaluates
the value at risk forecasting performance of the GARCH and logistic smooth transi-

tion GARCH (LST-GARCH) models for the gold markets. The LST-GARCH model

is capable to react differently to positive and negative shocks in financial time series.
The results show that the LST-GARCH structure provides the more adequate value

at risk forecasts relative to the GARCH model.

1. Introduction

Financial time series generally relieve some particular specifications that must be
considered when the objective is to forecast the future risks. Some of these characteristics
are as:

• They are usually non-stationary.
• There is almost no significant correlation between financial time series.
• The squared of the observations are strongly correlated.
• In a financial time series, conditional variance isn’t constant over time.
• They almost depict leverage effect property i.e. the conditional variance of series

reacts differently to positive and negative shocks with the same absolute values,
[17].

In the past few decades, there has been a growing interest in volatility modeling of
financial time series. The ARCH and GARCH models, introduced by Engle [7] and
Bollerslev [4], are the most famous structures to model volatility.

One limitation of the GARCH model is a symmetry reaction to the sign of past shocks.
Financial markets become higher volatile in response to negative shocks relative to pos-
itive one. A generalization of the GARCH model is a case that conditional volatility to
be a function of size and sign of the past observation. Study of the asymmetric GARCH
structure started by Engle [8] and continued as the Exponential GARCH (EGARCH)
model by Nelson [14], GJR-GARCH model by Glosten, et al.[9] and Threshold GARCH
(TGARCH) model by Zakoian [18]. The other asymmetric structures are smooth tran-
sition models introduced by Lubrano [12], Ardia [2], Medeiros and Veiga [13] and Haas
et al. [11].

Gold has played an important role on the world economy and the relation between it
and financial components is corroborated, [15]. Recently there has been great considera-
tion to global gold market. To relieve the risk in gold price oscillations, it is necessary to
handle some nonlinear models to capture its dynamics. Truck [16] and Liang showed that
TGARCH model provide the best volatility forecasting. Value at Risk has become one
of the most important risk measurement technique in finance. It measures the potential
loss of a financial position during a given time period for a given confidence interval [17].
Cheng et al. [5] used the power GARCH model to obtain out of sample VaR estimate.
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In this paper, we apply the GARCH and LST-GARCH models to forecast the value
at risk of gold market. The LST-GARCH model obviates the absence of asymmetric
property in the GARCH model by considering a smooth weight in its structure [12].

The parameters of the models are estimated by applying MCMC methods through
Gibbs and griddy Gibbs sampling. We illustrate the out-of-sample forecasting perfor-
mance of one-day-ahead value at risk of the proposed models for the daily gold returns
from 2004 to 2018.

The plan of this paper is as follows: the GARCH and LST-GARCH models are pre-
sented in section 2. Section 3 is devoted to a detailed explanation of the VaR. The results
of empirical study are discussed in Section 4. Section 5 concludes.

2. Nonlinear models

In this section two nonlinear models GARCH and LST-GARCH are studied.
GARCH

The Generalized Autoregressive Conditional heteroscedasticity model of order p and q
for time series {yt}, GARCH(p,q), is introduced as

yt = zt
√
ht

where {zt} is a white noise process with zero mean and variance σ2 and ht is the condi-
tional variance of {yt} that is defined as

ht = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j .

Sufficient conditions to warrent strictly positive ht are ω > 0, 0 ≤ αi < 1, 0 ≤ βj < 1,
(i = 1, · · · , p; j = 1, · · · , q).
LST-GARCH

The logistic smooth transition GARCH model (LST-GARCH) for the time series {yt} is
introduced as:

yt = zt
√
ht,

(1) ht = ω + α1y
2
t−1(1− wt−1) + α2y

2
t−1wt−1 + βht−1,

where the weights (wt−1) is the logistic function of the past observation as

(2) wt−1 =
1

1 + exp(−γyt−1)
γ > 0,

which is monotonically increasing with respect to previous observation and is bounded,
0 < wt−1 < 1. The parameter γ > 0 is called the slope parameter. The weight function
wt−1 goes to one when yt−1 → +∞ and so wt−1 tends to one. Also it goes to zero
when yt−1 → −∞. Therefore the effect of large negative shocks are mainly described
by α1 and of positive shocks by α2. For modeling financial leverage effect it is assumed
that α1 > α2. This enables one to provide a flexible model for describing such different
transitions. Figure 1 plots logistic weight functions for the returns of gold data. In this
model conditional variance is under the influence of size and sign of shocks. Indeed in
each regime the coefficient of y2t−1 is time dependent that causes the volatility structure
being under the influence size and sign of the observations and it makes distinct from
GARCH model. When γj grows to zero, wj,t−1 goes to 1/2 and the LST-GARCH model
tends to the GARCH model.

Sufficient conditions to guarantee strictly positive conditional variance (1) are that ω
to be positive and α1, α2, and bj being nonnegative.
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Figure 1. Logistic weight function

3. Value at Risk

The one-day-ahead value at risk level α ∈ (0, 1), VaR(α) is obtained by calculating
the (1−α)th percentile of the one-day-ahead predictive distribution [1]. To test the VaR
at level α, we define the sequence {Vt(α)} by

Vt(α) =

{
I{yt+1 < V aR(α)} if α > 0.5
I{yt+1 > V aR(α)} if α ≤ 0.5.

The out-of-sample VaR at level α has good performance if the sequence {Vt(α)} are
independent and obey the following distribution

Vt(α) ∼
{
Bernoulli(1− α) if α > 0.5
Bernoulli(α) if α ≤ 0.5,

The three likelihood ratio statistics for unconditional coverage (LRuc), independence
(LRind) and conditional coverage (LRcc) tests are as follows [6]:
1. LR statistic for the test of unconditional coverage,

LRuc = −2 ln[
φn1(1− φ)n0

π̂n1(1− π̂)n0
] ∼ χ2

(1),

where φ is the parameter of related Bernoulli distribution,which could be 1− α or α, n1
is the number of 1’s and n0 is the number of 0’s in the Vt(α) series and π̂ = n1

n1+n0
.

2. LR statistic for the test of independence,

LRind = −2 ln[
π̂n00+n10
∗ (1− π̂∗)n11+n01

π̂n00
1 (1− π̂1)n01 π̂n11

2 (1− π̂2)n10
] ∼ χ2

(1),
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Figure 2. Prices and returns of the gold market

where nij is the number of transition from i to j (i, j = 0, 1) in the Vt(α) series, π̂1 =
n00

n00+n01
, π̂2 = n11

n10+n11
and π̂∗ = n00+n10

n00+n01+n10+n11
.

3. LR statistic for the test of conditional coverage,

LRcc = LRind + LRuc,

LRcc has χ2 distribution with two degrees of freedom. When the value of LRcc is less
than the critical value of χ2 distribution one infer that the conditional coverage is correct
and there exist good VaR forecasts.

4. Empirical results

To evaluate the VaR forecasting performance of LST-GARCH with GARCH model for
the gold time series, we apply the daily gold prices for the period 14/4/2004 to 13/4/2018,
3460 observation. The first 2800 data are utilized for estimation the parameters and
remaining 660 observations are used for forecasting VaR analysis. In Table 1, descriptive
statistics of the gold returns are reported. plots the prices and returns of the gold
time series. To estimate the parameters, the Bayesian MCMC method, through Gibbs
and griddy Gibbs sampling is applied, see [3], and [1]. The estimated parameters of
the GARCH and LST-GARCH models and their standard deviations(in parenthesis)
are summarized in Table 2. The forecasting results of the VaR tests with common risk
levels are reported in Table 3. The second and third columns demonstrate the theoretical
expected violations and the number of empirical violations respectively. The last three
columns report the statistics for the unconditional coverage(UC), independency(IND)
and conditional coverage(CC) tests. From this table, it is notable that the number of
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Table 1. Descriptive statistics of the gold price

Mean Std. dev. Skewness Maximum Minimum Kurtosis

Gold data 0.005 1.188 -0.376 9.524 -8.943 9.087

Table 2. Estimation results

ω α1 α2 β γ

GARCH 0.345(0.009) 0.413(0.015) 0 0.369(0.012) 0

LST-GARCH 0.292(0.004) 0.602(0.015) 0.188(0.012) 0.218(0.005) 1.055(0.082)

Table 3. VaR results of gold price

Model α E(Vt(α)) N UC IND CC
0.99 7 4 1.96 0.049 1.24
0.975 16.5 8 5.50 0.20 5.7
0.95 33 15 12.80 0.7 13.50
0.925 49.5 26 14.34 2.14 16.48
0.9 66 32 23.47 3.27 26.74

GARCH 0.1 66 43 9.9 1.72 11.68
0.075 49.50 34 5.80 3.71 9.51
0.05 33 25 2.19 1.97 4.17
0.025 17 15 0.14 0.7 0.84
0.01 7 11 2.48 0.37 2.85
0.99 7 8 0.28 0.20 0.48
0.975 16.5 15 0.14 0.70 0.84
0.95 33 25 2.19 1.97 4.17
0.925 49.5 46 0.26 6.92 7.18
0.9 66 61 0.41 6.65 7.06

LST-GARCH 0.1 66 63 0.14 2.21 2.35
0.075 49.50 42 1.27 1.54 2.80
0.05 33 35 0.13 3.93 4.07
0.025 17 22 1.72 1.52 3.24
0.01 7 15 7.96 0.70 8.67

violations for the LST-GARCH are closer to the expected values than the GARCH model
except for two last cases(1% significance and 2.5% level). According to the results of Table
3, at the 5% significance levels, the LRuc test is rejected six times for the GARCH model
and only one time for the LST-GARCH model. The LRind statistic at 5% significance
level is bigger than critical value for two cases of LST-GARCH, at 7.5% and 10% levels.
The conditional coverage (CC) test is higher than critical value χ2

0.95 with two degrees
of freedom five times for the GARCH and three times for LST-GARCH.

5. Conclusion

In financial time series, the positive and negative shocks have different impacts on the
market volatility. Indeed conditional variance becomes more volatile by negative shocks
relative to positive one. The gold price time series is no exception. One extending of
the GARCH model is obtained by considering a convex combination of time dependent
logistic weight between the effect of the negative and positive shocks (LST-GARCH).

We fit the GARCH and LST-GARCH models to the gold log returns. The results
demonstrate that the LST-GARCH model enables more acceptable one-day-ahead VaR
forecasting relative to the GARCH model.
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