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ON CONSTRUCTING A STICKY MEMBRANE LOCATED ON
A GIVEN SURFACE FOR A SYMMETRIC o-STABLE PROCESS

For a symmetric a-stable stochastic process with a € (1,2) in a Euclidean space, a
membrane located on a fixed bounded closed surface S is constructed in such a way
that the points of the surface possess the property of delaying the process with some
given positive coefficient (p(z))zes. In other words, the points of S are sticky for
the process constructed. We show that this process is associated with some initial-
boundary value problem for pseudo-differential equations related to a symmetric
a-stable process.

INTRODUCTION

Let (x(t), My, P;) be a standard Markov process in a d-dimensional Euclidean space
R? (we assume that d > 2 in this article) whose transition probability density g (with
respect to Lebesgue measure on R?) is given by the equality

(1) gt zy) = (2m) /

exp{i(z — y, &) — ct|€|*}d¢, t>0, z €RY yeRY,

Rd
where ¢ > 0 and « € (1,2) are fixed parameters. We use Dynkin’s notation from [3]. The-
orem 3.14 there implies the existence of a standard Markov process in R? with transition
probability density g. This process is called a symmetric (more precisely, rotationally
invariant) a-stable process. Its generator is denoted by A and this is a pseudo-differential
operator whose symbol is given by the function (—c|¢|*)¢cga. For any unit vector [ € R
we denote by By a pseudo-differential operator with the function (2ic|¢|*2(€,1))¢cpa as
its symbol.

The operator A acts on a bounded real-valued function (p(z)),cge with bounded
Lipschitzean gradient according to the formula

@ Avlw) =enn [ (plat2) = ple) = (. Vel s 7 R

Ila+ DT((d+ «)/2) sin(ra/2)
wld+D/20 (a4 1) /2)
bounded Lipschitzean function (p(z)),cgra is given by the equality

Bipla) = =an | (oo +2) = pl@) ()i w € R

where ¢, = As for the operator B;, its action on a

These formulae for Ap(z) and Bjg(x) can be verified by immediate calculations resulting
in the following equalities Age(x) = —c|¢|%pe(z) and Bype(z) = 2ic|€]*2(&, 1) pe(z)
valid for all z € R? and ¢ € R?, where ¢¢(z) = €'(&7).

Let a bounded closed surface S in R¢ be given such that it separates R? into two open
parts: the interior and exterior. We assume that S is the surface of the class H'*7 for
some constant v € (0,1) (see [7, Ch. IV, §4] and, also, [8]). Then there exists a tangent
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hyperplane to S at each point x € S. The unit outer normal vector to .S at z € S will
be denoted by v(z).

Let (p(z))zes be a given Continuous function with positive values. We show that there
exists a W-functional ( )i>o0 of the process (z(t)):>0 such that its characteristic is

given by E,n:(p / dT/ (r,z,y)p(y)doy,, t>0, z€ RY, where the inner integral

is a surface one.

For t > 0, we put ¢; = inf{s > 0 : s +n.(p) > t}, #(t) = x(¢;), My = M¢,. Tt is
well-known that the process (#(t), My, P,) is also a standard Markov process in RY (see,
for example, [3, Ch. 10]).

Denote by C,(R?) the Banach space of all continuous bounded functions on R? with

real values and the norm ||¢|| = sup |¢(x)|.
z€R?
We will use the following notation: for a function (f(y)),era the symbol f(z+) (re-

spectively, f(x—)) for x € S means the limit value of f(y), as y approaches z along any
curve lying in a finite closed cone K in RY with vertex at x such that K C {y € R? :

(y,v(x)) > 0} U {x} (respectively, K C {y € R?: (y,v(x)) < 0} U {x}).
The main result of this article is formulated zisoofollows: for each bounded Hélder

continuous function ¢, the function U(\, z, @) = / e ME p(2(t))dt, A >0, ze€R?
0

is continuous and satisfies the following equalities

(3) MU (A x,0) = @(z) = AU, -, 9)(2)

for all A > 0, z € R%\ S;

() AO2.9)— o) = o [Bu U 0)(at) ~ By U - ) ()]

forall A >0,z €S.
Note that equalities (3) and (4) are the Laplace transforms of the ones

W = Ai(t,,¢)(z), t>0, z€R\S,
oult,z,p) 1

(©6) ot -~ 2p(x)

[Bu(x)’&(ta K 30)(1‘4») - BV(I)ﬂ’(t? K @)(Ii)] , > 07 T e Sv

respectively, if the condition @(0+,z, ) = ¢(z) is valid for all z € R? and
(7) a(t,z, 0) = Bpp(£(t), t>0, zeR™

Remark. Tt is curious to notice that if ¢ € D(A) (A denotes the generator of the process
(Z(t))+>0), then the function (7) is differentiable with respect to ¢ > 0 and therefore, it
satisfies the equations (5) and (6). The interesting problem of describing the domain of
A will be out of our attention in this article.

In our article [9], the problem of constructing a sticky membrane, as well as an elastic
screen located on a given hyperplane in R? was considered.

In the limit case of @« = 2 (and ¢ = %), our process is a standard Brownian motion and
the operator A coincides with %A (A is the Laplace operator) and B, coincides with %
(the derivative in the direction 7). Similar problems (in this case) were considered in the
books [3, 5] and also in [1, 2, 6] and many others.

The article is organized as follows. In Section 1 some auxiliary results are presented.

Section 2 is devoted to solving the main problem (3), (4).
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1. SOME AUXILIARY RESULTS

1.1. The function g defined by (1) is continuous in the region t > 0, x € R? and y € R%.
Moreover, it is uniformly continuous in any region of the form (¢, z, y) € [r, +00) x R? x R?
for a fixed 7 > 0.

As follows from [4, Ch. 4], the following inequalities (D* means any partial derivative
of the order k =0,1,2,... in spatial arguments)

t
(8) |D¥g(t,-,y)(z)| < N o § g — arart’ t>0, zeRY yeRY

are fulfilled, where Ny, is some positive constant. Similar estimates are established in [4]
for fractional derivatives of the function g, in particular, the inequality

N
@7+ 1y — 2

(9) [Ag(t, - y)| <

holds true for all t > 0, 2 € R? and y € R? with some constant N > 0.
One can easily see from (8) for & = 0 that the following estimate

(10) / ot ,y) doy < Ct=1/e
S

holds true for all 2 € R? and ¢ > 0 with some constant C' > 0. Here and below we will
denote by C all specific constants whose values are not important for us.

It is well-known that for each ¢ € Cy(R?) the function u(t, x, ¢) = / g(t,z,y)e(y) dy,
Rd

ou(t,x, )

t >0, = € R? satisfies the equation = Au(t,-, ) in the region t > 0, z € R?

and the initial condition u(0+, x,p) = ¢(z) for x € R? (see [4, Ch. 4]).

1.2. Let (¥(t, x))r>0.0es be a continuous function with real values satisfying the inequal-
ity |¢(t,z)] < Ct=P for allt > 0 and z € S with some constants C' > 0 and 8 < 1. We put
v(t, z, ) def /75 dT/ gt — 1,2, y)¥(r,y)doy, t>0, z € RY. Inequality (10) implies
the fact that tﬁis funf:tion is well-defined. It is called a single-layer potential.

The following properties of the function v are established in [8].

1.2.A. The function v is continuous in the region ¢t > 0, z € R? and it satisfies the
inequality

(11) lu(t,z, )| < Cti=PL/e

for all t > 0, x € R? with some constant C' > 0.

Ou(t, z, )
ot

1.2.B. The function v is a solution of the equation = Avu(t,-,9)(x) in the

region ¢t > 0 and x € R%\ S.

1.2.C. The following relations

(12)  Byyult,d)(a) = / dr /S ¢t — 7.2,y y) doy T (1, 2)

hold true for all ¢ > 0 and z € S, where ¢"®)(t,z,y) = B, (2)9(t, -, y)(x). The first item

(denote it by Bffi';)')v(t, -, ¥)(x)) on the right-hand side of relations (12) is called the
direct value of the expression B, ,)v(t,-,7)(z) for fixed x € S and ¢ > 0.

Note that the following estimation
(13) Bl u(t, - 0) (@) < Cft /ey t>0, m e S,

v
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is valid with some constant C' > 0. This estimate was actually established in the process
of proving Lemma 2 in [8].

1.3. Let (p(2))zere be a bounded Hélder continuous function. We now prove that the
function

+oo
(14) U\ z,0) = / e Mu(t,z, ) dt, \>0, xR
0

is well-defined and it satisfies the following equation
(15) AU\, z,0) —@(z) = AU\, - 9)(2), A>0, 2 € R

The obvious inequality |u(t, z, ¢)| < ||¢||, t > 0, # € R? shows that the integral in (14)
is well-defined. In addition, we have the equality U (X, z, ¢) = /Rd G\ z,y)p(y) dy valid

+o00
for all A > 0, z € R?, where G(\, z,y) = / e Mg(t,z,y)dt, \ >0, z € R?, y € R%,
0

Note that the following equality Awu(t,-, ¢)(z) = / Ag(t, - y)(z)p(y)dy, t > 0,
Rd

x € R? holds true for all ¢ € C,(RY) (see [8]). This fact, inequality (9) and the Hélder
continuity of the function ¢ lead us to the following inequalities

[Au(t, - @) ()] < / [Ag(t, ) (@)llp(y) — p(a)ldy < C- 17142 £>0, 2 € R
Rd

with some constant C' > 0, where 6 € (0, 1) is the Holder exponent of the function ¢.
+oo
This means that the integral / e MAu(t, -, p)(x) dt exists for all A > 0 and z € R%.

0
Taking into account formula (2) and inequality (8) we can change the order of the
integration on the right-hand side of the following equality

+o0 +oo
e MAu(t,- x =Cqq e M — (x X
| e At @ =, [N [ (o) o)y

< [ (ot 209) = glt.2.9) (2 Vot ) @) i

“+oo

As a consequence, we obtain the equality AU()\, -, ¢)(x) = / e MAu(t, -, o)(z) dt
0

valid for all A > 0, € R? and each bounded Hélder continuous function ¢.

So, equation (15) for the function U follows now from the last of the statements in
Subsection 1.1.

1.4. Formulae (11) and (13) show that the following equalities for the Laplace transforms

of the functions (v(t,2,v));>0 zerae and (B(Vcé':)‘)v(t, L ¥)(x))t>0,0es are valid:

400
V(N z,0) déf/ e My(t,z, 1)) dt = / GO\ z,y)¥(\ y)do,, A>0, xR,
0 S

“+o0
/ e_)‘tBl(féf)')v(t, L) (x) dt = / G”(”)(A,m,y)\ll()\,y) doy,A >0, z €8,
0 s

+oo +oo
where U(\, z) = / e My(t, ) dt and GV(””)(/\,x,y) = / e*)‘tg”(@(t,x,y) dt.
0
Moreover, the following relation

AV (N, ) (x) = AV (A 2,40), A>0, 2 €RY\ S
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holds true for any function 1 satisfying the inequality [1(t,z)| < Ct =P, ¢t >0, 2 € S (see
Subsection 1.2). If we additionally assume that the function (¢ (¢, z))i>0,4es is continuous
and bounded then the relations

B, V() (zt) = / G"@ (N, z,y)U(\,y) doy, FU(\,z), A>0,z€S
S

are valid. The proofs of these relations are similar to those proving the properties of the
single-layer potential (see, [8]).

1.5. Let a positive continuous function (p( ))zes be given. One can easily verify that
the function fi(x / dT/ (r,z,y)p(y)doy, t > 0, x € R? is a W-function for the

process (z(t))i>0 (See 3, Ch. 6, §3]) satisfying the inequality f(z) < C=25t!=1/||p|| for
all t > 0 and 2 € R? (see (10)), where ||p|| = supp(x) and C is the constant from (10).
z€S

Therefore, according to Theorem 6.6 from [3], a W-functional (1:(p));>0 of the process
(z(t))¢>0 exists such that E,n;(p) = fi(z) for all t > 0 and x € R?. The functional 7 (po)

with po(z) =1 is called the local time on S for the process (z(t));>0. It is evident that
¢

n(p) = /p< (5)) dns (po).

Making use of Theorem 6.4 from [3], one can approximate the functional (1:(p))¢>o0
by the following ones 77 / dr / (h,z(7),y)p(y) doy, t > 0 in the sense that
(16) Elni”(p) = m)* =0, h—0+

for all t > 0, z € R%.
As was proved in [10], this approximation and the Feynman-Kac formula allow one to
write down the equation (with A\ > 0, ¢ € C(R%))

t
(17)  Qa(t,z,9) = /Rd 9(t, =, y)e(y) dy—A/O dT/SQ(t—7'7%?/)62/\(7',1%90)17@) doy.
for the function Qy(t, 7, ¢) = Epo(x(t)) exp{—An:(p)}, t > 0, x € R™

2. SOLVING THE MAIN PROBLEM

Consider the Markov process (i(t), My, P,) defined in Introduction.
Theorem. For each bounded Hélder continuous function (o(x))zera the function
+oo
U\, x,p) :/ e ME,p(i(t))dt, \>0, xR
0

solves the problem (3), (4).

Proof. The resolvent operator of the process (Z(¢))¢>o can be calculated in the following
way (see [5, Ch. II, §6])

+o0 +oo
E/ Np(a(t) dt = E/ e ip(w(Gy)) dt =

+o0 +oo
= Ew/ e M) o ((t)) dt +E;c/ e M) o (2(t)) de (p),
0

0

(18)

where z € R%, X\ > 0, ¢ € Cy(R?).
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The first item on the right-hand side of (18) can be found from equation (17). Multi-
plying both sides of that equation by e~** and integrating with respect to ¢ over (0, +00),
we get the equation

(19) Ui\ z,0) = /

[ GOa et du = [ GOuan)lip. 2)o(o) o,

s
+oo
where G(\, z,y) = / g(t,z,y)e”* dt and
0

+o0

—+o0
Ui(\ ) = Qu(t,z, p)e Mdt = Ex/ e M) (2(1)) dt.
0 0

To calculate the second item on the right-hand side of (18), we observe that in accor-
dance with (16), the relation

+00 Foo
E’”/O e—/\(t-i-m(p))@(w(t)) dny(p) = hh]%l ]EI/O e—W“’t(p))w(x(t))vh(x(t)) dt
is held, where v, (x) = / g(h,z,y)p(y) do,, h >0, x € RL.
S

+oo
Since Ez/ e N P) () Yop (x(t)) dt = Uy (N, 2, ¢ - vp,), we have from (19) the

0
following equation for Us(\, z,¢) = lim Ui (A, z,¢ - vp)
h—0+

(20) Uz(x\ﬂ%@)=/SG(A,w7y)<p(y)p(y) dO’y—A/SG(A,%:U)Uz(A,y,w)p(y) doy.

+oo
We now put U\, z,¢) = Ui(\, z,¢) + Uz(A\,z,9). Then Ex/ e Mop(z(t)) dt =
0
U\ z,¢). As follows from equations (19), (20) (see, also, Subsections 1.3 and 1.4),

the function U satisfies the equation AU(X, -, ¢)(z) = NU(\, z, @) — ¢(z) in the region
x € R?\ S for each A > 0, that is equation (3).

As a consequence of the statements in Subsection 1.4 we have the following relations
(xe S, A>0)

B, ()Ui(\, -, ¢)(z) =/ G (N, z,y)p(y) dy—

Rd

Y /S GY@ (A 2, ) U (M 9, @)p(y) doy + Ap(a)Us (A, . ),
B, () Ua(\, - o) (k) = /S GY (A, 2, y)p(y)ply) dy F ple)p(x)—

Hence, the function U satisfies the condition (A > 0, z € S)

Bu(x)U()‘v K <p)(ac+) - Bv(x)ﬁ(A» *y gp)(l’—) = 2p($)()\U()\, z, SD) - QD(CL')),
that is condition (4). The theorem is proved. O
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