
Theory of Stochastic Processes
Vol. 23 (39), no. 1, 2018, pp. 66–72

M. M. OSYPCHUK AND M. I. PORTENKO

ON CONSTRUCTING A STICKY MEMBRANE LOCATED ON

A GIVEN SURFACE FOR A SYMMETRIC α-STABLE PROCESS

For a symmetric α-stable stochastic process with α ∈ (1, 2) in a Euclidean space, a

membrane located on a fixed bounded closed surface S is constructed in such a way

that the points of the surface possess the property of delaying the process with some
given positive coefficient (p(x))x∈S . In other words, the points of S are sticky for

the process constructed. We show that this process is associated with some initial-

boundary value problem for pseudo-differential equations related to a symmetric
α-stable process.

Introduction

Let (x(t),Mt,Px) be a standard Markov process in a d-dimensional Euclidean space
Rd (we assume that d ≥ 2 in this article) whose transition probability density g (with
respect to Lebesgue measure on Rd) is given by the equality

(1) g(t, x, y) = (2π)−d
∫
Rd

exp{i(x− y, ξ)− ct|ξ|α} dξ, t > 0, x ∈ Rd, y ∈ Rd,

where c > 0 and α ∈ (1, 2) are fixed parameters. We use Dynkin’s notation from [3]. The-
orem 3.14 there implies the existence of a standard Markov process in Rd with transition
probability density g. This process is called a symmetric (more precisely, rotationally
invariant) α-stable process. Its generator is denoted by A and this is a pseudo-differential
operator whose symbol is given by the function (−c|ξ|α)ξ∈Rd . For any unit vector l ∈ Rd
we denote by Bl a pseudo-differential operator with the function (2ic|ξ|α−2(ξ, l))ξ∈Rd as
its symbol.

The operator A acts on a bounded real-valued function (ϕ(x))x∈Rd with bounded
Lipschitzean gradient according to the formula

(2) Aϕ(x) = cqα

∫
Rd

(ϕ(x+ z)− ϕ(x)− (z,∇ϕ(x)))
dz

|z|d+α
, x ∈ Rd,

where qα =
Γ(α+ 1)Γ((d+ α)/2) sin(πα/2)

π(d+1)/2Γ((α+ 1)/2)
. As for the operator Bl, its action on a

bounded Lipschitzean function (ϕ(x))x∈Rd is given by the equality

Blϕ(x) =
2c

α
qα

∫
Rd

(ϕ(x+ z)− ϕ(x))(z, l)
dz

|z|d+α
, x ∈ Rd.

These formulae for Aϕ(x) and Blϕ(x) can be verified by immediate calculations resulting
in the following equalities Aϕξ(x) = −c|ξ|αϕξ(x) and Blϕξ(x) = 2ic|ξ|α−2(ξ, l)ϕξ(x)

valid for all x ∈ Rd and ξ ∈ Rd, where ϕξ(x) = ei(ξ,x).
Let a bounded closed surface S in Rd be given such that it separates Rd into two open

parts: the interior and exterior. We assume that S is the surface of the class H1+γ for
some constant γ ∈ (0, 1) (see [7, Ch. IV, §4] and, also, [8]). Then there exists a tangent
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hyperplane to S at each point x ∈ S. The unit outer normal vector to S at x ∈ S will
be denoted by ν(x).

Let (p(x))x∈S be a given continuous function with positive values. We show that there
exists a W-functional (ηt(p))t≥0 of the process (x(t))t≥0 such that its characteristic is

given by Exηt(p) =

∫ t

0

dτ

∫
S

g(τ, x, y)p(y) dσy, t ≥ 0, x ∈ Rd, where the inner integral

is a surface one.
For t ≥ 0, we put ζt = inf{s ≥ 0 : s + ηs(p) ≥ t}, x̂(t) = x(ζt), M̂t = Mζt . It is

well-known that the process (x̂(t),M̂t,Px) is also a standard Markov process in Rd (see,
for example, [3, Ch. 10]).

Denote by Cb(Rd) the Banach space of all continuous bounded functions on Rd with
real values and the norm ‖ϕ‖ = sup

x∈Rd

|ϕ(x)|.

We will use the following notation: for a function (f(y))y∈Rd the symbol f(x+) (re-
spectively, f(x−)) for x ∈ S means the limit value of f(y), as y approaches x along any
curve lying in a finite closed cone K in Rd with vertex at x such that K ⊂ {y ∈ Rd :
(y, ν(x)) > 0} ∪ {x} (respectively, K ⊂ {y ∈ Rd : (y, ν(x)) < 0} ∪ {x}).

The main result of this article is formulated as follows: for each bounded Hölder

continuous function ϕ, the function Û(λ, x, ϕ) =

∫ +∞

0

e−λtExϕ(x̂(t)) dt, λ > 0, x ∈ Rd

is continuous and satisfies the following equalities

(3) λÛ(λ, x, ϕ)− ϕ(x) = AÛ(λ, ·, ϕ)(x)

for all λ > 0, x ∈ Rd \ S;

(4) λÛ(λ, x, ϕ)− ϕ(x) =
1

2p(x)

[
Bν(x)Û(λ, ·, ϕ)(x+)−Bν(x)Û(λ, ·, ϕ)(x−)

]
for all λ > 0, x ∈ S.

Note that equalities (3) and (4) are the Laplace transforms of the ones

(5)
∂û(t, x, ϕ)

∂t
= Aû(t, ·, ϕ)(x), t > 0, x ∈ Rd \ S,

and

(6)
∂û(t, x, ϕ)

∂t
=

1

2p(x)

[
Bν(x)û(t, ·, ϕ)(x+)−Bν(x)û(t, ·, ϕ)(x−)

]
, t > 0, x ∈ S,

respectively, if the condition û(0+, x, ϕ) = ϕ(x) is valid for all x ∈ Rd and

(7) û(t, x, ϕ) = Exϕ(x̂(t)), t > 0, x ∈ Rd.

Remark. It is curious to notice that if ϕ ∈ D(Â) (Â denotes the generator of the process
(x̂(t))t≥0), then the function (7) is differentiable with respect to t > 0 and therefore, it
satisfies the equations (5) and (6). The interesting problem of describing the domain of

Â will be out of our attention in this article.

In our article [9], the problem of constructing a sticky membrane, as well as an elastic
screen located on a given hyperplane in Rd was considered.

In the limit case of α = 2 (and c = 1
2 ), our process is a standard Brownian motion and

the operator A coincides with 1
2∆ (∆ is the Laplace operator) and Bl coincides with ∂

∂l
(the derivative in the direction l). Similar problems (in this case) were considered in the
books [3, 5] and also in [1, 2, 6] and many others.

The article is organized as follows. In Section 1 some auxiliary results are presented.
Section 2 is devoted to solving the main problem (3), (4).
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1. Some auxiliary results

1.1. The function g defined by (1) is continuous in the region t > 0, x ∈ Rd and y ∈ Rd.
Moreover, it is uniformly continuous in any region of the form (t, x, y) ∈ [τ,+∞)×Rd×Rd
for a fixed τ > 0.

As follows from [4, Ch. 4], the following inequalities (Dk means any partial derivative
of the order k = 0, 1, 2, . . . in spatial arguments)

(8) |Dkg(t, ·, y)(x)| ≤ Nk
t

(t1/α + |y − x|)d+α+k
, t > 0, x ∈ Rd, y ∈ Rd,

are fulfilled, where Nk is some positive constant. Similar estimates are established in [4]
for fractional derivatives of the function g, in particular, the inequality

(9) |Ag(t, ·, y)| ≤ Ñ

(t1/α + |y − x|)d+α

holds true for all t > 0, x ∈ Rd and y ∈ Rd with some constant Ñ > 0.
One can easily see from (8) for k = 0 that the following estimate

(10)

∫
S

g(t, x, y) dσy ≤ Ct−1/α

holds true for all x ∈ Rd and t > 0 with some constant C > 0. Here and below we will
denote by C all specific constants whose values are not important for us.

It is well-known that for each ϕ ∈ Cb(Rd) the function u(t, x, ϕ)
def
=

∫
Rd

g(t, x, y)ϕ(y) dy,

t ≥ 0, x ∈ Rd satisfies the equation
∂u(t, x, ϕ)

∂t
= Au(t, ·, ϕ) in the region t > 0, x ∈ Rd

and the initial condition u(0+, x, ϕ) = ϕ(x) for x ∈ Rd (see [4, Ch. 4]).

1.2. Let (ψ(t, x))t>0,x∈S be a continuous function with real values satisfying the inequal-
ity |ψ(t, x)| ≤ Ct−β for all t > 0 and x ∈ S with some constants C > 0 and β < 1. We put

v(t, x, ψ)
def
=

∫ t

0

dτ

∫
S

g(t − τ, x, y)ψ(τ, y) dσy, t > 0, x ∈ Rd. Inequality (10) implies

the fact that this function is well-defined. It is called a single-layer potential.
The following properties of the function v are established in [8].

1.2.A. The function v is continuous in the region t > 0, x ∈ Rd and it satisfies the
inequality

(11) |v(t, x, ψ)| ≤ Ct1−β−1/α

for all t > 0, x ∈ Rd with some constant C > 0.

1.2.B. The function v is a solution of the equation
∂v(t, x, ψ)

∂t
= Av(t, ·, ψ)(x) in the

region t > 0 and x ∈ Rd \ S.

1.2.C. The following relations

(12) Bν(x)v(t, ·, ψ)(x±) =

∫ t

0

dτ

∫
S

gν(x)(t− τ, x, y)ψ(τ, y) dσy ∓ ψ(t, x)

hold true for all t > 0 and x ∈ S, where gν(x)(t, x, y) = Bν(x)g(t, ·, y)(x). The first item

(denote it by B
(d.v.)
ν(x) v(t, ·, ψ)(x)) on the right-hand side of relations (12) is called the

direct value of the expression Bν(x)v(t, ·, ψ)(x) for fixed x ∈ S and t > 0.
Note that the following estimation

(13)
∣∣∣B(d.v.)

ν(x) v(t, ·, ψ)(x)
∣∣∣ ≤ Ct−β+γ/α(1 ∨ t1−γ/α), t > 0, x ∈ S,
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is valid with some constant C > 0. This estimate was actually established in the process
of proving Lemma 2 in [8].

1.3. Let (ϕ(x))x∈Rd be a bounded Hölder continuous function. We now prove that the
function

(14) U(λ, x, ϕ)
def
=

∫ +∞

0

e−λtu(t, x, ϕ) dt, λ > 0, x ∈ Rd

is well-defined and it satisfies the following equation

(15) λU(λ, x, ϕ)− ϕ(x) = AU(λ, ·, ϕ)(x), λ > 0, x ∈ Rd.

The obvious inequality |u(t, x, ϕ)| ≤ ‖ϕ‖, t > 0, x ∈ Rd shows that the integral in (14)

is well-defined. In addition, we have the equality U(λ, x, ϕ) =

∫
Rd

G(λ, x, y)ϕ(y) dy valid

for all λ > 0, x ∈ Rd, where G(λ, x, y) =

∫ +∞

0

e−λtg(t, x, y) dt, λ > 0, x ∈ Rd, y ∈ Rd.

Note that the following equality Au(t, ·, ϕ)(x) =

∫
Rd

Ag(t, ·, y)(x)ϕ(y) dy, t > 0,

x ∈ Rd holds true for all ϕ ∈ Cb(Rd) (see [8]). This fact, inequality (9) and the Hölder
continuity of the function ϕ lead us to the following inequalities

|Au(t, ·, ϕ)(x)| ≤
∫
Rd

|Ag(t, ·, y)(x)||ϕ(y)− ϕ(x)| dy ≤ C · t−1+θ/α, t > 0, x ∈ Rd

with some constant C > 0, where θ ∈ (0, 1) is the Hölder exponent of the function ϕ.

This means that the integral

∫ +∞

0

e−λtAu(t, ·, ϕ)(x) dt exists for all λ > 0 and x ∈ Rd.

Taking into account formula (2) and inequality (8) we can change the order of the
integration on the right-hand side of the following equality∫ +∞

0

e−λtAu(t, ·, ϕ)(x) dt =cqα

∫ +∞

0

e−λt dt

∫
Rd

(ϕ(y)− ϕ(x)) dy×

×
∫
Rd

(g(t, x+ z, y)− g(t, x, y)− (z,∇g(t, ·, y)(x)))
dz

|z|d+α
.

As a consequence, we obtain the equality AU(λ, ·, ϕ)(x) =

∫ +∞

0

e−λtAu(t, ·, ϕ)(x) dt

valid for all λ > 0, x ∈ Rd and each bounded Hölder continuous function ϕ.
So, equation (15) for the function U follows now from the last of the statements in

Subsection 1.1.

1.4. Formulae (11) and (13) show that the following equalities for the Laplace transforms

of the functions (v(t, x, ψ))t≥0,x∈Rd and (B
(d.v.)
ν(x) v(t, ·, ψ)(x))t>0,x∈S are valid:

V (λ, x, ψ)
def
=

∫ +∞

0

e−λtv(t, x, ψ) dt =

∫
S

G(λ, x, y)Ψ(λ, y) dσy, λ > 0, x ∈ Rd,

∫ +∞

0

e−λtB
(d.v.)
ν(x) v(t, ·, ψ)(x) dt =

∫
S

Gν(x)(λ, x, y)Ψ(λ, y) dσy, λ > 0, x ∈ S,

where Ψ(λ, x) =

∫ +∞

0

e−λtψ(t, x) dt and Gν(x)(λ, x, y) =

∫ +∞

0

e−λtgν(x)(t, x, y) dt.

Moreover, the following relation

AV (λ, ·, ψ)(x) = λV (λ, x, ψ), λ > 0, x ∈ Rd \ S
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holds true for any function ψ satisfying the inequality |ψ(t, x)| ≤ Ct−β , t > 0, x ∈ S (see
Subsection 1.2). If we additionally assume that the function (ψ(t, x))t≥0,x∈S is continuous
and bounded then the relations

Bν(x)V (λ, ·, ψ)(x±) =

∫
S

Gν(x)(λ, x, y)Ψ(λ, y) dσy ∓Ψ(λ, x), λ > 0, x ∈ S

are valid. The proofs of these relations are similar to those proving the properties of the
single-layer potential (see, [8]).

1.5. Let a positive continuous function (p(x))x∈S be given. One can easily verify that

the function ft(x) =

∫ t

0

dτ

∫
S

g(τ, x, y)p(y) dσy, t > 0, x ∈ Rd is a W-function for the

process (x(t))t≥0 (see [3, Ch. 6, §3]) satisfying the inequality ft(x) ≤ C α
α−1 t

1−1/α‖p‖ for

all t ≥ 0 and x ∈ Rd (see (10)), where ‖p‖ = sup
x∈S

p(x) and C is the constant from (10).

Therefore, according to Theorem 6.6 from [3], a W-functional (ηt(p))t≥0 of the process
(x(t))t≥0 exists such that Exηt(p) = ft(x) for all t ≥ 0 and x ∈ Rd. The functional ηt(p0)
with p0(x) ≡ 1 is called the local time on S for the process (x(t))t≥0. It is evident that

ηt(p) =

∫ t

0

p(x(s)) dηs(p0).

Making use of Theorem 6.4 from [3], one can approximate the functional (ηt(p))t≥0

by the following ones η
(h)
t (p) =

∫ t

0

dτ

∫
S

g(h, x(τ), y)p(y) dσy, t ≥ 0 in the sense that

(16) Ex[η
(h)
t (p)− ηt]2 → 0, h→ 0+

for all t ≥ 0, x ∈ Rd.
As was proved in [10], this approximation and the Feynman-Kac formula allow one to

write down the equation (with λ > 0, ϕ ∈ C(Rd))

(17) Qλ(t, x, ϕ) =

∫
Rd

g(t, x, y)ϕ(y) dy − λ
∫ t

0

dτ

∫
S

g(t− τ, x, y)Qλ(τ, y, ϕ)p(y) dσy.

for the function Qλ(t, x, ϕ) = Exϕ(x(t)) exp{−ληt(p)}, t > 0, x ∈ Rd.

2. Solving the main problem

Consider the Markov process (x̂(t),M̂t,Px) defined in Introduction.

Theorem. For each bounded Hölder continuous function (ϕ(x))x∈Rd the function

Û(λ, x, ϕ) =

∫ +∞

0

e−λtExϕ(x̂(t)) dt, λ > 0, x ∈ Rd,

solves the problem (3), (4).

Proof. The resolvent operator of the process (x̂(t))t≥0 can be calculated in the following
way (see [5, Ch. II, §6])

Ex
∫ +∞

0

e−λtϕ(x̂(t)) dt = Ex
∫ +∞

0

e−λtϕ(x(ζt)) dt =

= Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t)) dt+ Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t)) dηt(p),

(18)

where x ∈ Rd, λ > 0, ϕ ∈ Cb(Rd).
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The first item on the right-hand side of (18) can be found from equation (17). Multi-
plying both sides of that equation by e−λt and integrating with respect to t over (0,+∞),
we get the equation

(19) U1(λ, x, ϕ) =

∫
Rd

G(λ, x, y)ϕ(y) dy − λ
∫
S

G(λ, x, y)U1(λ, y, ϕ)p(y) dσy,

where G(λ, x, y) =

∫ +∞

0

g(t, x, y)e−λt dt and

U1(λ, x, ϕ) =

∫ +∞

0

Qλ(t, x, ϕ)e−λt dt = Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t)) dt.

To calculate the second item on the right-hand side of (18), we observe that in accor-
dance with (16), the relation

Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t)) dηt(p) = lim
h→0+

Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t))vh(x(t)) dt

is held, where vh(x) =

∫
S

g(h, x, y)p(y) dσy, h > 0, x ∈ Rd.

Since Ex
∫ +∞

0

e−λ(t+ηt(p))ϕ(x(t))vh(x(t)) dt = U1(λ, x, ϕ · vh), we have from (19) the

following equation for U2(λ, x, ϕ) = lim
h→0+

U1(λ, x, ϕ · vh)

(20) U2(λ, x, ϕ) =

∫
S

G(λ, x, y)ϕ(y)p(y) dσy − λ
∫
S

G(λ, x, y)U2(λ, y, ϕ)p(y) dσy.

We now put Û(λ, x, ϕ) = U1(λ, x, ϕ) + U2(λ, x, ϕ). Then Ex
∫ +∞

0

e−λtϕ(x̂(t)) dt =

Û(λ, x, ϕ). As follows from equations (19), (20) (see, also, Subsections 1.3 and 1.4),

the function Û satisfies the equation AÛ(λ, ·, ϕ)(x) = λÛ(λ, x, ϕ) − ϕ(x) in the region
x ∈ Rd \ S for each λ > 0, that is equation (3).

As a consequence of the statements in Subsection 1.4 we have the following relations
(x ∈ S, λ > 0)

Bν(x)U1(λ, ·, ϕ)(x±) =

∫
Rd

Gν(x)(λ, x, y)ϕ(y) dy−

− λ
∫
S

Gν(x)(λ, x, y)U1(λ, y, ϕ)p(y) dσy ± λp(x)U1(λ, x, ϕ),

Bν(x)U2(λ, ·, ϕ)(x±) =

∫
S

Gν(x)(λ, x, y)ϕ(y)p(y) dy ∓ p(x)ϕ(x)−

− λ
∫
S

Gν(x)(λ, x, y)U2(λ, y, ϕ)p(y) dσy ± λp(x)U2(λ, x, ϕ).

Hence, the function Û satisfies the condition (λ > 0, x ∈ S)

Bν(x)Û(λ, ·, ϕ)(x+)−Bν(x)Û(λ, ·, ϕ)(x−) = 2p(x)(λÛ(λ, x, ϕ)− ϕ(x)),

that is condition (4). The theorem is proved. �
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