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YASAMAN MALEKI

GENERALIZED LIKELIHOOD RATIO TEST FOR DETECTION OF

MULTIVARIATE DSI PROCESSES

This paper provides a new method in detecting multivariate discrete scale invariant
(DSI) processes using an asymptotic generalized likelihood ratio test (GLRT). We

consider two hypothesis tests: 1) Is a multivariate process, DSI or is it self-similar?

2) Is a multivariate process, DSI or is it nonstationary?. Then, using the asymptotic
GLRT, the DSI behaviour can be detected. In this method, by imposing some flexible

sampling scheme, we provide some discretization of continuous time discrete scale

invariant (DSI) processes. Then, the relationship between a discrete-time DSI process
and a corresponding multidimensional self-similar process, enables us to formulate

the problem as a test for covariance structure of the processes. For DSI and self-
similar processes, the covariance matrices are as a product of scale matrices to a

block-Toeplitz matrix, in which there is no a closed form of maximum likelihood

for such matrices. So, by considering the asymptotic case, where the block-Toeplitz
matrix converges to a block-circulant matrix, the asymptotic GLRT is derived. To

clarify the proposed method, an example as a multivariate simple Brownian motion

is presented and its simulations are provided. Also the performance of the method
is studied on the S&P500 and Daw Jones indices for some special periods.

1. Introduction

The concept of self-similarity and discrete scale invariance are used as a fundamental
property to handle many natural phenomena. Many critical systems, like statistical
physics, textures in geophysics, network traffic and image processing can be interpreted
by these processes [2]. Scale invariance is often described as a symmetry of the system
relatively to a transformation of a scale, that is mainly a dilation or a contraction (up
to some re-normalization) of the system parameters [2]. Discrete scale invariance (DSI)
is a property which requires invariance by dilation for certain preferred scaling factors
[15]. This characteristic feature of such process is the invariance of its finite dimensional
distributions by certain dilation for specific scaling factor. Burnecki et.al. [4] and Borgnat
et.al. [3] have studied the property of DSI and its relation to periodically correlated
processes by means of the Lamperti transformation.

Detecting of discrete scale invariance in a process is one of the most important prob-
lems. If a process is DSI, then this fact can usually be exploited in applications to
improve estimation performance. Treating a process as DSI, when in fact it is not, gen-
erally leads to very poor performance. Also, the presence or absence of discrete scale
invariance can be used to adopt other actions. But, most of the proposed methods in
detection of DSI behaviour, have presented for scalar time series, even though some
of the scalar detectors could easily be extended to multivariate time series. In this
work, we consider vector-valued stochastic processes, and the proposed detector, con-
sider testing discrete scale invariance vs. self-similarity, and also, testing discrete scale
invariance vs. nonstationarity. So, we provide a new method to detect discrete scale
invariance in a continuous-time multivariate process. The detection method is based
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on the work of Ramirez et.al [18] in detecting periodically correlated (PC) processes.
Let {X(t), t ∈ R+} be a DSI process with scale λ > 1. We consider the flexible sam-
pling proposed by Rezakhah and Modarresi [11] which enables one to have samples at q
arbitrary points s0 < s1 < · · · < sq−1 in the first scale interval [1, λ) and follow the sam-
pling at corresponding points {λnsj , n ∈ N, j = 0, ..., q − 1} in the other scale intervals.
The sequence of samples of DSI processes provided by this scheme is called sampled
DSI process. Embedding the sampled DSI process in q columns, provided an embed-
ded multi-dimensional self-similar process, denoted by U(λn) = (U0(λn), · · · , Uq−1(λn)),
where U j(λn) = X(λnsj) [11]. This arrangement provides a suitable platform to extend
analytic property of discrete time periodically correlated processes to the sampled DSI
processes. By this method, we can investigate the DSI behaviour of the process, using
studing the covariance structure of multivariate sampled DSI processes.

This paper is organized as follows: Section 2 presented some background on sampled
DSI process, embedded multi-dimensional self-similar process and the modified Lamperti
transformation. In Section 3, we provide the detection problem and formulates it as a
test for the covariance structure of the observations. Section 4, derives the asymptotic
GLRT. In Section 5, the performance of the estimation method is studied via simulation.
Finally this method is applied to the real data of S&P500 and Dow Jones indices for
some special periods.

2. Preliminaries

In this section, definitions of sampled DSI processes and the modified Lamperti trans-
formation are provided. Also, the structure of the covariance matrix of multi-dimensional
self-similar processes is reviewed.

Definition 2.1. A process {X(t), t ∈ R+} is said to be self-similar of index H > 0, if
for any λ > 0

(1) {X(λt), t ∈ R+} ≡ {λ−HX(t), t ∈ R+},

where ≡ means equality in finite-dimensional distributions. The process is said to be
DSI of index H and scaling factor λ0 > 0 if (1) holds for λ = λ0.

2.1. Sampled DSI Process and Modified Lamperti Transform. Following the spe-
cial scheme of sampling, the sampled DSI process and the modified Lamperti transform
[11] are defined in this section.

Remark 2.1. Let {X(t), t ∈ R+} be a DSI process with scale λ > 1. Considering the

flexible sampling of this process at points of set T̆ = {λnsj : n ∈W, j = 0, · · · , q− 1, 1 ≤
s0 < · · · < sq−1 < λ}, where W = {0, 1, 2, · · · }. Then X(·) with parameter space T̆ is

called sampled DSI process. If we consider sampling of X(·) at points T̆ = {λnsj : n ∈W,

for fixed 1 ≤ sj < λ}, then X(·) with parameter space T̆ is called sampled self-similar
process [11].

Definition 2.2. The modified Lamperti transform [11] with Hurst index H > 0, denoted
by L∗H and its inverse L∗−1

H provides a correspondence between a DSI process {X(t), t ∈
T̆} with scale λ > 1 and parameter space T̆ = {λnsi : n ∈W, 1 ≤ s0 < · · · < sq−1}, and
a discrete time PC process {Y (i), i ∈W} with period q by
(2)
X(λnsk) = L∗HY (λnsk) := λnHY (nq+k), Y (nq+k) = L∗−1

H X(nq+k) = λ−nHX(λnsk).

One can easily verify that X(·) is a self-similar process if and only if Y (·) is a stationary
process, and also X(·) is a DSI process with scale λ if and only if Y (·) is a PC process
with period q for some H > 0.
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Definition 2.3. The process U(t) = (U0(t), U1(t), · · · , Uq−1(t))′ with parameter space

T̆ = {λn, n ∈W} is a multi-dimensional self-similar process [10], where

(a) {U j(·)} for every j = 0, · · · , q − 1 is self-similar process with parameter space T̆ =
{λn, n ∈W}.
(b) For every n, τ ∈ Z, j, k = 0, · · · , q − 1

Cov(U j(λn+τ ), Uk(λn)) = λ2nHCov(U j(λτ ), Uk(1)).

Remark 2.2. Let {X(t), t ∈ T̆} be the sampled DSI process with scale λ > 1 and pa-

rameter space T̆ , as defined in Remark 2.1. Then U(λn) = (U0(λn), · · · , Uq−1(λn))′ is
called an embedded multi-dimensional self-similar process, where {U j(λn) ≡ X(λnsj)}
for fixed j = 0, · · · , q − 1 and 1 ≤ s0 < · · · < sq−1 < l, is a self-similar process [11].

3. Problem Formulation

We consider a multivariate process X(t) = (X0(t), · · · , XD−1(t))′ of dimension D,

with parameter space T̆ = {λnsj , j = 0, · · · , q − 1, n ∈ W}. We also assume that the
process is zero-mean circularly symmetric Gaussian. The question is whether the process
X(·) is self-similar, DSI with known scale λ, or nonstationary. That is, we are interested
in the following three hypothesis tests:

H0 : X is self − similar,
H1 : X is DSI with scaleλ,

H2 : X is nonstationary.(3)

To answer the question, we consider Nq samples of the process X, into the vector y as:

(4) y =
(
X(s0), · · · ,X(sq−1),X(λs0), · · · ,X(λsq−1), · · · ,X(λN−1sq−1)

)′ ∈ CDNq.
Thus, the hypothesis in (3) may be formulated as

H0 : y ∼ N(0, C̃H
0 ),

H1 : y ∼ N(0, C̃H
1 ),

H2 : y ∼ N(0, C̃H
2 ),(5)

where C̃H
i := E[yy∗] ∈ CDNq×DNq is the covariance matrix under the ith hypothesis.

So, the hypothesis test is based on the structure of C̃H
i .

3.1. Structure of Covariance Matrices. For a self-similar process {X(λnsj), j =
0, · · · , q − 1, n ∈W}, the structure of the covariance matrix is

C̃H
0

=


RH

0 (0) RH
0 (−1) . . . λ(N−1)HRH

0 (−Nq + 1)
RH

0 (1) RH
0 (0) . . . λ(N−1)HRH

0 (−Nq + 2)
. . . .
. . . .
. . . .

λ(N−1)HRH
0 (Nq − 1) λ(N−1)HRH

0 (Nq − 2) . . . λ2(N−1)HRH
0 (0)

 ,

where C̃H
0 = {C̃H

0,j,k(n, τ)}j,k=0,··· ,q−1, is obtained using the modified Lamperti trans-

form (2) as

C̃H
0,j,k(n, τ) = E[X(λn+τsj)X

∗(λnsk)] = λ(2n+τ)HE[Y((n+ τ)q + j)Y∗(nq + k)]

= λ(2n+τ)HRH
0 (τq + j − k),
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where RH
0 ∈ CD×D, is the covariance matrix of a multivariate stationary process Y.

Moreover, the covariance matrix C̃H
0 can also be represented as product of a scale matrix

Λ to a block-Toeplitz matrix CH
0 ∈ CDNq×DNq with block-size D, as

(6) C̃H
0 = ΛCH

0 Λ′,

where Λ = Λ∗ ⊗ IDq, Λ∗ is a N ×N diagonal matrix as

Λ∗ = Diag[1, λH , λ2H , · · · , λ(N−1)H ],

IDq is identical matrix of size Dq, and

CH
0 =


RH

0 (0) RH
0 (−1) . . . RH

0 (−Nq + 1)
RH

0 (1) RH
0 (0) . . . RH

0 (−Nq + 2)
. . . .
. . . .
. . . .

RH
0 (Nq − 1) RH

0 (Nq − 2) . . . RH
0 (0)


DNq×DNq

.

To construct the structure of the covariance matrix C̃H
1 under DSI assumption, H1,

we shall proceed by considering the data matrix X̃ as

X̃ = (X(λns0), · · · ,X(λnsq−1)) =

=


X0(λns0) X0(λns1) . . . X0(λnsq−1)
X1(λns0) X1(λns1) . . . X1(λnsq−1)

. . .

. . .

. . .
XD−1(λns0) XD−1(λns1) . . . XD−1(λnsq−1)

 ,

where the ith row, is a q-dimensional self-similar process [10]. By considering the vector

V(n) = vec(X̃), which stacks the columns of X̃, we have that

V(n) = (V0(n), · · · ,Vq−1(n))′

≡ (X(λns0), · · · ,X(λnsq−1))′ ∈ CDq,
which is self-similar, and Vj(n) ≡ X(λnsj). Thus, the vector y in (4) would be as a
stack of N realizations of V(n) as

(7) y = (V(0), · · · ,V(N − 1))′ ∈ CDNq.
Now, using the modified Lamperti transform (2), and the correspondence between multi-
dimensional stationary and self-similar processes, V(n) = λnHW(n) where W(n) =
(W0(n), · · · ,Wq−1(n))′ and Wj(n) = Y(nq + j). Thus, the covariance matrix under
H1 is obtained as

C̃H
1 =


RH

1 (0) λHRH
1 (−1) . . . λ(N−1)HRH

1 (−N + 1)
λHRH

1 (1) λ2HRH
1 (0) . . . λNHRH

1 (−N + 2)
. . . .
. . . .
. . . .

λ(N−1)HRH
1 (N − 1) λNHRH

1 (N − 2) . . . λ2(N−1)HRH
1 (0)


The covariance matrix components C̃H

1 = {C̃H
1 (n, τ)}n,τ=0,··· ,N−1, are computed by

C̃H
1 (n, τ) = E[V(n+ τ)V∗(n)]

= λ(2n+τ)HE[W(n+ τ)W∗(n)]

= λ(2n+τ)HRH
1 (τ),
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where RH
1 ∈ CDq×Dq. Moreover, C̃H

1 can be represented as product of a scale matrix
Λ = Λ∗ ⊗ IDq to a block-Toeplitz matrix CH

1 with block-size Dq as:

(8) C̃H
1 = ΛCH

1 Λ′,

and

CH
1 =


RH

1 (0) . . . RH
1 (−N + 1)

. . .

. . .

. .
RH

1 (N − 1) . . . RH
1 (0)

 .

For the nonstationary case, that is the simplest one, because the covariance matrix does
not have any particular structure beyond being positive definite, we have that

C̃H
2 =


RH

2,0,0(0, 0) RH
2,0,1(0, 0) . . . RH

2,0,q−1(0,−N + 1)
RH

2,1,0(0, 0) RH
2,1,1(0, 0) . . . RH

2,1,q−1(0,−N + 1)
. . . .
. . . .
. . . .

RH
2,q−1,0(0, N − 1) RH

2,q−1,1(0, N − 1) . . . RH
2,q−1,q−1(N − 1, 0)

 ,

where RH
2,j,k(n, τ) = E[X(λn+τsj)X

∗(λnsk)] ∈ CD×D.
Thus, it is shown that under the three hypothesis tests,H0,H1,H2, only the covariance

matrix structures are known and the matrix-valued covariance sequences are unknown.
Since the covariance matrices are unknown, so the hypotheses are composite and the
GLRT would be as one of the typical approaches for binary tests [18], [23].

3.2. Asymptotic Generalized Likelihood Ratio Test. For generalized likelihood
ratio tests, the ML estimate of covariance matrices are needed. But, under self-similarity
and discrete scale invariance hypotheses, H0 and H1, we have seen that the covariance
matrices are constructed as a product of scale matrices to a block-Toeplitz matrix. Since
there is no closed-form solution for ML estimates of block-Toeplitz matrices, such matri-
ces are approximated by block-circulant ones [18].

We consider M ≥ D independent and identically distributed realizations {yj}Mj=1 of
the vector y, the likelihood of theses observations under Hi is

fy0,··· ,yM−1
(C̃H

i ) =

M−1∏
m=0

fym
(C̃H

i )

(9) =

M−1∏
m=0

1

(2π)DNq/2|C̃H
i |1/2

exp

{
−M/2tr

(
(C̃H

i )−1ĈH
i

)}
,

where ĈH
i = 1

M

∑M−1
m=0 ymy∗m is the sample covariance matrix.

As it can be seen by (6) and (8), under self-similarity and discrete scale invariance
hypotheses, CH

0 and CH
1 are block-Toeplitz matrices. But it is shown by the following

Theorem [19], [20] that, block-Toeplitz matrices are asymptotically equivalent to block-
circulant matrices. So, the ML estimate can be achieved asymptotically.

Theorem 3.1. As the number of samples, N , tends to infinity, the log-likelihood random
variable parameterized by a block-Toeplitz covariance matrix, converges in mean-square
sense to the log-likelihood random variable parameterized by a particular covariance ma-
trix, i.e.,

lim
N→∞

E

[
1

N2

∣∣∣∣ log fy0,··· ,yM−1
(C)− log fy0,··· ,yM−1

(Q)

∣∣∣∣2] = 0,
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where ym ∈ CNB and C ∈ CNB×NB is the block-Toeplitz covariance matrix with block
size B,

C =


R(0) . . . R(−N + 1)
. . .
. . .
. .

R(N − 1) . . . R(0)

 .

The matrix valued covariance sequence that generates C is R(m) ∈ CB×B, and Q ∈
CNB×NB is the block-circulant covariance matrix whose (j, k)th block is R(j−k mod N)
[17]. Equivalently, the block-circulant matrix may be factored as

(10) Q = (FN ⊗ JB)S(FN ⊗ JB)H,

where FN is the Fourier matrix of dimension N with elements given by [FN ]jk =

e−i2πjk/N/
√
N , JB is identity matrix of size B, the superscript (·)H denotes Hermit-

ian, and S is a block-diagonal matrix, whose kth block is given by the discrete Fourier
transform of the covariance sequence

(11) S(θk) =

N∑
m=0

R(m)e−iθkm,

with θk = 2πk
N , and S(θk) is the cross-spectral matrix (CSM) at frequency θk [17], [18].

Proof. See [17]. �

Now, by Theorem 3.1, the hypothesis in (5) are asymptotically equivalent to

H0 : y ∼ N(0, Q̃H
0 ),

H1 : y ∼ N(0, Q̃H
1 ),

H2 : y ∼ N(0, Q̃H
2 ).(12)

Thus, for self-similar processes, by (6) and (10), Q̃H
0 = ΛQH

0 Λ′, where QH
0 is a block-

circulant covariance matrix with block size D, with the structure as [18]

(13) QH
0 = (FNq ⊗ JD)SH

0 (FNq ⊗ JD)H,

and SH
0 is a positive definite block-diagonal matrix of block size D. Also, for discrete

scale invariant processes, Q̃H
1 = ΛQH

1 Λ′, where QH
1 is block-circulant covariance matrix

with block size Dq and the structure [18]

(14) QH
1 = (FN ⊗ JDq)S

H
1 (FN ⊗ JDq)

H,

and SH
1 is an unkown positive definite block-diagonal matrix of block-size Dq. Finally,

for nonstationary processes, Q̃2 is positive definite without further structure.
Now, as a particular reordering of the frequencies in the discrete Fourier transform of

multivariate process X(·), we consider a transform of observations y as [18]

(15) z = (LNq,N ⊗ JD)(FNq ⊗ JD)Hy,

where LNq,N is the commutation (or stride permutation) matrix [21], which fulfills
vec(A) = LNq,N vec(A′), and A is a q ×N matrix.

Using (15), the hypothesis tests (12) should be formulated in terms of z instead of y.
Thus, we should obtain the covariance matrix z under these hypotheses. For self-similar
processes, the covariance matrix of the transformed observations is

G̃0 = E[zz∗|H0] = (LNq,NFH
Nq ⊗ JD)Q̃H

0 (FNqL
′
Nq,N ⊗ JD)

(16) = Λ(LNq,N ⊗ JD)SH
0 (LNq,N ⊗ JD)′Λ′,
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where we have used (13) and (FNq ⊗ JD)H(FNq ⊗ JD) = JDNq. The covariance matrix

G̃0 is a scaled and permuted version of the blocks SH
0 [18]. Also, G̃0 can be represented

as G̃0 = ΛG0Λ′, where G0 = (LNq,N ⊗ JD)SH
0 (LNq,N ⊗ JD)′ is a positive definite

block-diagonal matrix.
For DSI processes, the covariance matrix under H1 is given by

G̃1 = (LNq,NFH
Nq ⊗ JD)Q̃H

1 (FNqL
′
Nq,N ⊗ JD).

Using (14), and by the fact that FN ⊗JDq = (FN ⊗Jq)⊗JD, the covariance matrix G̃1

becomes

(17)

G̃1 = Λ(LNq,NFH
Nq ⊗ JD)(FN ⊗ JDq)S

H
1 (FN ⊗ JDq)

H(FNqL
′
Nq,N ⊗ JD)Λ′

= Λ(LNq,NFH
Nq ⊗ JD)

(
(FN ⊗ Jq)⊗ JD

)
SH
1

(
(FN ⊗ Jq)⊗ JD

)H

· (FNqL′Nq,N ⊗ JD)Λ′

= Λ

(
LNq,NFH

Nq(FN ⊗ Jq)

)
⊗ JD SH

1

(
(FN ⊗ Jq)

HFNqL
′
Nq,N

)
⊗ JD Λ′.

In this case, the derivation of G̃1 is more involved and based on the following Cooley-
Tukey theorem [18], [22].

Theorem 3.2. The Fourier matrix may be factored as

(18) FNq = (FN ⊗ Jq)TNq,q(JN ⊗ Fq)LNq,N ,

where TNq,q is a diagonal matrix of twiddle factors.

Proof. See [22]. �

Now, by applying (18) on terms in (17), we have that

LNq,NFH
Nq(FN ⊗ Jq) = (JN ⊗ Fq)

HT∗Nq,q,

(FN ⊗ Jq)
HFNqL

′
Nq,N = TNq,q(JN ⊗ Fq),

[18]. Thus, the covariance matrix G̃1 would be as:

(19) G̃1 = Λ

(
(JN ⊗ Fq)

HT∗Nq,q

)
⊗ JD SH

1

(
TNq,q(JN ⊗ Fq)

)
⊗ JDΛ′

= ΛG1Λ′,

where G1 =

(
(JN ⊗Fq)

HT∗Nq,q

)
⊗JD SH

1

(
TNq,q(JN ⊗Fq)

)
⊗JD is a block-diagonal

matrix with block size Dq.
For nonstationary processes, the covariance matrix is

G̃2 = (LNq,NF∗Nq ⊗ JD)Q̃H
2 (FNqL

′
Nq,N ⊗ JD),

which is just a positive definite matrix.
Therefore, the hypothesis (12) would be as

H0 : z ∼ N(0, G̃0),

H1 : z ∼ N(0, G̃1),

H2 : z ∼ N(0, G̃2),(20)

where G̃0 = ΛG0Λ′, and G0 is a positive definite block-diagonal matrix with block size

D; and G̃1 = ΛG1Λ′, where G1 is also a positive definite block-diagonal matrix with

block size Dq, and G̃2 is a positive definite matrix without further structure. In fact

G̃2, is a block-diagonal matrix with block size DNq. So, all covariance matrices are
block-diagonal, and this point simplifies the derivation of the GLRT test.
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4. Asymptotic GLRT for Detecting DSI Processes

In this section, we derive the asymptotic GLRT for the tests discrete scale invariant
vs. self-similar processes, and discrete scale invariant vs. nonstationary processes. To
this end, first we consider the GLRT for testing the hypothesis

H0 : z ∼ N(0,D0)

H1 : z ∼ N(0,D1),(21)

where D0 and D1 are block-diagonal matrices with block size B0 and B1, respectively.
It is shown in [18] that the GLRT for the test in (21), which is given by

(22) G =
maxfz0,··· ,zM−1

(D0)

maxfz0,··· ,zM−1
(D1)

,

is carried out by

(23) G1/M =

∣∣∣∣diagB1
(Ĝ)

∣∣∣∣∣∣∣∣diagB0
(Ĝ)

∣∣∣∣ =

∣∣∣∣ÂB1

B0

∣∣∣∣,
where diagBi

(Ĝ), i = 0, 1, builds a block-diagonal matrix from the Bi×Bi blocks on the

main diagonal of Ĝ by setting the off-diagonal blocks, equal to zero,

ÂB1

B0
= [diagB0

(Ĝ)]−1/2diagB1
(Ĝ)[diagBi

(Ĝ)]−1/2

is a coherence matrix, and Ĝ is the sample covariance matrix of z0, · · · , zM−1.

4.1. GLRT for Testing DSI vs. Self-Similarity. Now, consider the following hy-
pothesis test

H0 : z ∼ N(0, G̃0),

H1 : z ∼ N(0, G̃1),(24)

for testing discrete scale invariance vs. self-similarity of a process {X(t), t ∈ T̃}, T̃ =
{λnsj , j = 0, · · · , q − 1, n ∈W}. The GLRT for testing H0 vs. H1 is

(25) G0:1 =
maxfz0,··· ,zM−1

(G̃0)

maxfz0,··· ,zM−1
(G̃1)

.

By the fact that G̃0 and G̃1 are block-diagonal matrices with block size D and Dq,
respectively. So, by(23), the solution of (25) is provided in the following Theorem.

Theorem 4.1. As N →∞, asymptotically the GLR for testing discrete scale invariance

vs. self-similarity of a process {X(T ), t ∈ T̃}, T̃ = {λnsj , j = 0, · · · , q − 1, n ∈W} is

(26) G1/M
0:1 =

∣∣∣∣diagDq(Ĝ)

∣∣∣∣∣∣∣∣diagD(Ĝ)

∣∣∣∣ =

∣∣∣∣ÂDq
q

∣∣∣∣ =

N∏
k=1

∣∣∣∣Âk

∣∣∣∣,
where ÂDq

q = [diagD(Ĝ)]−1/2diagDq(Ĝ)[diagD(Ĝ)]−1/2 is a coherence matrix, and the

kth Dq ×Dq block on the diagonal of ÂDq
q is denoted by Âk.

Proof. The proof is a direct application of Eq. 23. �
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4.2. GLRT for Testing DSI vs. Nonstationarity. Consider the hypothesis test
H1 against H2 for testing discrete scale invariance vs. nonstationarity of a process

{X(t), t ∈ T̃}. The GLRT is

(27) G1:2 =
maxfz0,··· ,zM−1

(G̃1)

maxfz0,··· ,zM−1
(G̃2)

.
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Figure 1. Sample paths of bivariate simple Brownian motion with scale λ = 1.1,
different Hurst indices H = 0.2, 0.5, 0.8, γ = 0.7 and σ1 = σ2 = 1.

The solution of (27) is provided in the following Theorem.

Theorem 4.2. As N →∞, asymptotically the GLR for testing discrete scale invariance

vs. nonstationarity of a process {X(t), t ∈ T̃} is

(28) G1/M
1:2 =

∣∣∣∣Ĝ∣∣∣∣∣∣∣∣diagDq(Ĝ)

∣∣∣∣ =

∣∣∣∣ÂDNq
Dq

∣∣∣∣,
where ÂDNq

Dq = [diagDq(Ĝ)]−1/2Ĝ[diagDq(Ĝ)]−1/2 is a coherence matrix.

Proof. The proof is a direct application of Eq. 23. �

Also, for testing self-similarity vs. nonstationarity, the GLRT is

∣∣∣∣ÂDNq
D

∣∣∣∣. But we do

not consider it in details, because it is not in the scope of the paper.

Example 1. The simple Brownian motion (SBM) was first introduced in [10] as a DSI
process with scale λ and Hurst index H. Now, we consider a multivariate version of
it, where in this case, moving of D particles in different environments A1, A2, · · · is
considered based on Brownian motion with different rates, and we show these movements
by a multivariate process X(t) as

(29) X(t) =

∞∑
n=1

λn(H−1/2)I[λn−1,λn)(t)B(t),

where B(·) is a multivariate standard Brownian motion of dimension D, I(·) indicator
function, H > 0, λ > 0. Such a process is a multivariate Brownian motion inside each
scale interval [λn−1, λn), and in general is a multivariate discrete scale invariant process
with scale λ and Hurst index H. For H = 0.5, this process is a multivariate Brownian
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motion, and for H 6= 0.5, we call X(t) a multivariate simple Brownian motion (MSBM).
It is shown in [10] that a simple Brownian motion is DSI and Markov with Hurst index H
and scale λ. By sampling of the process X(·) at points {λnsj , j = 0, · · · , q−1, n ∈W}, we
have a discrete-time MSBM (DT-MSBM) process. Now, for checking the DSI property
of the process, we follow a similar method in [10] for a multivariate process X(t). The
covariance function of the process for t ∈ An and s ∈ Am (t ≤ s) is

(30) Cov(X(t),X(s)) = λ(n+m)(H−1/2)Cov(B(t),B(s)) = λ(n+m)(H−1/2)t Γ,

where Cov(B(t),B(s)) = min{t, s}Γ, and Γ is a covariance matrix with components
γjk = E[Xj(t)X∗k(s)]. Now, if t ∈ (λn−1, λn], then λt ∈ (λn, λn+1]. So,

Cov(X(λt),X(λs)) = λ(n+m+2)(H−1/2)Cov(B(λt),B(λs)) = λ(n+m+2)(H−1/2)λt Γ

= λ2Hλ(n+m)(H−1/2)t Γ = λ2HCov(X(t),X(s)),

which verifies the DSI property of X.
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Figure 2. Sample paths of bivariate simple Brownian motion with scale λ = 1.5,
different Hurst indices H = 0.4, 0.5, 0.6, γ = 0.7 and σ1 = σ2 = 1.

5. Simulation

In this section, we evaluate the performance of our detector using computer simula-
tions, and it is shown that the introduced detector can exploit discrete scale invariant
processes with a known scale λ. To this end, we used Matlab program to simulate

X(t) =
∑M
n=1 λ

n(H−1/2)I[λn−1,λn)(t)B(t) for M = 35. Also, we consider q = 30 sam-

ples in each scale interval [λn−1, λn) as λnsj , j = 0, · · · , q − 1. In this case, we choose
the sample points sj such that they will be equally spaced in each scale interval, i.e.
sj = 1 + j(λ − 1)/q. Figure 1 consist of three curves of MSBM, all with scale λ = 1.1
and Hurst indices H = 0.2, 0.5, 0.8. It is worthy to note that, we have simulated only
one discrete time multivariate Brownian motion B(λnsj) of Example 1 for these three
curves. In the middle plot, the Hurst index is H = 0.5, so it is a discrete-time multivari-
ate Brownian motion which is a self-similar process. The left curve has scale H = 0.2,
so in compare with the middle curve, the coefficients at the begining of the n−th scale
interval, decrease to λn(0.2−1/2), and it has less variation than multivariate Brownian
motion at the begining of each scale interval. Also, in the right curve, the Hurst index is
H = 0.8, where the enlargemant at the begining of scale intervals [λn−1, λn), in compare
with multivariate Brownian motion, caused by the growth of coefficients λn(0.8−1/2) [11].
Figure 2 is also shows three curves of MSBM for λ = 1.5 and H = 0.4, 0.5, 0.6. Again
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only one multivariate Brownian motion is generated for three curves. In the middle plot,
the Hurst index is H = 0.5, which is a multivariate Brownian motion. Also, the left and
the right plots are MSBM with H = 0.4 and 0.6, respectinely, and the enlargmant of
their variations are compared with the middle plot, multivariate Brownian motion. The
left curve, where H = 0.4, has less variation in compare with the multivariate Brownian
motion, which caused by the rate λn(0.4−1/2) at the beginning of scale interval [λn−1, λn).
Also, in the right curve, where H = 0.6, the size of variations at the beginning of scale
intervals, increased by the rate λn(0.6−1/2).

Now, to investigate the accuracy of the proposed method in detecting DSI processes,
we have simulated the multivariate simple Brownian with scale λ = 1.1, motion for
different Hurst indices, by considering 50 scale intervals and q = 30 equally spaced
samples in each scale interval with 100 repetitions. By applying our detector, we have
computed and plotted the mean-square of errors (MSE) for different Hurst indices in
Figure 3.
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Figure 3. Mean-square of errors for the proposed GLRT detector in 100 repetitions
of simulated multivariate simple Brownian with scale λ = 1.1, by considering 50 scale
intervals and q = 30 equally spaced samples in each scale interval, for different Hurst

indices.

Empirical Data. The superiority of the proposed detector, is also investigated for em-
pirical data. To this end, we study the daily indices of two stock markets: S&P500 and
Dow Jones, for some special periods. First, we consider daily indices of S&P500 from the
first January 2000 till the end of 2004. As there is not any index on Saturdays, Sundays
and holidays, the available data for the selected period are 1256 days. The process was
studied by Bartolozzi et.al. [1], Rezakhah and Maleki [14], where the existence of a DSI
behavior, in some periods of data has been justified. The indices from 16th October
2000 until 23th July 2002, which the DSI behavior can be seen in four scale intervals,
was considered by the author in [14], and the preferred scaling factor of the process for
the periods was evaluated approximately with 1.66, Figure 4 (a). Now, to investigate the
efficiency of the proposed detector in multivariate DSI processes, we consider maximum
and minimum of prices in each day to have a bivariate process. Then, by imposing the
flexible sampling, we apply the proposed method to detect DSI behaviour of the process
for selected periods. As a result, the propose method can detect DSI behaviour, for given
scale, well.

As an another example, we consider daily indices of Dow Jones from 25th October 2001
till 28th May 2014. Same as the S&P500 indices, there is not any index on Saturdays,
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Sundays and holidays, the available data for the selected period are 3168 days. The
existence of a DSI behavior in a period from 6th March 2009 until 14th November 2012
has been justified by the author [14] in four scale intervals, and the scale parameter
λ was evaluated approximately with 1.493, Figure 4 (b) [14]. For these indices again,
we consider maximum and minimum of the prices in each day, to have a bivariate DSI
process. Then, by imposing the flexible sampling and applying the proposed method, it
has be seen that the DSI process can be detected for the selected period.
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Figure 4. (Top) S&P500 indices from 1/1/2000 until 31/12/2004. The existence of
a DSI behavior is justified from 16/10/2000 until 23/7/2002 in four scale intervals which
are indicated with red dashed lines. (Bottom) Dow Jones indices from 25/10/2001 until
28/5/2014. The existence of a DSI behavior is justified from 6/3/2009 until 14/11/2012
in four scale intervals which are indicated with red dashed lines. The scale of the process
for the periods is evaluated approximately with 1.493.

6. Conclusion

For testing whether a multivariate process is DSI, we have used the generalized likeli-
hood ratio test. To this end, first we considered a flexible sampling scheme which provides
some discritization of a continuous DSI process. Then, by a correspondence between a
discrete-time DSI process and a multi-dimensional self-similar process, obtained by ar-
ranging the sampled DSI process in blocks of size given by the number of sample points
in scale intervals, we obtained the covariance structure of processes. It is shown that, for
DSI and self-similar processes, the covariance matrices are as a product of scale matrices
to a block-Toeplitz matrix. But, the maximum likelihood does not have a closed form
for block-Toeplitz matrices. So, we have used the asymptotic case, in which the block-
Toeplitz matrix is replaced by a block-circulant matrix and the GLRT can be derived
asymptotically. Simulations and numerical evaluations clarified the performance of the
proposed method. The method is also applied for real data of S&P500 and Dow Jones
indices for some special periods.
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