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ARTURO KOHATSU-HIGA, NICOLAS VAYATIS, AND KAZUHIRO YASUDA

TUNING OF A BAYESIAN ESTIMATOR UNDER DISCRETE TIME
OBSERVATIONS AND UNKNOWN TRANSITION DENSITY

We study the asymptotic behaviour of a Bayesian parameter estimation method on a
compact one-dimensional parameter space. The estimation procedure is considered
under discrete observations and unknown transition density. Here, we observe the
data with constant time steps and the transition density of the data is approximated
by using a kernel density estimation method applied to the Monte Carlo simulations of
approximations of the theoretical random variables generating the observations. We
estimate the error between the theoretical estimator, which assumes the knowledge
of the transition density and its approximation which uses the simulation. We prove
the strong consistency of the approximated estimator and find the order of the error.
Most importantly, we give a parameter tuning result which relates the number of
data, the weak error in the approximation process, the number of the Monte-Carlo
simulations and the bandwidth size of the kernel density estimation. A guiding
example for this situation is the use of Monte Carlo simulations of the Euler scheme
for Bayesian estimation in a diffusion setting.

1. INTRODUCTION

We consider a parameter estimation problem using Bayesian inference under discrete
observations taken at constant time intervals. That is, our purpose is to estimate the
posterior expectation of some function f given the data;

_ S T@)¢e(Y5Y )7 (6)de
(1) EN([f] = Eo[f|Yo, ..., YN] := T o0 (V) (@)d8
where Yy, Y1, ..., YN are observed data,
N
$6(Y5") = ¢o(Yo, ., Yn) = po(Yo) [ [ po(Y;-1,Y)
j=1

is the joint density of (Yo, Y1,...,Yn). We assume that YV forms a stationary c-mixing
Markov chain and g is the stationary distribution. The prior distribution density of the
parameter 6 is denoted by 7 and pg, denotes the transition density of Y, where 6 is the
true value of the parameter associated to the data {Y;}.

Method of estimations based on the formula 1 are fairly common in Bayesian statistics
and is also a very simple case of a filtering method. This problem has been studied in
both frameworks by Cano, Kessler, Salmeron [6] and Del Moral, Jacod, Protter [10].

In most applications py is not known. Therefore many different ad-hoc methods have
been developed to deal with the estimation problem. In this article, we study this problem
from a theoretical point of view in the case where py is approximated using Monte Carlo
simulations.

In such a situation, there are two approximations taking place. The first is the approx-
imation of the process that generates Y. For example, in the case that Y is generated
using a stochastic differential equation (SDE), then one classical approximation is the
FEuler-Maruyama scheme for the SDE. This approximation scheme has as approximation

2010 Mathematics Subject Classification. 65C30, 62F15 .
Key words and phrases. Diffusion process, Bayesian estimation, Monte Carlo simulation .
18



TUNING OF A BAYESIAN ESTIMATOR ... 19

parameter m which is the number of time steps used in the approximation (or the number
of random numbers required for the simulation of one path).

Monte Carlo simulations of this approximation are performed n times and are used in
order to generate an approximation of the transition density. A classical method to carry
out this approximation is the Gaussian kernel density estimator. This approximation
requires an approximation parameter, h, called window size. It is well known that in
order for the approximation to converge to pg a correct choice of m, n and h as functions
of N is needed. This procedure is usually called “parameter tuning”. All the articles on
filter approximation known to the authors deal with convergence results that do not lead
to a tuning result.

In mathematical terms the approximating estimator can be expressed as

(2) B ] = ff(qz\([bg (Ilvfo ) (6)d6
J o' (Y )m(0)de

2 N . . n X050 (0)-=
where ¢y’ (YY) = no(Yo) [1;=, 9 (Yi-1,Y;) and 5y’ (y,2) = o5 Sohmy K(—25—),

where K is some suitable probability kernel (say, the density of a standard Gaussian
random variable) and X g’m(f )(9) is a process which is used in order to approximate the
transition density function pg. Note that for simplicity we put only N for index in the
right-hand side of (2), but ﬁé\’ obviously depends on all parameters m, n, h. Through this
expression, we can simulate an approximation of the posterior expectation.

One may also consider other possibilities for the approximation of the transition den-
sity pg. For example, the exact simulation which was introduced by the paper of Beskos
et al. [2] for one dimensional SDE’s. In this paper, we discuss the case of one-dimensional
stochastic process and a scalar parameter in order to avoid complicated notations and for
the restriction of the space, but we can extend our results to multi-dimensional settings.

Another remark is that in (2), we have integrals with respect to 6 which need to be
approximated, but the approximation is not related to the number of observed data,
therefore we have not included it in this paper.

The main goal of the present paper is to prove that there exists a choice of m, n =
O(N°t) and h = O(N~22), so that we obtain that rate of convergence of E’J’{,m[f] to

Ex[f] is N~ a.s. The value of m is determined so as the weak rate of convergence of
X E/”E)l ) (0) to the law with density py is close to N~2. At present our results are somewhat
theoretical, but this tuning procedure is important in practice as it shows that there are
cases where the above convergence is not satisfied.

Our proof points toward the theoretical issues behind the complex tuning that have
to be tackled in this situation. We give an explicit tuning results for the case of smooth
diffusions in Theorem 3.1. (See Theorem 6.12.)

Note that in the present problem as IV increases the number of approximated transition
densities increase and therefore there is the potential of error dispersion and therefore
tuning becomes an important problem. To solve the problem, we essentially use the
Laplace method.

As pointed above the standard example for this setting is the diffusion case. Due to
space constraints, we do not give the verification that the various assumed hypotheses
are satisfied in this case. Instead, we refer the reader to Kohatsu-Higa et. al. [17] where
the Ornstein-Uhlenbeck process case is treated and Kohatsu-Higa and Yasuda [18] where
the case of the Euler scheme is considered in detail.

The goal of this article is to point at reasons why an ad-hoc tuning may or may not
work. This can be clearly seen in the calculations related to the Theorem 6.12 where the
tuning takes place. An example was treated under a different light by Cano, Kessler,
Salmeron [6]. We also remark that there are many other methods that have been proven



20 ARTURO KOHATSU-HIGA, NICOLAS VAYATIS, AND KAZUHIRO YASUDA

to be more efficient in practice without theoretical proofs. Our study is a first step to
study these algorithms from a theoretical point of view.

Idea of the Proof. In order to guide the reader through the arguments we give a brief
explanation of the argument that we will use. The first step is to study the exploding
behavior of the numerators of (1) and (2) by writing the integral in exponential form.

This calculation generates a main term appearing from the ergodic theorem applied
to the sequence {Y;};en. A second error term appears due to the central limit theorem.
In Proposition 4.1 one proves that the second error term behaves asymptotically close
to N2 while the main term behaves asymptotically as N. This property is important
in order to prove Theorem 2.3 which gives the rate of convergence. The condition that
ensures that the main term behaves asymptotically like IV is the identifiability condition
(Assumption 2.2 (4)). To prove that the remainder is of order N~2 requires the use of
the central limit theorem for o mixing sequences (see Section 5.3 for the case of (1)).

To do the same for the integrals in (2) is much more complicated as it involves also the
Monte Carlo simulations. Therefore we need to assure that the Monte Carlo simulation
is probabilistically speaking close to the density of the approximation process. Therefore
the tuning procedure naturally appears. This is reflected in the hypothesis made in
2.2 (6) which is the only assumption involving the Monte Carlo approximation. We
remark that this condition requires the differentiability of the approximating process
with respect to 6. The other conditions in hypothesis 2.2 (6) also ensure the closeness of
the approximating density to the transition density of the sequence {Y;};en.

The main tuning appears when we have to verify Assumption 2.2 (6). This is studied
in detail in Section 6. In order to prove assumption 2.2 (6), we first use a Borel-Cantelli
argument in order to limit the values of the sequence {Y;};cn to a compact set. In order
to bound the denominators, we require lower bound conditions on the approximating
densities. Finally, in order to find the rate of convergence of the various differences
between the Monte Carlo simulations and the approximating density, we need to first
use Borel-Cantelli and continuity arguments to get rid of the supremums in (y, z). Finally
using exponential inequalities we obtain a rate of convergence. Some of these ideas have
been taken from kernel density convergence arguments that can be found in Bosq [5].

These Borel-Cantelli arguments require convergence of certain probabilities which lead
naturally to the final tuning requirements that appear in equations (35) and (36).

This paper is structured as follows; In Section 2, we will give our framework and state
our first goal, i.e. finding the rate of convergence of (2) toward (1). This long list of
conditions refer to what may be considered as a regular case. There are many other
variations that maybe entertained using the same method but this will require much
more space. For the same reason, we have detached the problem from the study of the
approximation procedure of the process generating the data. In Section 3, we explain the
meaning of the hypotheses in the case that Y is generated by a diffusion and its transition
density is approximated using Monte Carlo simulations of the Euler-Maruyama scheme.
In Section 4, we will use the Laplace method in order to prove the rate of convergence
stated in Section 2. This proof uses some estimations of various error processes which
are stated in Proposition 4.1. This proposition plays an important role and it is the core
of the paper. These estimates on error processes are stated in two levels, one is on the
level of the error between the density of the process underlying the observations and the
density of its approximation and another is on the level of the approximative density
and the simulations. The second proves to be more challenging than the first and it is in
this second error the tuning process appears. This is condensed in Assumption 2.2 (6).
In Section 5, we will show the four estimations required in Proposition 4.1. Finally in
Section 6, we give some smoothness conditions that ensure that Assumption 2.2 (6) is
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satisfied. We obtain our main result Theorem 6.12 which gives two tuning requirements,
(35) and (36), for the parameters m,n, h.

We close the article with some appendices where we collect some technical results used
in the article.

2. FRAMEWORK AND A FIRST CONVERGENCE RESULT

Notation: We denote by C(A4; B) the space of continuous functions from A to B,
where A and B are sets. Denote by C*1F2ks (K x K, x K3; B) the space of functions
from K7 x Ko X K3 to B that are k;-times continuously differentiable in the interior of K;
and continuous on K;, where ki, ko, k3 € N and K1, Ko, K3 are sets. When a subscript
b is added it means that the functions are also continuous on K; x K and bounded
C)° (K, x Ka; B). Finally, B(A) denotes the Borel o-field on A.

2.1. Framework. We consider the following problem: Let 6y € © := [¢!,04], (§' < 6¥)
be a parameter that we want to estimate 6y € ©, where © denotes the interior of the set
O and @0 =0 - {90}

In order to frame the problem in a proper mathematical setting, we will use three

separate probability spaces.

In the first space, (Q, F, Py, ), we will define the observation data process Y (see (1)).

In the second space, (Q, F, P), we will define the family of processes X (6) which are

realizations of the Markov chain with transition density py. This space is needed in order
to prove asymptotic properties of the estimators.

Finally, in the third probability space (Q,]:' , }5), we will define the simulations (see

(2) and X¥(*)(9) right after this equation).

(i). (Observation process) For A > 0, fixed let {Y;a}i=0,1,.., v be a sequence
of N + 1-observations of a stationary Markov chain having transition density
Do, (Y, 2), ¥,z € R and invariant measure pg,. This sequence is defined on the
probability space (2, F, Py,). We write Y; := Y;a for i =0,1,...,N.

(ii). (Model process) Denote by X¥(0), y € R,0 € O be a family of random vari-
ables defined on the probability space (€, F, P) such that its law is given by
Do (y7 Z)

(iii). Denote by (Q, F, ]5) the probability space where one generates the simulation of
the approximation to the process XV.

(iv). (Approximating process) Denote by XZ”m)(H) the approximation to XY(6),
which is defined on (Q, F, P). The parameter that determines the quality of the
approximation is given by large values of m = m(N). Denote by p) (y,2) =
P4 (y, 2;m(N)) the transition density for the process X?m)(é).

In the case, that Y is a diffusion process with coefficients that depend on the
parameter § then X ,(0) may denote the associated Euler-Maruyama scheme
with step % starting at y and same coefficients which therefore also depend on
f. For more details, see section 3.

(v). (Approximated transition density) Set Ry = [0,00). Let K € C?(R;R,)
(usually called kernel), which satisfies [ K(z)dz = 1. Denote by p} (y, 2), the
kernel density estimate of p}’ (y, z) based on n = n(N) simulated i.i.d. copies of
X(ym)(H) which are defined on (2, F, P) and denoted by XEIT’R()’C)(Q, Y, k=1,...,n;
for h = h(N) > 0, define the approximated transition density as

(m(V))
h(N)

1 xv®) g )~
Py (Y, 2) = pg (y,2;0;m(N), h(N),n(N)) := n(N(N) 2~ K
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(vi). For given m, we introduce the mean of the approximated transition density over
all trajectories with respect to the kernel K;

1 XY ,(1) 6,) — =

Yy, 2) = Py (y, z:m(N), h(N)) := E [pY (y,2)] = E K (mUQEN) |

where E means the expectation with respect to P.

As it can be deduced from the above set-up, we have preferred to state our problem
in abstract terms without explicitly defining the dynamics that generate X¥(6) or how
the approximation XV (m )(9) is defined. All the properties that will be required for py and
Py’ will be satisfied for an appropriate subclass of diffusion processes.

Remark 2.1. Without loss of generality, we can consider the product of the above three
probability spaces so that all random variables are defined on the same probability space.
We do this without any further mentioning.

Our purpose is to estimate the posterior expectation for some function f € C*(©)
given the data;

IN(f) [ F(0)pa(Y5 )m(6)df

EN([f] = Eo[f|Yo, ..., YN] = IND) T [ee(Y)m(0)d0

where
N
bo(Yg ) $o(Yo, ... Yn) = po(Yo) H Yj1,Y

is the joint density of (Yp, Y1, ..., Yn).
We propose to estimate this quantity on the basis of simulated instances of the process;

e TR D) [ RO (Y)m(0)do
Fhvmlf] = Ixmm' /oy (YN )m(6)db

where ¢ (Yg¥) = MO(YO)HJ 1 Dg (Y1, Y5).

2.2. A First Convergence Result.

b

Assumption 2.2. We assume the following

(1). (Observation process) {Y;}i—o.1
for some p > 6.

(2). (The prior distribution density) The prior distribution density 7 € C(O),
and for all 0 € ©, w(0) > 0.

(3). (Density regularity) The transition densities p, p?¥ € C3%°9(© x R%; R, ), and
forall € ©, y,z € R, we have that min {pg(y, z),ﬁév(y,z)} > 0. And pg admits
an invariant measure p € C’g’o(@ x R;Ry), and for all 0 € O, up(y) > 0 for
every y € R.

(4). (Identifiability) Assume that there exist ¢y : R — (0,00) such that for all
€O,

N 1S an a-mizing process with o, = O(n~P)

.....

inf [ (0,2 = ooy 02 21dz = ()}~ 6.

and C1(6p) == [ c1(y)*po, (v)dy € (0, +00).
(5). (Regularity of the log-density) We assume that there exists § > 0 such that
for as = pe.py’

; 4+
o .
sup sup // (89i lnqe(y,2)> Po, (Y, 2) g, (y)dydz < +oo, for i=0,1,2,
N 6co
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0
where %qg = qy.
(6). (Parameter tuning) We assume the following boundedness for some € > 0

—1
- ) )
3 sup su — Inp)(Y:,Y; — —Inp)(V:,Y; ) < 400 a.s.
@ swpsup V25 (g 05 i) — gl 05V
_e N—1 9 P
4 — —Inpy (Y;,Yiq1) — =1 Y., Y -S.
(4)  supsup| = ; (ao npg (Vi Yigr) = 55 npol +1)) < 400 as

The first goal is to prove the following result.

Theorem 2.3. Under Assumption 2.2 and for f € C1(©), there exists some positive
finite random variables =1 and Z5 which do not depend on N such that for any e >0

— —_
= —

(BN 1) = (00 < <5 as. and [BRlf] = f(00)] < 5% as.

and therefore
51+ 22

T a.s.
Nz—¢

Ex(f] = Ex /]| <

Our final goal is to prove that there is a choice for a; and as with m = VN, n =

CiN* and h = CoN~*2 under which the above assumptions are satisfied and therefore

the above result can be applied. This result is obtained in Theorem 6.12. See also
Theorem 3.1 for the case of SDEs.

3. UNDERSTANDING THE HYPOTHESES IN THE DIFFUSION CASE

In this section, we give a brief description of how to interpret the different hypotheses
and how they are verified in the particular case of diffusions. We only give brief comments
on these matters and we refer the reader to the detailed articles [17] and [18].

In this section, the data is obtained from a diffusion of the type

t t
yt:y0+/ b(eo,Ys)ds+/ (00, Ya)dW,s, £ > 0.
0 0

In order to simplify the situation, we consider the one dimensional situation on a
compact parameter space. So that b, o : [0',0%] x R — R are smooth functions with
bounded derivatives. Suppose that the diffusion satisfies sufficient conditions for existence
and regularity of its invariant measure (see e.g. [7] and [8]) and that it is a-mixing.
Furthermore, we assume that the process Y is stationary.

Additionally, we require ellipticity conditions so that upper and lower bounds for tran-
sition densities can be obtained. Then X¥() = XX (6) denotes a copy of the underlying
random variable. That is,

X7 (0) —y+/Otb(H,Xg(G))ds+/0to(0,Xg(9))dI/Vs, t>0.

Then XV

(m)(H) = X () where the Euler-Maruyama scheme is defined as

t t
X0 =y + [ 00,55, 0)ds+ [ ol6. X5 (0)aW., t =0,
0 0

Here n(s) = sup{%; % < s}. One may consider higher order weak schemes in order
to improve the performance of the method which would obviously lead to much more
complicated estimates. For convergence properties concerning X, we refer the reader to
Bally and Talay [1] and Guyon [14]. The kernel K is usually chosen to be a Gaussian
density with mean 0 and variance 1.
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The identifiability condition (4), is needed in order to be able to obtain that the density
can be used to discern the value of § from the observations. This type of assumption is
natural in statistics.

Assumption 2.2 (5) will be satisfied under enough regularity of the transition density
function py and its approximation ;Bév . This is usually obtained using Malliavin Calculus
techniques.

Assumption 2.2 (6) will be crucial in what follows and it is this property that will
determine the rate of convergence and the tuning properties. This is the only hypothesis
that involves ﬁév , which is random. In particular, obtaining a lower bound for ﬁév will be
the important problem to solve.

This will be further discussed in Section 6. In fact, we have the following theorem.

Theorem 3.1. Assume the following
(1) The parameter N is large enough with m = /N, n = CyN®* and h = Co,N~°2.
(2) There exists some constant ¢y > 0, Elexp(2 Y1 )] < oo holds.
(8) There exists some constants p1, @2 >0 such that

. N pace In N
(r,yﬂ);ll(m,lz?)tlm\éx/mpe (:9) A po(e,) 2 o1 exp (_ A ) ’

where co is the same as the above.

(4) Finally, assume that oy > 8ag + 1 + 2222,

Then Assumption 2.2 (6) holds.

Idea of Proof. In fact, as b and o are smooth with bounded derivatives all the conditions
in Theorem 6.12 are satisfied by choosing 73 > 1, 46 > 1 and noting that conditions (iii),
(viii) and (ix) are satisfied with r3, 76 and ¢g big enough (therefore (35) is satisfied).
All the other conditions in Theorem 6.12 can be verified by using the smoothness of b
and o. O

Therefore roughly speaking, a;(N) = ﬁ + h(N)2.

Finally, we remark that one also needs to approximate the invariant measure but this
problem can be solved with an extra term. The quality of approximation is studied in
Talay [21] and the references therein.

4. PROOF OF THEOREM 2.3

We start introducing some notation; let p and ¢ be positive functions of two variables.

Define
- // (lnp(y’ Z)>‘1(y7 2) g, (y)dydz.

{h’lpg Y—H}/H*l) - H(pavpeo)}v
Poo) —

We also let

H (po,, po, )

1 . _
RNO) = = 3 (5 (% i) = g (% Vi)
1=0
N—1
1
R?V(e) = ﬁ (lnﬁé\[ (}/7;7Y;+1) - 1np9 (Yria}/i-‘rl)) )
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Some of notations above are related to the information theory and its approximations,
for example €(0) is the Kullback-Leibler divergence and so on.

The following proposition states the key properties that are needed to achieve the
proof of Theorem 2.3.

Proposition 4.1. Under Assumption 2.2,

(i). There exist strictly negative constants cy,ca such that the following inequality is
satisfied

c1 <inf inf LH) < sup su ﬂ
PN 0e6o (0 00)2 — Npee@po (6 —60)*

(ii). There ezist e € (0,3) and a random variable M on (2 x O, F®F, Py, @ P) such

that
N~=Bn(0)
9— 0,

<o <O

sup sup
N 0€0©q

’ <M a.s.

(). For anyi=1,2 and € € (0,%) there exists a random variable M on (£ x Q,F®
F, Py, @ P) such that

sup sup <M a.s.

N 0€06q

N~ (Ri(6) — Rﬁv(eo))‘
6 — 0

We will give the proof of this proposition in section 5.

Proof of Theorem 2.3. We decompose the approximation error as follows;
In(f) = f(60)In(1) I (F) = £(B0) IR, (1)
- = =: Al — Ag.
In(1) I}y (1)

First we consider A;: We will prove that there exists some positive random variable C
such that

ENn[f] — ER lf] =

Cy
5 Ay < —=
(5) |1|_N§_

a.s.
€

Indeed, using the definitions provided at the beginning of this section, we can write
In(f) as follows;

(6) In(f) = eNH(peo,paO)Jrsz (60) i F(0)e Ne(0)+vVNBn ( g)C( )do

Here, we perform the following change of variables; 8 = 0y + \/T Then,

N (f) — () In(1)]

N H(pog poy)+V/N 2 (60) /
O

(F(0) f(%))eNE(e)*mﬂ”(e)C(H)de‘

— N H(pog.pog)+VNZn(00)

VN (6" —60) r - r dr
» 8o + () ) N0+ VN B G0+ ) (9 N )
/ (f( o \/N> f( 0)) 2 ¢ |t i

VN (0'—00) VN
eNH(poy:pog)+VNZn(00)
o N

VN (6" —00)

€ % NBN(o+—F=) r

x rf (&) eI ¢ (oo + ) dr|.
/\/N(olog) vN
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In the above, we have used the mean-value theorem: there exists a constant &, y which
is between 0o + —= and p. Set Oy = [VN (0" —6o), VN (6" —60))]. Now we separate the
above integral into two parts:

/{TScN“}ﬂ@N

r_) 4N B (60+—2) r
+/ rf (&) €N O TRIT vl (90 + ) dr
{|r|>cNe*}nON vN

eNH (pog o, )+V'NZn (00)

N

(7)

)

where a and ¢ are two positive constants, which will be defined later.

We start considering the first term in (7), by dividing it by Ix (1), we have, using that
{|’I“| < CNa} NOy C On:
(8)

eV H (pe 1pog)+VNZy (60)

NIn(1)
—)+VNBN (o+—=) r
X rf (&n) N OTIRIT VEIQ <9 + >d7“
/{|r|§cN“}ﬂ®N ( N> ’ \/N
1/l N0+ )+ VN B b+ ) ¢ <90+ \/TN) )
= r
\/N {‘TISCNG'}ﬂ@N f\/\/:((eelu efO) N5(90+\/7)+\/76N(00+\/7 C(GO"_ﬁ) dT
CN‘l”f’”OO 6N6(9o+\/%)+\/ﬁﬁzv(00+ﬁ)c (90+ fﬁ) ]
< -
- VN / <eNaynoy [VN(0"—00) Ne(o+—o)+VNBN (G0t r "
{Ir|<eNea} ff(el o) € N WC 90+\/ﬁ dr
el f oo
= N%_a .

For the moment we let a > 0 be such that a > e.
For the second term in (7), we again separate the integral into two parts:

j{r>cN“}ﬂ@N

—)+VNBN (o+—=) r
+ [ P (€) NI ¢ (004 <) ar
{r<—cNe}nON \/N

< Hf/HOOHCHOO@NH(WO7p60)+\/ﬁZN(90) {/ +/ } |7| ecz(r)r2+d2(r)Ne?”d7"
N r>cNa r<—cN@e

1
Ne(fo+—= Nz7Bn(bo+—F= i
where we have set ca(r) = Nelot7z) Orz ) and dy(r) = —NT( ) From Proposition

4.1 (i) and (ii), we have

eNH (oo )+V'NZn (60)

N

Hfllloo HCHOOeNH(ng ’p90)+\/NZN(90)

) - N

_ 2 € _ 2 e
% {/ re lea|r“+MN T dr _/ re lea|r®—MN Td?"} )
r>cNa r<—cNae
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For the first integral term in (9), we have
I el PR [ sty
N r>cNe
1 o€ 000 200200
B N

{1€|62|(CN“)2+MNE(CN“)
2|02|

MNc¢ o €c2|T2+MNETdT}.
2|ca
For ¢cN® > ylévl , we have, from Lemma 7.3,
£ [loo1¢ | oo €N H o0 Poo)+ VN Ziy (B0)
- N
e —Je eN®)2_ MN€E o
1 6—\cz\(cNa)2+MN€(cNa) n MNe¢ e~ leal(eN") =T )
2|cs] 2|ea Vel

_ I loclIG oo (oo pao) VN (60)
2|02|N

€
y { L, MK }6|c2|c21v2“ rennete

X

Vleal

By using a symmetric argument, we have the same results for the second term in (9),

namely we have, from Lemma 7.3, for cN® > Jg‘g‘,
{r<—cNe}nON
”f/”OO”C”OOBNH(PSO7P00)+\/NZN(00) MN¢ —eal® N oA Neto
< 1+ e .
2|CQ|N 1/|02|

From now on, we estimate the denominator Iy (1) from below using similar arguments.

Set 6 =6y + —~ and O = [VN(8' —b;), VN (6" — bo)].
eNH(Pogpoy)+VNZN (60) ‘/\/N(OHOO) eclg(r)r2+d/2(T)N€T§ (

In(1) = 0o + T) dr,

VN VN (6'—60) VN
e(O0+—= 2B (B0+ 2
where set ch(r) = W and db(r) = M € > 0. From Assumption 2.2

(2) and (3), there exists some random variable Kk > 0 on (Q, F, Py,) such that ¢ > &,
then we have, for N large enough, using Proposition 4.1 (i) and (ii),

NH (pa, ,poy )+VNZn (0
() 2 BT [ gty
N ’
Now we just compute the integral explicitly, using the change of variables y = r — 1‘/2[ é\ll -

in order to find a lower bound as follows:

M2N2e 2 T M2N2¢
/ e mMINS g — o7 Ee / eV dy > \/\Qe erl
._/ —/I<J

261

Here 0%, = [VVN(0' — 6) — Igif,\/ﬁ(eu — fp) — M),

261

Taking the quotient between (10), (11) and the above lower bound, we get

I lShocler] ) MN peeensesenrnesezae
Ve VN T Vel
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Putting together the above bound with (8) and as a > €, one obtains the announced
rate. This finishes the proof of (5). Similarly we can prove that there exists some
positive random variable Cs, independent of N, such that

02
Nz—a
The only important point in the treatment of this term is to first note that instead of
the decomposition (6), we will have

|As] < a.s.

jN(f) — NH(poy:peq)+VNZy (60) F(0)e Ne(0) +\/>6N(9)+\/>(R}\/(9)+Rir(9))c( 0)do
©¢

Therefore we obtain our conclusion if one follows the same calculations as above and
further uses the result in Proposition 4.1 (iii). O

5. PROOF OF PROPOSITION 4.1
5.1. Proof of the upper estimate for Proposition 4.1 (i).

Proposition 5.1. Under Assumption 2.2 (3), (4) and (5), there exists some strictly
negative constant co such that

e(0)
sup ————— < co < 0.
peo, (0—00)2 =7

Proof. From Exercise 1.22 (c¢) in pp.353 of Eggermont, LaRiccia [11], we have the fol-
lowing generalization of Pinsker’s inequality; for all 8 € ©,

2
2
0< 2 (/ lpo(y, 2 peo(y72)|d2> < /ln Mpeo(yw)d&

Po(y, 2)

The finiteness and good definition of the above upper bound follows from Assumption
2.2 (3) and (5). Therefore from the definition of e, we have that for all § € Oy,

0= [{= [ (w22) o1 f
< —*/ </ Ipo(y, 2 peo(y7z)|d2)2ueo(y)dy <0.

From the identifiability condition (Assumption 2.2 (4)), we obtain the following; for
all 6 € ©,

(0) < 5 [ cly)?(6— 60)P1a, (v)dy = ~5C(60)(0 )

Hence we have

< () 1
06@1;)0 (0 —6p)? 2
O

5.2. Proof of the lower estimate for Proposition 4.1 (i). First we give a useful
lemma for the first derivative of H(pg,pg,) in 0. Its proof is straightforward.

Lemma 5.2. Let g be a transition density, which depends on a parameter 8. We assume
that for all 0 € ©,

% // (Ing(y, z;0)) q(y, z; 00) 1o, (y dydz—//( Inq(y, 2; 9)) q(y, z; 00) e, (v)dydz,
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and the following exchange of derivative and integral

// %q(y,Z;H)

e, (y)dy.
60=0,

B
tio, (y)dydz = / 20 / q(y, z;0)dz
0=0¢

Then

=0.
0=0o

%// (Ing(y, z;0)) q(y, z; 00) e, (y)dydz

Proposition 5.3. Under Assumption 2.2 (3), (4) and (5), there exists some strictly
negative constant ¢y such that

. £(0)
— < inf ———— .
oo<cl_91161@(9_90)2 <0

Proof. For 6 € g, we apply the Taylor expansion to 6 — H(pg,pe,) around 6y and by
Lemma 5.2,

1 02
(12) H (po, po,) = H (poy, po,) + 5(9 - 90)2@17(1?0,1990)

)

0=0(7)

where 0(y) := v0 4+ (1 — )6y, for some v € (0, 1).
From (12), we have

1 0?
e(0) = H (po,po,) — H (po,,10,) = 5(9 - GO)Q@H(pe,pao)

0=6(7)

From Assumption 2.2 (5), %;H(p97p90) satisfies;

2
sup |— H (pp, < 0.
SUD | 52 (Po; pa,)| < 00
Finally from Proposition 5.1, we have
: £(9) 2
0 > inf > —— — , > —00.
B 007 = 25 [ag T e pm)] > o

O

5.3. Proof of Proposition 4.1 (ii). Our next goal is to prove the uniform estimates
for Bn. The difference with the previous section lies on the fact that now these quantities
are random. Therefore one naturally is lead to the consideration of limit theorems in the
space of continuous functions in # with the supremum norm.

In what follows we use the following notation for a sequence of strongly mixing se-
quence of random variables valued on the Banach space of continuous functions on [6;, 6,,]
with the maximum norm, denoted by || - ||.

:(0) = In (po/po, (Yi, Yit1)) —e(ffe(femeo) - H(Pempeo))’ 0 [0, 0.].
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As pg is C' in 0, we have

(13)
sup sup N_ﬁN(a)‘
N eeo,| -0
N—1
1 1 }/ia 1/; -1 Y—ia }/Z - (H ) - H )
— sup sup 3 npg(Yi, Yit1) — Inpe, ( HH)G (H (popo,) — H(pa, Peo))‘
N 0€0g i—0 — Vo
_up sup L[S o 0P a0 (Vi Yiea)da(d = o)
N peo, N1/2te | 0 — 6o
1
Jo 9 H (p(1-a)8+ a6 Doy )dce(0 — 6o)
0 — 0y
N-1 1
= sup gség)o N1/z+e ; /o (99 Inp(1—ayse+a0(Yi, Yig1) — O H (P(1—a)00+a0> Po,)) dex] .

Therefore an equivalent way of setting the random variable, 7;, is
1
w0 = [ (O0npye) (Vi Yier) = o (50 p0,)) dr
0

where f(a) := (1 — a)by + af. Note that E[n;(8)] = 0 holds.

In order to carry out the proof we will follow similar steps as in the proof of Theorem
3 in Dehling [9] which also uses an argument which appears in Proposition 2.2 in Kuelbs
and Philips [19]. To apply their arguments, one needs to have moment estimates which
can be easily obtained but they need to be explicit in order to work with the Banach
space of continuous functions on [6;, 8,,] with the supremum norm. Here, we will also use

the moment norm notation ||n|, := E [\77|p]1/p for a real valued random variable 7.

Lemma 5.4. Under Assumption 2.2 (5), one has that for 6 € [0, 2]

N
sup (6 < CNY/2,
p ;m( )
2496
Here C is an explicit constant that depends only on 6, 0;, 0., A.(o) = Y oo (i +
1)’”/271[04(1')]%2, r = 2,4 and finally the constants in the Assumption 2.2 (5).

Proof. In fact, for any 4 > 0, using the fundamental theorem of calculus and Hélder’s
inequality

248 246 2446

N N .0 N
sup an(ﬁ) < 29 sup Z/ Ogn;(0)do + 2149 an(t?l)
0 |\ — 0 > /6, i
Jj=1 J=1 J=1
o | N 246 N 246
(14) < 21%9(9, — ;)" +° / > 0em;(0)|  do+20 > i (6)
b |j=1 j=1

The second term on the right hand side of the above expression can be dealt with
usual estimates for the moments of mean zero random variables which are a-mixing of
the required order as explained in Theorem 1 in Yokoyama [22].

Rather than following the general path in that article, we will only use the case for
the integer power of 4 proved in Theorem 1, case (i), as the constant is explicit and easy
to understand in that case. Therefore we let 6 < 2 and then
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246 246

N N
E || 0m;(6) <[> 9am;(0)
j=1 j=1 4
2468
a+5 2496

2446
< K5 B ||00m;(0)] 7 0
Ko 3 :=36A4(a) + 288(As(a))?.
Therefore putting these estimates together in (14), we obtain that

2446

N
B |sup > i (0)
j=1

248 245 Ou 446 % 246
< C.0u,00) ( K5 N5 [ B [0amy @) do -+ E [Jomm 00 )
0,

C(5,04,6,) == 2" (14 (6, — 6)' 7).
Using the finiteness for E [|9pn;(0)|"] for r = 4 + 6,2 4+ § in Assumption 2.2 (5) and
the above argument one concludes that for any NV € N

N 2446
(15) E [sup|Y n;(0) < ONHI/2,
0 J=1

Note that the finiteness of As(«) and A4 () follows from Assumption 2.2 (1).

We will be using in what follows the following result.

Theorem 5.5. (Dehling [9], Theorem 2) Let {n;, j > 1} be a weakly stationary strong
mizing sequence of random variables with values in the separable Banach space X with
norm || - || such that En;] = 0 for each j > 1 and sup;~, E[||n;|*™°] < pays < oo for
some 0 < 6§ < % and suppose that the mizing rate is

a(n) = O(n~ DA+ 45 n — 00 for some e € (0,1].
Let P, be a sequence of bounded operators on X with m-dimensional range satisfying

(16) sup |[|[Pnz||=0(m") as m — oo for some r >0,
llzll=1

and uniformly on a and N

2
a+N

(17) E|||N"/2 Z (n; — Pmmj) =0(m™%) as m — oo for some s> 0.
Jj=a+1

Then there exists a covariance operator T which converges absolutely such that the Banach
valued Gaussian random variable B(T) with covariance structure T satisfies the following

. : . sée
law distance estimate for k = 300(242) (9437 75)

M [ n~Y/2 an, B(T)| =0(1+ p;f(s)n_") as n — oo.
j=1
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Here M stands for the Lévy-Prohorov distance between probability measures and the
covariance operator T is given for f,g € B* by the following absolutely convergence sum

T(f,9) = E[fg(m)] + D> _ E[fm)glm)] + > Elglm)f(ne)] -

k>2 k>2

Lemma 5.6. Assume the conditions stated in Lemma 5.4. Then the conditions stated
in Theorem 5.5 are satisfied with s =3, any r > 0 and 6 € (1/3,2/3).

Proof. The boundedness of sup;~; E[||In;]12%9] follows from Lemma 5.4 for N = 1 and
the stationarity hypothesis for Y. The a-mixing condition follows from Assumption 2.2
(take e.g e =1 and any J € (0 2/3)).

Form e Nandi=0,1,....,m,set 0; :=60; + - ((9 —0,). Let P, be a projection which
is defined as

m

($(9i+1) — x(@z))(ﬁ — 91) + .Z‘(QZ) when 0 € [01',01'4,_1),

for 2 € C(Og). Then note that P, is continuous in # and that for any m € N, ”F”) ﬁ“ <1

holds, therefore {P,,} is a sequence of bounded operators. Therefore the condition (16)
with any 7 > 0 (in fact it is bounded).

Now we start to consider the assumption (17) for the projection operator P,,,. Without
loss of generality, we consider the case a = 0.

(18)

N
E Sup > (0(0) — Prn;(0))

Jj=1

N
=F max sup Z {(nj(9) —n;(605))

i=0,1,...m=1gc[g, 0,,,) j=1
2]

N
B ‘ (9 9) it1 '
=E | _ max sup | ) {/ Dom; (B) dB = =p=—4 /6 9on; () dy

o=l 0€(0i,0i41) |5

g 5 6ei) = ny(6) 0 -6

<FE max sup Z{/ (Ognj (B) — Ogmj (0)) dp u_ 9__mgl —

1=0,1,...,m— 196[91,9144)

m(6 — 0, 0it1
P2 [T oy () - auny 0) dv}

<2F max sup //89773 ) dvydg

1=0,1,....m=1gcg; 0,,1) =

2
N Oiv1 v
2.
+; /0 /6 3n; (8) dpdv
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2
N

6
<2F i:O,Ilr,l.%Xm sup /a (v—6:) z; 3(3773‘ (v) dvy
i =

Loe(0;,0i41)

9i+1 N )
+ / Oiv1 — Z 9pn; (B
0 =

Let us compute the first term above. The second is dealt with similarly. In fact,

0 N 2
FE| max sup / 28977]
i=0,1,..., m— 196[91,01+1) 0; ot
_ -
o| N
R T T | / > dm; ()| d
1=0,1,....m—1 06[9“01+1 0; =
- , -
0. | N
<FE ma su —6,)3 92n. d
- i:O,l,...),(m 106[9“5;1 Oit1 / Z i (V)| dy

2

0, — 0;)
< (Tl/ 289773 dry.

We would like to prove this upper boundedness using Yokoyama [22]. To use it, we need
E[02n;(v)] = 0 for all v € [0;,0,]. In fact, using Assumption 2.2, (5), we have that the
expectation and the partial derivative in 6 are exchangable and therefore

1
Ed3n;(M)] = E [33/0 (59 In pg o) (Yi, Yig1) — aGH(pé(a)ap90)> da]
1
=03 [ B[00 tupge) (i Vi) — 0 (05 00,)] do
0

=05 /01 {59E {hlpg(a) (Yi, Yi-i—l)} - 89H(p§(a),p90)} do = 0.

Then, from the satarionarity and eq. (4.2) in Yokoyama [22], we have

N N
> " 93n; (7) +2Z > i () O (v)
7j=1 =1 k=j+1
_ _ N—1
= NE |95m (v)°] +2 Z E [03m (v) Onjt1 (7)]
j=
i i N-1
< NE|33m (1)?] +2N S |E[03m (v) Bnjar ()]
i | 2
< NE [82n1 (4)?] +24NEU8§771 2*‘1 "3 ali)T,

=0
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for any § € (0, } where we need that Y .o a(i)73 < oo and for all v € [6;,6,],
E [’3927]1 (v ’2+6] < 00 holds. Therefore we have for § = 2

2

O " Zaem &
0, —0,)3 | [0 Ou 10X A
< N(mi?)l) {/H E [agm (y)ﬂ d7+24/6 E {|a§m } d’yz }

l l

=

Using the proof in Lemma 5.4, we have that

0. 1
/ E[@gm()}d7<ooand/ |89771 )|}2d’y<oo
0,
holds. Therefore, we have proved the uniform boundedness in 6 for the first term of eq.
(18). The second term of eq. (18) can be proved similarly.

From the above estimate one can easily obtain that

2

E —1/2 Z — P,nj) =0(m™) asm — occ.

Theorem 5.7. For any a > 0, we have that
P N_1/2_asup2nj(9) —0, asN —o0]| =1.
0 ‘=

Proof. Before starting the proof, we remark in order to prove the statement in Theorem
5.7, we can assume without loss of generality that T is non-degenerate.

In fact, consider a sequence of i.i.d. Gaussian r.v. ;. Then repeat the same proof
to follow for both n~1/2=¢ > =1 (nj + B;) and p~1/2-a >j=15; which will converge to
zero almost surely if we prove that their corresponding covariance operators are non-
degenerate. Note that for the first sum, we have

Ti(f.9) = E[fgtm + Bl + > _ E[f(m + B)glne + B)] + > Elg(m + 1) f (e + Br)] -

k>2 k>2

Using the linearity of f and g, the fact that Banach valued Gaussian random variables
have mean zero and the independence between the sequences 7;, 3; (as well as within all
B;j) we obtain

Ti(f,9) =T(f,9) + E[fg9(B1)].

Therefore the non-degeneracy follows.

The proof as previously announced, although long, it uses basic ideas which are ex-
plained in Dehling between other references. The idea is to separate the sum Z;V:;L n;(6)
into blocks so that half of the blocks will be negligible and the other blocks will converge
to the Gaussian law on the Banach space of continuous functions. The removal of neg-
ligible blocks will allow us to obtain the convergence almost surely. This idea of using
“Bernstein” blocks is very old in probability theory and it can be found for example in
Section 18.1 of Ibragimov and Linnik [15].
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Let us denote the blocks, following Dehling [9], page 423, as Hj, and I which are

subsets of consecutive indices so that #(Hy) = ny = [k'7], #(Ix) = [kztlﬁ/]. Here

B':= 71 >0, where s = 3 and r > 0 can be chosen freely (recall Lemma 5.6) and

SA
g T 9+ 3r+s
Nm ¢
200(2 + €)

The sum Zjvzl n;(0) is then divided using these blocks. The main blocks are defined as
Yil0) == 3 cpr, 10 (0).

Furthermore, the above defined constants appear when one wants to apply Theorem
2 of Dehling which it further requires that a(k) < Ck~(1+9)1+3) for some € € (0,1] and
§ €(0,2). Finally as [|n,|l24s < [|n]la < p for some constant p then for all k € N,

M (c (n,;l/QYk) ,N(o,T)) <C(1+pF)mg?.

Here without loss of generality, we assume that T is a well defined non-trivial covariance
operator of the Gaussian law N(0,7) in the corresponding Banach space. Here M
denotes the Lévy-Prohorov distance between probability laws.

Now the argument follows by proving that one can apply Borel-Cantelli lemma for
the study of the almost sure convergence of nlzl/ >~y for any a > 0. In fact, using the
definition of the Prohorov distance and Chebyshev’s inequality together with Fernique’s

theorem we have that for any r > C(1 + p?)nlzﬁ

—1/2 a a
P(llng Yl = nf) <P(IN(0, T)|| = nft =) + 7
<cexp (—c(nf —r)?) +r.
Therefore, as ny < Ck1TF',
3 P(lng Vil = ng) <201+ p%) Y0P < .
keN keN

From Borel-Cantelli’s lemma then we conclude that an_,l/ Vil < ng, for all k sufficiently
large almost surely.
Now, in order to deal with the smaller blocks I;, we have to use a similar technique as

in Kuelbs and Philipp [19], Proposition 2.2. That is, define for t; := 2?21 #(H; UI,),

te+r+s

o

v=tp+1+4+r

Fy(r,s) :=

Note that there exists two positive constants ¢y and c¢; such that t; € [cok'2+6', 01k2+ﬂl].
Suppose that tpy < N < tgy1 and let iy = Nk (V) := max{n; 2" < N — t;}. If we write
N —t, = Y%, &2, & € {0,1} in its dyadic expansion we obtain from a combinatorics
lemma in S. and L. Gaal [13], Lemma 3.10, that there exists 0 < m; < 2"~! (which
depends on the sequence ¢) so that

Nk

Fk(O, N — tk) S ZFk(leZ-H, 2l).

1=0
With the introduction of this notation we now claim that our objective is to prove that
N
d>oom

v=trp+1

<t/*7,

(19) max
245"
t <N<tp+[k 1 ]
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for any v € (0,1/2) to be explicitly determined in the proof.
To prove the above statement, define the sets

1—vy
Gr(m,1) = { Fy(m2+1,2") > 1,7 |
Gy == U<y, Um<2ﬁk—le(m, l)
Then using Chebyshev’s inequality and the moment bounds in Lemma 5.4, we obtain

t+m2tttyal
1—v
2

P(Gg(m,1)) =P Z M| =t
v=t+m2lt+141

<C22y, 207,

Therefore

Nk
P(Gy) SCt’;2(1—7) Z ofk+l < Ck*2(2+ﬁ')(1*7)22ﬁk
=1
SC]C*Q(2+5')(1*"/) (N — tk)z < Ck*2(2+5')(1*7)(tk+1 _ tk)Q
<Ok2H2H8)y,

If we choose any v < 5757y, We have that 3-, P(Gx) < oo therefore by Borel-Cantelli’s

lemma we obtain that for k sufficiently large, and for all I < fig, and all m < 27!, then

1—
Fp(m2+1,2) < tkTv almost surely. Therefore for all k sufficiently large, we have that
for any 7/ <~

2 1— 1—+/
Fi(0,N —t;) < ZFk(mﬂlH,Zl) < ﬁktﬁ <Ct, 7 .
1=0
Note that here we have used the fact that ny < C'log,(tx). In fact,

Ny < logy (N —tr) < logy(try1 — tr) = logg (#(Hy U Iy)) < log2(2k1+5/)
/

1+3 _
S 1 + m IOgQ(Co 1tk;)

From the above, we can conclude the claimed statement in (19).
Now, we can conclude the proof, using the above estimates for each sum in H; and I}
as follows for some a’ to be chosen later

k k
—3—a —3—a 1/24 1/2—
IS | s S ()
j=1veH;Ul; j=1

<ot * " (k(l+ﬁ/)(1/2+a)+1 I k(2+5’)(1/2—7)+1>

(2+B’><1/2lfw)+1
248

a+8)(1/24a)+1
2487

—_1_4
<ct, = (tk

Therefore in order to obtain that the above converges to zero almost surely, we need to
have that a’ satisfies

2(1 ! 1 1
a’>max{ (1+f)at 'y}.

22+p5) T2+

Finally in order to prove that a’ can be chosen as small as possible, we recall that
Bl=p"1= %7 therefore taking r large enough, 3’ can be large as desired. Therefore
the result will follow by taking a as small as needed. O
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5.4. Proof of Proposition 4.1 (iii). The fact that R} also includes randomness com-
ing from the simulation process makes the proof of the estimate in Proposition 4.1 (iii)
particularly difficult. Instead of dealing with it in full generality, we made a strong as-
sumption. That is, the hypothesis (6) in Assumption 2.2. Later in Section 6 we give
conditions in order to verify this hypothesis. This hypothesis expresses the main param-
eter tuning between the parameters n, h and N. Note that

_ R (0,w) — Ry (60, w)
9— 06,

In (0,

N—-1 1 "N AN
11’1 (}/h Y;Jrl) 11’1 (}/13 Y;+1) ) ¢ 7& 90

L~ — 0 pe p(90
= N—-1 a "N
- n (Y;»Y;.Jrl) ) 9:90
=0 90 0=00
2 2
J12\/' (0’ w) = RN (97 LU) RN (007 w) .

0 — 6
Proposition 5.8. Under Assumption 2.2 (6), we have fori=1,2

supsup N~ ¢ |JJZ‘V(9,w)| < 400, a.s.
N 0co

Proof. Using the mean value theorem for gy = ]5(1,\[ , ﬁév , and the assumptions we have

- a . . 0, _
In(0,w) = JN > /O <%lnp%+(1—t)eo(yiayi+1) - (%ml)i\efﬁl—t)eo(%ifiﬂ)) dt
i=0
N~ =70, o 0.
(20) < Slzirpslelg ﬁ Z %lnpa (Yi, Yig1) — %lnpe (Yi, Yig1) || < +00 a.s.
i=0
The proof for J% is similar and omitted. U

6. MAIN THEOREM: PARAMETER TUNING AND ASSUMPTION 2.2 (6)

This section is devoted to show that Assumption 2.2 (6) is satisfied under sufficient
smoothness hypothesis on the random variables and processes that appear in the problem
as well as a certain parameter tuning condition.

The conditions in (6) are for the comparison between p and p and then between p and
p. The second is easier to deal with than the first. Therefore we only perform the first
and leave the second for the reader. For the study of the second we will only give some
remarks in Section 6.5

In order to understand the role of all the approximation parameters, we rewrite ﬁév
and pj) as follows

n xv <’“>(9 w) — 2 xvWg,) -2

(m) N 1 (m) W
E IS =EF|-K| 2"~

7 Tlh, ) pe (ya Z) h h

The idea in order to obtain the property (3) is to first restrict to a compact set of
values for the random variables Y;,7 = 0, ...., N —1. This is obtained using an exponential
type Chebyshev’s inequality and the Borel-Cantelli Lemma.

Lemma 6.1. Assume the following hypothesis
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(HO). The expectation, m., := EleV11°] is finite for some constant ¢; > 0. Fur-
thermore let an > 0% — 0 be a sequence of strictly positive numbers such that

Z Nexp claN)

Then we have by Borel-Cantelli’s lemma that for a.s. w € Q, there exists Ny(w)
big enough such that for any N > Ny, we have max;=1,_ n|Yi| < an. That is, for
Ay ={we; Ji=1,..,N st. |Y;| > an}, we have P (limsupy_, .. An) = 0.

The decomposition that we will use in order to prove (3) is as follows
V= {(x,0) = (y,2.0) € B> x ©; |x|| <an},

where || - || is the max-norm. Then, note that

P 90~ 2 .2)

sup . =
(x0)eBN | By Py
< Aopy (y,2) _ Depy (y,2) dopy (y,2)  Oopyy (y,2)
< sup N - N + N - oN
(x,0)eBN | Py (y,Z) Py (y,Z) (x,0)eBN | Py (y,Z) Py (y,Z)

< SUP(x,0)e BN ’391397 (y,2) — 80155[ (y,z)‘

o inf(x,@)EBN ﬁév (y7 Z)

+ sup a@ﬁé\[ (yv Z) Sup(x,@)EBN ‘pé\f (ya Z) - ﬁév (y> Z)|
(x,0)eBN ﬁév (y7 Z) inf(x,f))EBN ﬁév (yv Z)
A D
21 = —=+C=
(21) 5 TCqm

where we remark that

0 Y., Y;
89111159 Vi, Yipq) = M

Y (Vi Yigr)
_ 39179 (Y:, Y1)
O InplY (Y3, Y; I RINE
0 p@ ( i z+1) (K,KJrl)
A (X 0.w) ~ = (k)
Aop (y, h2ZK I | %X (0.),
(k)
_ 1 Xym (9")_2 k
0op) (. 7:0) = E | 15K | =t | 0sX0(0 (0,)

Therefore in order to prove the finiteness of (3), we need to bound VN (4 + CLZ).
This will be done in a series of Lemmas using Borel-Cantelli arguments together Wlth
the modulus of continuity for the quantities ]3(19\[ and ﬁév . First, we start analyzing the
difficult term: C’%.

6.1. Upper bound for C’% in (21). We work in this section under the following
hypotheses:
(H1). Assume that there exist some positive constants o1, @2, where ¢; is independent
of N and (5 is independent of NV and A, such that the following holds;

902(1?\[

inf pév(y,Z)>s01exp<— A )

(x,0)eBN
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(H2). Assume that the kernel K is the Gaussian kernel; K(z) := \/% exp (—32%) .

(H3). Assume that for some constant rs > 0 and a sequence {bs ;N € N} C [1,00),

28 B| Zs,n (|3
we have that Y %_; % < 0o, where

(22) Zéka, (w) == ay? ( sup ‘Xz;gc)(é’,w)’ + 1) sup ‘&;X‘y (0, w)‘
’ (x,0)e BN (x,0)eBN

(H4). Assume that for some constant r4 > 0 and a sequence {by y; N € N} C [1,00),

we have that > %_, nE[|Za,n()]™]

Gaa)ra < 09, where

(m) (‘g;W)‘ + sup ‘69)( (9 w)‘ >

(x,0)eBN

)

k _
(23) Zi ])\, (w) :=ay' ( sup
(H5). Assume that there exists some positive constant C5 > 0 such that for all y,z €
R, meNand 0 € ©,
0,25 (v, 2)|, 058 (y,2)],
(H6). Assume that ny and vy are sequences of positive numbers so that

> e (~h0 ) <
Vnar €
NP 64HKHOO ’

where || - ||oo denotes the sup-norm.
(H7). Assume that XEJT’YE)I)(O) is once differentiable with respect to y and 6 a.s.
Note that from assumption (H1), we have a lower bound for B in (21).

6.2. Upper bound of C in (21).
Lemma 6.2. Assume hypotheses (H2), (H3) and (H7), then we have that

P | limsup sup > b3 N =0.
N—o0 (x,0)eBN

(k)
. ’ Ow)—z
N

)

’N(x,y)‘ < Cs < +o0.

89139[ (y,Z)
b (y,2)

Proof. Consider

PPN @D 1 (m)
x0)eBy | By (y,2) h (x.0)eBN S K (anf)")(e,w)—z)
k=1
(k)
1 K/ X(ym) (67""]) -z
24 < - —|——|9 X 6, w)|.
( ) B h(xz;lepBNknllaXn K h o ( w)

Note that under hypothesis (H2), 5'(33) = —x. So we have

1 y,(k) y,(k ‘

(24) < W Z;lgg}\f}gmfmxﬂ{(‘X(m) (0 w)’ + |z|> ‘(%X ) ) (0, w) }
1 y, (k) ’ ‘ y.( ‘

< g2, Loa x’n(x zuepBN {(‘X 0, w)| + |z|) DX, (9 w) }

2
<3 max {Z§% @)}

where we have used the definition (22). Define the set

By :{hQ max Zéji,( )>b37N}.
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Note that {Zékl)\, (w)}ren is a sequence of ii.d. r.v.’s, then from the Chebyshev’s
inequality, we have

co n 2 00 2rs 3
) h nay’ E(|Zsn (+)|"]
Z P(Bin) <Y D P <Z37N (w) > a%vb?”N) <> (h2bg n)7s =

N=1k=1 N=1

where the above follows due to hypothesis (H3). Then by the Borel-Cantelli lemma we
have the conclusion. O

The above Borel-Cantelli argument is used repeatedly in what follows. We will use it
from now on, without giving further details.

6.3. Upper bound of D in (21). In this section, we use the modulus of continuity for
"V and pVV in order to find an upper bound for B. For vy € N, set

u _ pl
By, :={<x,9>eR2><@; -l < N 1o - g < 9},
N

UN
ll = 17 71/]2\77 12 = 17 yUN,
such that Bl 1, N Bl = =0 ((l1,12) # (I},15)) and appropriate set of points x;Y, 6},
2 _
li=1,..,v% and Iy = 1, ..., vy such that UZN:l Uy BZJYZQ = BN, Then
sup |pg (x) —p) (x)|= max  sup [pg (x) - p) (x)|
(x,0)eBN 1=l (x,0)eBY,
1<lp<vp 1l2
< N AN N ( N\ _-N (N ’
COREEE . 25 () Py (xiy)| + max, [Py (xiy) — Py (1))
1<ly<vp 1<la<wvn
+ max sup ‘ﬁéVN (xl]\f) —py (x)‘ .
1<t <} (x, 9)€Bl l Iy
1<ip<vpy 2

Now, consider the first term of (25).
Lemma 6.3. Under (H2), (H4) and (H7), we have that

K/
P | limsup{ max sup ‘ﬁév( ﬁéVN (x\)| > H 2” N (byn+1) =0.
N=roo 12;1?1 x, G)GBlllz f YN
a<v
Proof. Tf (x,0) = (y,2,0) € Bﬁflz, then we have
max . sup ‘ﬁév (x) — Do (xf\f)‘
LSh R (x,0)eBN, 1o
1<ig<vpy 1l2
(k) yiv (k) N N
= max su ii K —X(m) Gw) ~= - K Ko (Or30) = 2,
- 2 Pa |nh h h
ishgvy (x,0)eBN, |V
1<lp<vp 1l2
< (L P max  max sup x¥ ) (O;w) — Xyl1 (Ql ) (z — le)
- h?  k=1,..n 1<hi<v} (x,6)eBN (m) ’ (m) 27 B
1<lp<vy l1l2
K’ 1-e)aN (k
= [LiP max  max sup (y— ) 8 xorrtimem )(ﬁ;w) de
h?  k=1,.n 1<iy<v}, (x, G)GB 1 (m)
1<lp<vy

9 912 / anyll’( €0 + (1 - 5)912 ) ) de — (Z - ZZJY)‘
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1Ko an

y,(k) (g,
'R e T s g Sup ‘ayX(m) (0;w)
=1,..., <i1<v N _ ay
N 19;5”% (x,G)eBl1l2 ly le|§VN
N
Yy, (k)
+ max_  sup sup (%X(;i) (e;w)’ +1
1<l <v N .
ISZ;SVx (X;G)EBL1Z2 |97011\27‘§0VN0
K'|| _ a? L
h2 vy lk=1,..n b

Here we have used definition (23) and that ay > 6 — #'. The proof finishes by using
Markov’s inequality with Borel-Cantelli Lemma as in the proof of Lemma 6.2. O

Now we consider the third term in (25).

Lemma 6.4. Assume (H5), then,

_N N _N an

max_ sup ‘peN (x1)) — Py (x)‘ < 3Cs—.

1<ty <vy} (x,a)eB,N, lo UN
1<lp<vy 1l2

Proof. From the mean value theorem and (H5), we have

(26)
max_ sup ‘ﬁéVN (xY) — by (x)‘
1< <v¥, (X,H)EB,NZ Iy
1<ip<vy l1l2

1
= max_ sup ’(y —y) / Oypy (ey+ (L —e)ylY,2) de
lshsvy (x,0)eBY, 0
1<ly<vpn 1l2

1 1
(2= 2 /0 0.5 (Y 2+ (1 — e)alY) de + (0 — 0 /0 00D 1 ygp (1Y) de

anN _N N
< — max sup { sup laypg (6y + (1 =9y, ,z)|
VN 1shsvy (x,0)eBp, (0<e<l
1<lp<vy l1l2

b

From here the result follows. O

+ sup 055 (ufl ez + (1= 2)2)) |+ sup [90b%), 1oy (<))
0<e<1 0<e<1 I

Finally, we consider the second term of (25).

Lemma 6.5. Assume (H2) and that ny satisfies (H6), then we have that

P li]{[n sup 1513}52 ]ﬁé\lfz (Xf\[) —ﬁé\;z\; (Xl]\f) > NN =0.
- 1212;'/%
Proof. Set
:(9) y,(1)
: 1 Xy Biw) =2} 1 X (057) — 2
X g = M 7 T g g 2 T
W, (0;w) N 3 n h

Note that {Wzlxh (B;w)}jen is a sequence of i.i.d. r.v. with E [ngxh (H;cu)} = 0. For all

xcR?, #cO, meNand h >0,

1K [loc =: b

=L

(27) sup VK£§(9;W)‘§

Jj=1,....,n
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Set
nx (O;w) := ZWJ

If we use inequality (1.25) of pp.27 in Bosq [5] with ¢ = &, then we have, for all € > 0,

i P max_

Wy (Xll) _pé\l[N (Xll) > 1N
N=1 121;”%
<2 Z ZP(!PeN xi)) = ppy (x11)| > 1)
=1ly=11=1 2
oo VN V?v
_ P 7n,X HN'
=2 2 P[5 w)] > nnw
N=11l=11;=1
2
oo VvN VN 2 2
(nn)*nh
< 4 —_——
SPIPIPD ex"( 641 K
N=1lp=11;=1
= 3 (n)*nh?
= 4 —— ]
2 v eXp( 64] K]l
N=1
Finally, from the Borel-Cantelli lemma the result follows. O

Now we can conclude this section with the following upper bound for C' %.

Theorem 6.6. Assume conditions (H2), (H4), (H5), (H6) and (H7), then for any
w, there exists No = No(w) such that for all N > Ny we have that

. 2|K'| .. a2 a
sup ‘pév (x) —Dp’ (X)’ < %l@;w +nn + 305 —.
(x,0)eBN VN VN

Therefore if we also assume (H1) and (H3), then we have

2 !
C’ngngiexp (SOZUJN> X (2||K ” aNb N+77N+3C5)
B ’ © h? VN VN

6.4. Upper bound for % in (21). The proof in this case is simpler on the one hand
because many of the previous estimates can be used. On the other hand, when considering
the analogous result of Lemma 6.5 for the derivatives of py, the proof has to be reworked
as the condition analogous to (27) can only be obtained with a random upper bound.
Therefore, we only briefly sketch the results when the proofs are similar to previous ones.
From the hypothesis (H1), we have

1 e2e} . _
< —e & x sup |0epp (y,2) — Boph (y,2)|.
$1 (x,0)eBN

So] IS
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Here we consider the above sup-term as before. We use the same notations as the previous
section.

sup |9y’ (x) — Do (%)]

(x,0)eBN
AN AN (N AN (N _N (N
< max sup ’89p9 (x) — agpelN (xll) + max (%pelN (Xll) — agpelN (Xll)
1<l <vy (xﬂ)eBlNl 2 1<l <vy 2 2
1<ly<vy 2 1<ly<vy
(28)

+ max sup ‘89p9N (Xll) Dopy’ (x )‘

1<t <v;
== x,0)eBN
1<ly<viy (x.6) lila

As in previous sections, if (x,6) = (y,z,0) € Bllyb, then from (H2), we have

max_ sup ‘89139[ (x;w) — (%ﬁéVN (xf\[)
1SSy (x,0)€BY, 2
1<la<viy 2
K oo V1K |l a% (k)
< = {2 @)

Zfl)\f (u)) = a;[l (h sup ‘ayaon;g“) (0;@))‘ +h sup ‘aeany( ) (9 w)
(x,0)eBN (x,0)€ BN

+ (Zikj)\, + 1) sup ’89Xy( )(0 w)’
’ (x,0)eBN

Note that {Z ika,()} ken 1s a sequence of i.i.d. random variables. Then we set the following
hypothesis and obtain the following lemma which is the parallel of Lemma 6.3.

(H4’) Assume that for some constant 74 > 0 and a sequence {by y; N € N} C [1,00), we
nB[|Zan ()]
(ba,n)™4
(H7’) Assume that X( () ) (0) is twice differentiable with respect to 6 a.s. and 89X€’7;§)1)(9)

is differentiable with respect to y a.s.

have that Y \_, < o0

Lemma 6.7. Under (H2), (H4’), (H7) and (H7’), we have that

P [ limsup{ max sup ‘891397 (x) — 39]5% (Xi\[)
N oo 1< <vR (x, 0)eBN, lo
1<ia<vy 1l2
||K’HooV||K"|| azvb _o
h3 UN

Next we set the following hypothesis; )
(H5’). Assume that there exists some positive constant Cs > 0 such that for all y,z €
R, m e Nand 0 € 6,

Lemma 6.8. Assume (H5’). Then, we have

. a
max sup ‘(%peN (x¥) — 9epy’ (x )‘ <305~

1<1<v3 (x.0)e BN VN
1<lp<vin N (x.0)€ l1l2
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Proof. Using a similar argument as in the proof of Lemma 6.4, we consider the third
term of (28).

N (N _N
max_ sup ‘89p9N (Xh) — OgDy (x)‘

1<ty <v (x, H)EBzNz l2

1<la<viy 1l2

anN _N N
< — max sup { sup |8y6‘9p9 (ey+ (1 —e)y] 7z)|
UN 1shi<vR (x, 9)eBp,, 0<e<1
1<lg<vpy

+ sup ‘8269135] (yﬁ]ﬁz + (1 - 5)2517)‘ + sup 'agﬁé\é-&-(l—a)elv (Xl]\lz)
0<e<1 0<e<1 Iz

b

Finally, we consider the second term of (28). Set

Xy’(J)(H w) —z

Wi (0;) : L [ 20 9 X0 (0:w)

h? h
va(l)(e ) — 2z
(m) (1)

Note that {an’; (0;w)}jen is a sequence of i.i.d. r.v. with E [anxh (0; )] = 0. To study
this term, we assume:

(H6’). There exists C’G > 0 and dg > 0 and a sequence of positive numbers 561 N such
o 3 n(nw)>h* "

that S5 v exb (— gt g ) {1+ 7} <o

(H6a’). Assume that there exists 76 > 0 and that the sequence of positive numbers bg

|Z6N )|
in (H6) satisfy ZN 1 n%

< oo for

Ze(jz)v(w) =ay' sup {‘8@Xy (J)(G w ‘ +F Haex(y/,f)l)w; )H }

(x,0)eBN

. 4
(H6b’). Assume that for some ¢g > 1, supyen B UZGVN(.)‘ 6] < +o00 and for &g > 0,
Cs > 0 and be,N given in (H6’) the following is satisfied

7]th exp (’)71\/')2 qde § C’6
(”K’HoobG,N)?aN (HK/Hoo b6 NaN) _n1+0¥67

nnh?
sup -
N benan

The following result is analogous to Lemma 6.5. The proof requires a further use of
Borel-Cantelli’s lemma.

Lemma 6.9. Assume (H6’), (H6a’) and (H6b’). Then for a.s. w, there exists N =
N(w) big enough such that

max
1<t <v;
1512§VN

(Xh ) - 6910.9N (Xh )

< nn.
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Proof. First, note that

‘ 1K [0 Z % (w)an

sup ’WJ X 2

(x,0)eBN

Define
D(TN = {] max ZéJ])V( ) > bG,N}-

1,...,n

Note that {Z'éﬁ)v(w)}jeN is a sequence of i.i.d. random variables.
From Chebyshev’s inequality, we have by (H6a’)

o[zl

(be.n)"

< Q.

NizP(Dm Zn

Therefore, by Borel-Cantelli’s lemma we have that

P (lim sup D;’LN) =0.
N—oc0

Now, set
Sy (0:w) == n (9epg (x) — gy’ (x Z o (05 w)
Therefore using Lemma 7.2 in the Appendix with Xi(w) := Wy, (0;w), € :=1nn, fo =
. . 71146 « 7 4q
1K || ooh2bs yay and Gy = LIZswoner PlZonI®Iay o the hypothesis (HEb?), we
obtain
o0
P | max 391531% (xiy) - 591531% (1Y) | > s
N=1 \ichiy

Koo : _
|| h2||oob67NaNa ]:1’ 7n>

‘Wyjnxh (GWJ)’ <
1K oo 5

oo VN N
Rl vy, =1 )

%) 214 . n
SQZV?VGXP — n(QnN?h 3 1—1—% .
N=1 2[| K[| (bs. )%y noree

Finally, from hypothesis (H6) and Borel-Cantelli’s lemma, the conclusion follows. (]

Sy (O] > nws [ W35, 0)] <

mh

Theorem 6.10. Assume conditions (H1), (H2), (H4’), (H5’), (H6’), (H6a’),
(H6b’), (H7) and (H7’). Then we have that for a.s. w, there exists Ng = Ny(w)
such that for all N > Ny we have

a2 / "
A_ 1 ek (||K oo V IIE”|

<
Bigol h3

a?; . a
oo 7Nb4’N + N + 3C5N> .
VN VN
Finally collecting all our results together, we have (see Theorem 6.6).

Theorem 6.11. Assume conditions (HO), (H1), (H2), (H3), (H4), (H5), (H6),
(H4’), (H5’), (H6’), (H6a’), (H6b’), (H7) and (H7’). Then for a.s. w, there exists
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Ny = No(©) such that for all N > Ny we have

B #1
K|l V|| K" 2 b C \/C
% | K|l 2” Hoo an [ b4,N +banban | + v+ MGN bs.n | -
h UN h VN

6.5. The treatment of J%(0). As dealing with JZ(6) follows the same steps taken
throughout this section with simplifications we will just remark here these and the hy-
potheses to be added.

Overall the argument will follow in a similar way but replacing instead of p} (y, 2),
po (Y, 2)-

First note that although we may still use the decomposition (21), there is no explicit
expression for dypy(y, z).

Now one adds to hypothesis (H1).

inf oy, z) > @1 exp 7%
(x,0)epN N =L A )T

Similarly, to (H5). one adds that for all y,2 € R, m € N and 6 € O,

10ypo(y, 2)|, 10:p0(y, )|, [0pe(x,y)| < C5 < +o0.

Assume that for each y, z € R, there exist a positive constant C' and such that
(29) |p9(y7 Z) - ﬁév(yv Z)| + |89p0(y7 Z) - 801357(3/7 Z)‘ <Cay (N)a

where a1(N) = 0 as N — oo.

The above assumption is usually obtained using Malliavin Calculus techniques (in a
non-straightforward manner) as in Bally and Talay [1] or Guyon [14]. Usually the choice
m(N) = v/N will satisfy the above assumption

Now instead of the Lemma 6.2, one has the trivial bound
Oopo (0:2)| _ 1 1 (soaAa?v) _

sup =
Do (¥, 2)

(x,0)eBN

Using Assumption (29), one can obtain the analogous result of Theorem 6.6, which
gives

Similarly,

As we will see later we will choose ay := \/coIn(N). Therefore in order to assure (4),
we need that

2
(30) Sl]\l[p NY2=€exp (2¢2AQN> a1(N) < oo.

This can be achieved by choosing the parameters h(N) and m(N) appropriately as proven
in [1].
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6.6. Main Theorem: Tuning for n and h. In this section, we rewrite the previous
hypothesis (HO)-(H6b’) in a simpler form, so that we can verify them easily in examples,
such as the case of smooth diffusions.

We need to find now a sequence of values for n and h such that all the hypothesis in
the previous Theorem are satisfied and that the upper bound is uniformly bounded in
N. Now, we rewrite the needed conditions that are related to the parameters n and h.
We assume stronger hypothesis that may help us understand better the existence of the
right choice of parameters n and h.

As we are only interested in the relationship between n and h with N, we will denote
by Cq, Cy etc., various constants that may change from one equation to the next. These
constants depend on K, A and ©. They are independent of n, h and N but they depend
continuously on other parameters. We will assume the existence of some sequences of
strictly positive numbers which are bigger than 1.

(i). There exists some positive constant Cx Ao > 0, which depends on K, A, ©, and
is independent of N such that

1/2-c 2200 a} (ban an
(31) N e & X 5 Nban |+ v+ —|ban | SCrae-
VNh h VN

(ii). (Borel-Cantelli for Y;, (HO)) Assume that m., = E[e®V1"] < 400 for some
constant ¢; > 0 and {any}nyen C [0% — 6',00) is a sequence such that for the
same ¢1, Y n_ — N <40

T )

(iii). (Borel-Cantelli for Zékji, (w), (H3)) For some r3 > 0 and b3 y > 1,

o0 2rs
na
E —N < tooand sup E[|Z3n (1)|"] < +oo.
— (h?bs,n)" NeN 7

(iv). (Borel-Cantelli for Zﬁz, (w), (H4)) For some r4 > 0 and by y > 1,

o0
Z LT < 400 and sup E[|Zsn ()] < +o0.
= (ban)™ NeN

(v). (Borel-Cantelli for [p) (x) — py (x)|, (H6))
i uf’v exp <—(T]N)2nhz> < +o0.

(vi). (Borel-Cantelli for Zi 2 (w), (H4)) For some 74 > 0 and by y > 1,

" < focand sup B UZ.LL’N () !

o= (ban)s NeN

]<+oo.

(vii). (Borel-Cantelli for [0ppY (x) —9ppd (x)|, (H6)) For some ¢ > 0, and a constant

Cﬁa
3 n(nn)*h Cs
g yNeXp<—2 <2 (0 22){1+n1+d6 < +o00.
= I1K"[|5 (be,nv)?aZy

(viii). (Borel-Cantelli for Z{" (w), (H6a’)) For some s > 0 and bg y > 1,

)

h? -
sup - N < 0o and Z < +00 and supE DZ(; N
N bgnay — (

76
] < +o00.
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(ix). ((H6b’)) For some ¢g > 1,

N h? exp ()2 e
(HK/”oo(bG,N)ZaN (HK/Hoch NaN)2 - nl+o¢5

. de
and sup E UZ&N()’ 6] < 400
NeN

where Cg and dg are the same as (vii) above.

6.6.1. Parameter Tuning. Choose ay := y/coIn N for some positive constant co, n =
C1N* for ay,C7 >0, and h = CoN~2 for ao,Cy > 0.
For (ii) to be satisfied, we need to have

(oo}

Y o) Z T

N=1

Then we need cico —1>1 & ¢ > % Note that if we choose ¢y as large enough, we

can choose ¢; as small enough.
Next we substitute ay = v/c2In N into (31). We have

. In N In N
(32) N2 +g—c (‘32 1 (b‘“\’ ) + b3 N (UN + W)) <Cgknae-

h2vn h VN

For (iii), we assume that there exists some 3 > 1, r3 > 0 and some constant C3 # 0
such that

n(cyIn N)"s Cs Cs (N73n)’302 lnN
W = W and therefore bd N = h2

For (iv), we assume that there exists some 4 > 1, r4 > 0 and some constant Cy # 0
such that
n Cy 1
———— = —— and therefore by y = (CynN7*)a
G~ N v = (G
For (vi), we assume that there exists some 44 > 1, 74 > 0 and some constant C’4 #0
such that
n o . N
——— = —— and therefore b4 N = (C471N74) .
(ba )" T N
For (viii), we assume that there exists some 45 > 1, 76 > 0 and some constant Ce #0
such that

.L, = & and therefore b y = (C.'ﬁnN%) e
(bG,N)T Ne
Furthermore note that as 667 N Aany — oo as N — oo, then condition (vii) implies
condition (v). Note that all min(bs n,b4, N, 54,1\;, i)ﬁ’N) 1 oo as N 1 oo.
Taking (32) into consideration, we set vy and 7y as follows; (here we assume that N
is large enough)

1
c In N & (VPn)msepln N L
o Uy —C'KAer2 N 762; max{(nN“) (n)n(nNM)rZ} — o0,

>

C h?
® NN = K.2.0 — 0.

N<P202 +7_E(N’st) T3 Co In N
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Note in particular that this choice ensures that (32) is satisfied. And therefore (i)
also follows. To finish, we only need to check conditions (vii) and (ix). Instead of
separating the study of the above parameters in cases, we prefer to use the following
notation vy = C, N9 (In N)‘S2 h=%, ny = Cpeh®N—9%n=% (In N)_(S7 for some positive
constants C,,, Cys, 01,...,07. From (vii), we need, for some A\g > 1 and some constant

Cs # 0,

nin )" ¢ " G
33 viexp | — ) 14 . - .
» v < 2| K'||2, (b, )?a% nltas NXe

As we are only proving the existence of appropriate parameters n and h so that the
conditions (i)-(ix) are satisfied, we are going to ignore certain constants putting them
together under the notation C'. Replacing all the above values found so far we have that
the inequality (33) is equivalent to

N (1=286) pr—daz Nr—20284 \T—205 (NalN%)*% (In N)—257—1
> Cln (N’\GCI,N?"SI (In N)**2 p=3% {1 ;G } ) .
n

Therefore the condition needed here is that

(34) a1 (1 — 266) — das — 20584 — 265 — 221776 g
T6
Finally, we consider (ix);
s » qe
022N_2a2_2 K "IN O§N_4a2_2 o (nn)?
z P N
(1K || (cﬁcl) NI 2| K| sc (cﬁcl) )2eyIn N
<G
- Na1(1+046)
As ny — 0 as N — oo, it is enough to have
+ c 1 o7 .
(35) dog 42200 @22 L L0 ) e,
7”‘6 A 2 T3 T3
which has to be satisfied together with (34) which we recall is
2 2 2 2
(36) <1>>8a2+12+ paca | 203 4 o6
r3 Te A r3 Te

Notice that the above two inequalities will always be satisfied if ¢¢ is chosen big enough.
Furthermore the only condition needed of ny for the all the above conditions to hold
is that ny — 0 as N — oo. Putting all the above calculations together, we obtain the
following result.

Theorem 6.12. Assume that the constants are chosen so as to satisfy ¢y > %, (30), (35)
and (36). Assume that (HT) and (H7*). And also assume that the moment conditions
stated in (i3), (i), (iv), (vi), (viii) and (ixz) above are satisfied. Then (HO), (H3),
(H4), (H4’), (H6), (H6’), (H6a’) and (H6b’) are satisfied. Furthermore, if we
assume (H1), (H2), (H5), (H5’), then Assumption 2.2 (6) is satisfied.

Furthermore if all other conditions on Assumption 2.2 are satisfied, then there exist
some positive finite random variables Z1 and Zo such that

|EN[f] - f(90)| < N+;_€ a.s., and |Ez,m[f] 90 | = N1/2 € a.s.,
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and
‘ B+ 5 as
— N1/2 e 77
In fact, we remark that we are able to simplify the inequalities (35) and (36) to the
above a1 > 8an + 1+ %TQCQ if one can freely choose the constants r3, r4, 74, 76 and gg
due to the existence of all moments associated with the processes in the hypotheses (iii),
(iv), (vi) (viii) and (ix). Remember that oo is the constant which was introduced
in the lower bound of p} in assumption (H1) and c¢; is the constant related to the
integrability condition in Hypothesis (HO). Hence from the assumptions cjce > 2 and
ay > 8ag + 1+ 2“‘2%62, we can find that ¢; and ¢y are connected through the parameter
Co.

‘EN[f]_EJT\LI

s

7. APPENDIX

7.1. Refinements of Markov’s inequalities. In this section we state a refinement of
Markov’s inequality that is applied in this article. For A > 0, let S,, := Y | X; where
X, is a sequence of i.i.d. r.v.’s with E[X;] = 0.

Lemma 7.1. Let X be a random variable with E[X] = 0. Then, for A\ € R, ¢ > 0 and
= P(|X| < ¢), we have

Ac ef)\c

E[¥1(X] < 0] £ - EX1(X| 2 0] +pe*F

Proof. From the convexity of the exponential function, we have, for a < x < b,

b—=x T—a
Az < Aa )\b.
e _7b—ae +7b—ae
Now we let a = —c and b = ¢ for some positive constant ¢. Then
- EX1(|X| < EX1(|X]| <
E [eAXl (|X| < C):I < cp [ (| | C)]e—)\c + [ (| ‘ C)} + Cpe)\c

2c 2c
6Ac 67)\c 6>\c + efAc

= ;7613[)(1(|X| <o)]+p 5

The conclusion follows using that E[X] = 0 and analyzing the function In(e”*+e~*)—1n 2,
which gives
Ac —Ac 2,2
% g e%
O

Lemma 7.2. Let q;l +q51 =1 and assume that E[|X;|"] < C’ql, then for all0 < & < 1
and {fn}neN C Ry satisfying that gfn—l < K we have

P(|Sp| > ne; | Xs| < fn, i=1,---,n)
(37) _n52

2\ 1"
< 2e 253 {1+(qQ_1) (qglKlfzcgl € 2f%> } .

Here K1 = rnax{l %}

Proof. By Markov’s inequality, we have that for A > 0,

(38) A=P (S >t|Xi| < fr, i=1,- ,n) <eM][[E[M1(X:] < f0)] -
i=1
From Lemma 7.1, we have

Afn _ o=Afn >‘2f721 n
A< e {—62feE[Xi1(|Xi| > fu)] +pnez} ,
n
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where pj, := P(w € & |X1(w)| < fy). Here we take A = & and t = ne; to obtain

_’Vl2

A<e 12

2fn

Furthermore if we assume that ef, ! < K then

£ € n
Fn —e fn 2
{_e " BIXA(X] > f)] +pn62f’%}

£ —_ &
efn —e fn e — e~
<

25fn71 - 2K

K

= Kl-

Therefore by Cauchy-Schwarz’s inequality with ¢, Ty qs ' =1, we have

E £
efn —e fn 5
2fﬂ f’r’2L

Next, we consider the function g(x) = (1 — :16)‘12—1 + ax for z € [0,1]. This function
B

q2

&2 _ -1 - &2
EIXA(X:] > f)l + pae?? | < K1 =0l (1= pa)® +pae?.

q1
has its absolute maximum at z* = 1 — ( ) and its maximum value is given by

q
maxgep,1] 9(z) = (1 +(g2—1) <¢;2%> 1). Therefore if applied to the above inequality,
we have (37).

For P(S, < —t; |X;| < fn, i=1,---,n), we can apply the same argument, and from
P(S,| <t; | Xi|l < fn, i=1,---,n)
=P(Sp, >t | Xi|l< fn,i=1,--,n)+P(Sp <—t; | Xs| < fn, t=1,---,n),
we can obtain our conclusion. O

7.2. An application of Komatsu inequality.

Lemma 7.3. Let ¢ be a positive constant and M be a positive random variable.

(i). For fired w and all a > MQ(cw) , we have

_ 2_ M _ 2 M
el e < /°° e*Cw2+Mmdm < el v .
cla— 30+ \/c2(a—25)? +2¢ a cla— )+ \/2a— )2 +c
Proof. Set y = v2c(z — 3L). We can rewrite the middle term as follow:
M2
/OO e—cxz-i-dem — 6%52 /Oo e—c($—%)2d;p = 76 e ~ e_%dy.
o a V2¢ Jyze(a—4L)
From Komatsu’s inequality in p.17 of Itd6 and McKean [16], we have
e% 2e—cla—35)°
V2¢ \/2¢(a — My +/2c(a—35)2 + 4
M2 (o M2
< /OO emert+Magy < €7 2e .
a V2e V2c(a— 3y 4+ \/2¢(a— 3L)2 4 2
Now we have obtained the inequality. (I
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