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ARTURO KOHATSU-HIGA, NICOLAS VAYATIS, AND KAZUHIRO YASUDA

TUNING OF A BAYESIAN ESTIMATOR UNDER DISCRETE TIME

OBSERVATIONS AND UNKNOWN TRANSITION DENSITY

We study the asymptotic behaviour of a Bayesian parameter estimation method on a
compact one-dimensional parameter space. The estimation procedure is considered

under discrete observations and unknown transition density. Here, we observe the

data with constant time steps and the transition density of the data is approximated
by using a kernel density estimation method applied to the Monte Carlo simulations of

approximations of the theoretical random variables generating the observations. We

estimate the error between the theoretical estimator, which assumes the knowledge
of the transition density and its approximation which uses the simulation. We prove

the strong consistency of the approximated estimator and find the order of the error.

Most importantly, we give a parameter tuning result which relates the number of
data, the weak error in the approximation process, the number of the Monte-Carlo

simulations and the bandwidth size of the kernel density estimation. A guiding

example for this situation is the use of Monte Carlo simulations of the Euler scheme
for Bayesian estimation in a diffusion setting.

1. Introduction

We consider a parameter estimation problem using Bayesian inference under discrete
observations taken at constant time intervals. That is, our purpose is to estimate the
posterior expectation of some function f given the data;

EN [f ] := Eθ[f |Y0, ..., YN ] :=

∫
f(θ)φθ(Y

N
0 )π(θ)dθ∫

φθ(Y N0 )π(θ)dθ
,(1)

where Y0, Y1, ..., YN are observed data,

φθ(Y
N
0 ) = φθ(Y0, ..., YN ) = µθ(Y0)

N∏
j=1

pθ(Yj−1, Yj)

is the joint density of (Y0, Y1, ..., YN ). We assume that Y forms a stationary α-mixing
Markov chain and µθ is the stationary distribution. The prior distribution density of the
parameter θ is denoted by π and pθ0 denotes the transition density of Y , where θ0 is the
true value of the parameter associated to the data {Yi}.

Method of estimations based on the formula 1 are fairly common in Bayesian statistics
and is also a very simple case of a filtering method. This problem has been studied in
both frameworks by Cano, Kessler, Salmeron [6] and Del Moral, Jacod, Protter [10].

In most applications pθ is not known. Therefore many different ad-hoc methods have
been developed to deal with the estimation problem. In this article, we study this problem
from a theoretical point of view in the case where pθ is approximated using Monte Carlo
simulations.

In such a situation, there are two approximations taking place. The first is the approx-
imation of the process that generates Y . For example, in the case that Y is generated
using a stochastic differential equation (SDE), then one classical approximation is the
Euler-Maruyama scheme for the SDE. This approximation scheme has as approximation
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parameter m which is the number of time steps used in the approximation (or the number
of random numbers required for the simulation of one path).

Monte Carlo simulations of this approximation are performed n times and are used in
order to generate an approximation of the transition density. A classical method to carry
out this approximation is the Gaussian kernel density estimator. This approximation
requires an approximation parameter, h, called window size. It is well known that in
order for the approximation to converge to pθ a correct choice of m, n and h as functions
of N is needed. This procedure is usually called “parameter tuning”. All the articles on
filter approximation known to the authors deal with convergence results that do not lead
to a tuning result.

In mathematical terms the approximating estimator can be expressed as

ÊnN,m[f ] :=

∫
f(θ)φ̂Nθ (Y N0 )π(θ)dθ∫
φ̂Nθ (Y N0 )π(θ)dθ

,(2)

where φ̂Nθ (Y N0 ) := µθ(Y0)
∏N
j=1 p̂

N
θ (Yj−1, Yj) and p̂Nθ (y, z) = 1

nh

∑n
k=1K(

X
y,(k)

(m)
(θ)−z
h ),

where K is some suitable probability kernel (say, the density of a standard Gaussian

random variable) and X
y,(k)
(m) (θ) is a process which is used in order to approximate the

transition density function pθ. Note that for simplicity we put only N for index in the
right-hand side of (2), but p̂Nθ obviously depends on all parameters m,n, h. Through this
expression, we can simulate an approximation of the posterior expectation.

One may also consider other possibilities for the approximation of the transition den-
sity pθ. For example, the exact simulation which was introduced by the paper of Beskos
et al. [2] for one dimensional SDE’s. In this paper, we discuss the case of one-dimensional
stochastic process and a scalar parameter in order to avoid complicated notations and for
the restriction of the space, but we can extend our results to multi-dimensional settings.

Another remark is that in (2), we have integrals with respect to θ which need to be
approximated, but the approximation is not related to the number of observed data,
therefore we have not included it in this paper.

The main goal of the present paper is to prove that there exists a choice of m, n =
O(Nα1) and h = O(N−α2), so that we obtain that rate of convergence of ÊnN,m[f ] to

EN [f ] is N−
1
2 a.s. The value of m is determined so as the weak rate of convergence of

X
y,(1)
(m) (θ) to the law with density pθ is close to N−

1
2 . At present our results are somewhat

theoretical, but this tuning procedure is important in practice as it shows that there are
cases where the above convergence is not satisfied.

Our proof points toward the theoretical issues behind the complex tuning that have
to be tackled in this situation. We give an explicit tuning results for the case of smooth
diffusions in Theorem 3.1. (See Theorem 6.12.)

Note that in the present problem asN increases the number of approximated transition
densities increase and therefore there is the potential of error dispersion and therefore
tuning becomes an important problem. To solve the problem, we essentially use the
Laplace method.

As pointed above the standard example for this setting is the diffusion case. Due to
space constraints, we do not give the verification that the various assumed hypotheses
are satisfied in this case. Instead, we refer the reader to Kohatsu-Higa et. al. [17] where
the Ornstein-Uhlenbeck process case is treated and Kohatsu-Higa and Yasuda [18] where
the case of the Euler scheme is considered in detail.

The goal of this article is to point at reasons why an ad-hoc tuning may or may not
work. This can be clearly seen in the calculations related to the Theorem 6.12 where the
tuning takes place. An example was treated under a different light by Cano, Kessler,
Salmeron [6]. We also remark that there are many other methods that have been proven
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to be more efficient in practice without theoretical proofs. Our study is a first step to
study these algorithms from a theoretical point of view.

Idea of the Proof. In order to guide the reader through the arguments we give a brief
explanation of the argument that we will use. The first step is to study the exploding
behavior of the numerators of (1) and (2) by writing the integral in exponential form.

This calculation generates a main term appearing from the ergodic theorem applied
to the sequence {Yi}i∈N. A second error term appears due to the central limit theorem.
In Proposition 4.1 one proves that the second error term behaves asymptotically close
to N

1
2 while the main term behaves asymptotically as N . This property is important

in order to prove Theorem 2.3 which gives the rate of convergence. The condition that
ensures that the main term behaves asymptotically like N is the identifiability condition
(Assumption 2.2 (4)). To prove that the remainder is of order N−

1
2 requires the use of

the central limit theorem for α mixing sequences (see Section 5.3 for the case of (1)).
To do the same for the integrals in (2) is much more complicated as it involves also the

Monte Carlo simulations. Therefore we need to assure that the Monte Carlo simulation
is probabilistically speaking close to the density of the approximation process. Therefore
the tuning procedure naturally appears. This is reflected in the hypothesis made in
2.2 (6) which is the only assumption involving the Monte Carlo approximation. We
remark that this condition requires the differentiability of the approximating process
with respect to θ. The other conditions in hypothesis 2.2 (6) also ensure the closeness of
the approximating density to the transition density of the sequence {Yi}i∈N.

The main tuning appears when we have to verify Assumption 2.2 (6). This is studied
in detail in Section 6. In order to prove assumption 2.2 (6), we first use a Borel-Cantelli
argument in order to limit the values of the sequence {Yi}i∈N to a compact set. In order
to bound the denominators, we require lower bound conditions on the approximating
densities. Finally, in order to find the rate of convergence of the various differences
between the Monte Carlo simulations and the approximating density, we need to first
use Borel-Cantelli and continuity arguments to get rid of the supremums in (y, z). Finally
using exponential inequalities we obtain a rate of convergence. Some of these ideas have
been taken from kernel density convergence arguments that can be found in Bosq [5].

These Borel-Cantelli arguments require convergence of certain probabilities which lead
naturally to the final tuning requirements that appear in equations (35) and (36).

This paper is structured as follows; In Section 2, we will give our framework and state
our first goal, i.e. finding the rate of convergence of (2) toward (1). This long list of
conditions refer to what may be considered as a regular case. There are many other
variations that maybe entertained using the same method but this will require much
more space. For the same reason, we have detached the problem from the study of the
approximation procedure of the process generating the data. In Section 3, we explain the
meaning of the hypotheses in the case that Y is generated by a diffusion and its transition
density is approximated using Monte Carlo simulations of the Euler-Maruyama scheme.
In Section 4, we will use the Laplace method in order to prove the rate of convergence
stated in Section 2. This proof uses some estimations of various error processes which
are stated in Proposition 4.1. This proposition plays an important role and it is the core
of the paper. These estimates on error processes are stated in two levels, one is on the
level of the error between the density of the process underlying the observations and the
density of its approximation and another is on the level of the approximative density
and the simulations. The second proves to be more challenging than the first and it is in
this second error the tuning process appears. This is condensed in Assumption 2.2 (6).
In Section 5, we will show the four estimations required in Proposition 4.1. Finally in
Section 6, we give some smoothness conditions that ensure that Assumption 2.2 (6) is
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satisfied. We obtain our main result Theorem 6.12 which gives two tuning requirements,
(35) and (36), for the parameters m,n, h.

We close the article with some appendices where we collect some technical results used
in the article.

2. Framework and a First Convergence Result

Notation: We denote by C(A;B) the space of continuous functions from A to B,
where A and B are sets. Denote by Ck1,k2,k3(K1 ×K2 ×K3;B) the space of functions
from K1×K2×K3 to B that are ki-times continuously differentiable in the interior of Ki

and continuous on Ki, where k1, k2, k3 ∈ N and K1,K2,K3 are sets. When a subscript
b is added it means that the functions are also continuous on K1 × K2 and bounded
C0,0
b (K1 ×K2;B). Finally, B(A) denotes the Borel σ-field on A.

2.1. Framework. We consider the following problem: Let θ0 ∈ Θ := [θl, θu], (θl < θu)

be a parameter that we want to estimate θ0 ∈ Θ̇, where Θ̇ denotes the interior of the set
Θ and Θ0 = Θ− {θ0}.

In order to frame the problem in a proper mathematical setting, we will use three
separate probability spaces.

In the first space, (Ω,F , Pθ0), we will define the observation data process Y (see (1)).
In the second space, (Ω̄, F̄ , P̄ ), we will define the family of processes X(θ) which are

realizations of the Markov chain with transition density pθ. This space is needed in order
to prove asymptotic properties of the estimators.

Finally, in the third probability space (Ω̂, F̂ , P̂ ), we will define the simulations (see
(2) and Xy,(k)(θ) right after this equation).

(i). (Observation process) For ∆ > 0, fixed let {Yi∆}i=0,1,...,N be a sequence
of N + 1-observations of a stationary Markov chain having transition density
pθ0(y, z), y, z ∈ R and invariant measure µθ0 . This sequence is defined on the
probability space (Ω,F , Pθ0). We write Yi := Yi∆ for i = 0, 1, ..., N .

(ii). (Model process) Denote by Xy(θ), y ∈ R, θ ∈ Θ be a family of random vari-
ables defined on the probability space (Ω̄, F̄ , P̄ ) such that its law is given by
pθ(y, z).

(iii). Denote by (Ω̂, F̂ , P̂ ) the probability space where one generates the simulation of
the approximation to the process Xy.

(iv). (Approximating process) Denote by Xy
(m)(θ) the approximation to Xy(θ),

which is defined on (Ω̄, F̄ , P̄ ). The parameter that determines the quality of the
approximation is given by large values of m ≡ m(N). Denote by p̃Nθ (y, z) =
p̃Nθ (y, z;m(N)) the transition density for the process Xy

(m)(θ).

In the case, that Y is a diffusion process with coefficients that depend on the
parameter θ then Xy

(m)(θ) may denote the associated Euler-Maruyama scheme

with step ∆
m starting at y and same coefficients which therefore also depend on

θ. For more details, see section 3.
(v). (Approximated transition density) Set R+ = [0,∞). Let K ∈ C2(R;R+)

(usually called kernel), which satisfies
∫
K(x)dx = 1. Denote by p̂Nθ (y, z), the

kernel density estimate of p̃Nθ (y, z) based on n ≡ n(N) simulated i.i.d. copies of

Xy
(m)(θ) which are defined on (Ω̂, F̂ , P̂ ) and denoted by X

y,(k)
(m) (θ, ·), k = 1, ..., n;

for h ≡ h(N) > 0, define the approximated transition density as

p̂Nθ (y, z) := p̂Nθ (y, z; ω̂;m(N), h(N), n(N)) :=
1

n(N)h(N)

n(N)∑
k=1

K

Xy,(k)
(m(N))(θ, ω̂)− z

h(N)

 .
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(vi). For given m, we introduce the mean of the approximated transition density over
all trajectories with respect to the kernel K;

p̄Nθ (y, z) := p̄Nθ (y, z;m(N), h(N)) := Ê
[
p̂Nθ (y, z)

]
= Ê

 1

h(N)
K

Xy,(1)
(m(N))(θ, ·)− z

h(N)

 ,
where Ê means the expectation with respect to P̂ .

As it can be deduced from the above set-up, we have preferred to state our problem
in abstract terms without explicitly defining the dynamics that generate Xy(θ) or how
the approximation Xy

(m)(θ) is defined. All the properties that will be required for pθ and

p̃Nθ will be satisfied for an appropriate subclass of diffusion processes.

Remark 2.1. Without loss of generality, we can consider the product of the above three
probability spaces so that all random variables are defined on the same probability space.
We do this without any further mentioning.

Our purpose is to estimate the posterior expectation for some function f ∈ C1(Θ)
given the data;

EN [f ] := Eθ[f |Y0, ..., YN ] =
IN (f)

IN (1)
:=

∫
f(θ)φθ(Y

N
0 )π(θ)dθ∫

φθ(Y N0 )π(θ)dθ
,

where

φθ(Y
N
0 ) = φθ(Y0, ..., YN ) = µθ(Y0)

N∏
j=1

pθ(Yj−1, Yj)

is the joint density of (Y0, Y1, ..., YN ).
We propose to estimate this quantity on the basis of simulated instances of the process;

ÊnN,m[f ] :=
ÎnN,m(f)

ÎnN,m(1)
:=

∫
f(θ)φ̂Nθ (Y N0 )π(θ)dθ∫
φ̂Nθ (Y N0 )π(θ)dθ

,

where φ̂Nθ (Y N0 ) := µθ(Y0)
∏N
j=1 p̂

N
θ (Yj−1, Yj).

2.2. A First Convergence Result.

Assumption 2.2. We assume the following

(1). (Observation process) {Yi}i=0,1,...,N is an α-mixing process with αn = O(n−p)
for some p > 6.

(2). (The prior distribution density) The prior distribution density π ∈ C(Θ),
and for all θ ∈ Θ, π(θ) > 0.

(3). (Density regularity) The transition densities p, p̄N ∈ C3,0,0(Θ×R2;R+), and
for all θ ∈ Θ, y, z ∈ R, we have that min

{
pθ(y, z), p̄

N
θ (y, z)

}
> 0. And pθ admits

an invariant measure µ ∈ C0,0
b (Θ × R;R+), and for all θ ∈ Θ, µθ(y) > 0 for

every y ∈ R.
(4). (Identifiability) Assume that there exist c1 : R → (0,∞) such that for all

θ ∈ Θ,

inf
N

∫
|pθ(y, z)− pθ0(y, z)|dz ≥ c1(y)|θ − θ0|,

and C1(θ0) :=
∫
c1(y)2µθ0(y)dy ∈ (0,+∞).

(5). (Regularity of the log-density) We assume that there exists δ > 0 such that
for qθ = pθ,p̄Nθ

sup
N

sup
θ∈Θ

∫∫ (
∂i

∂θi
ln qθ(y, z)

)4+δ

pθ0(y, z)µθ0(y)dydz < +∞, for i = 0, 1, 2,
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where ∂0

∂θ0 qθ = qθ.
(6). (Parameter tuning) We assume the following boundedness for some ε > 0

(3) sup
N

sup
θ∈Θ

∣∣∣∣∣N−ε√
N

N−1∑
i=0

(
∂

∂θ
ln p̂Nθ (Yi, Yi+1)− ∂

∂θ
ln p̄Nθ (Yi, Yi+1)

)∣∣∣∣∣ < +∞ a.s.

(4) sup
N

sup
θ∈Θ

∣∣∣∣∣N−ε√
N

N−1∑
i=0

(
∂

∂θ
ln p̄Nθ (Yi, Yi+1)− ∂

∂θ
ln pθ(Yi, Yi+1)

)∣∣∣∣∣ < +∞ a.s.

The first goal is to prove the following result.

Theorem 2.3. Under Assumption 2.2 and for f ∈ C1(Θ), there exists some positive
finite random variables Ξ1 and Ξ2 which do not depend on N such that for any ε > 0

|EN [f ]− f(θ0)| ≤ Ξ1

N
1
2−ε

a.s., and
∣∣∣ÊnN,m[f ]− f(θ0)

∣∣∣ ≤ Ξ2

N
1
2−ε

a.s.,

and therefore ∣∣∣EN [f ]− ÊnN,m[f ]
∣∣∣ ≤ Ξ1 + Ξ2

N
1
2−ε

a.s.

Our final goal is to prove that there is a choice for α1 and α2 with m =
√
N, n =

C1N
α1 and h = C2N

−α2 under which the above assumptions are satisfied and therefore
the above result can be applied. This result is obtained in Theorem 6.12. See also
Theorem 3.1 for the case of SDEs.

3. Understanding the hypotheses in the diffusion case

In this section, we give a brief description of how to interpret the different hypotheses
and how they are verified in the particular case of diffusions. We only give brief comments
on these matters and we refer the reader to the detailed articles [17] and [18].

In this section, the data is obtained from a diffusion of the type

Yt = Y0 +

∫ t

0

b(θ0, Ys)ds+

∫ t

0

σ(θ0, Ys)dWs, t ≥ 0.

In order to simplify the situation, we consider the one dimensional situation on a
compact parameter space. So that b, σ : [θl, θu] × R → R are smooth functions with
bounded derivatives. Suppose that the diffusion satisfies sufficient conditions for existence
and regularity of its invariant measure (see e.g. [7] and [8]) and that it is α-mixing.
Furthermore, we assume that the process Y is stationary.

Additionally, we require ellipticity conditions so that upper and lower bounds for tran-
sition densities can be obtained. Then Xy(θ) ≡ Xy

∆(θ) denotes a copy of the underlying
random variable. That is,

Xy
t (θ) = y +

∫ t

0

b(θ,Xy
s (θ))ds+

∫ t

0

σ(θ,Xy
s (θ))dWs, t ≥ 0.

Then Xy
(m)(θ) ≡ X̄

y
∆(θ) where the Euler-Maruyama scheme is defined as

X̄y
t (θ) = y +

∫ t

0

b(θ, X̄y
η(s)(θ))ds+

∫ t

0

σ(θ, X̄y
η(s)(θ))dWs, t ≥ 0.

Here η(s) = sup{ i∆m ; i∆
m < s}. One may consider higher order weak schemes in order

to improve the performance of the method which would obviously lead to much more
complicated estimates. For convergence properties concerning X̄, we refer the reader to
Bally and Talay [1] and Guyon [14]. The kernel K is usually chosen to be a Gaussian
density with mean 0 and variance 1.
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The identifiability condition (4), is needed in order to be able to obtain that the density
can be used to discern the value of θ from the observations. This type of assumption is
natural in statistics.

Assumption 2.2 (5) will be satisfied under enough regularity of the transition density
function pθ and its approximation p̄Nθ . This is usually obtained using Malliavin Calculus
techniques.

Assumption 2.2 (6) will be crucial in what follows and it is this property that will
determine the rate of convergence and the tuning properties. This is the only hypothesis
that involves p̂Nθ , which is random. In particular, obtaining a lower bound for p̂Nθ will be
the important problem to solve.

This will be further discussed in Section 6. In fact, we have the following theorem.

Theorem 3.1. Assume the following

(1) The parameter N is large enough with m =
√
N, n = C1N

α1 and h = C2N
−α2 .

(2) There exists some constant c2 > 0, E[exp( 3
c2
Y 2

1 )] <∞ holds.

(3) There exists some constants ϕ1, ϕ2 > 0 such that

inf
(x,y,θ);‖(x,y)‖≤

√
c2 lnN

p̄Nθ (x, y) ∧ pθ(x, y) ≥ ϕ1 exp

(
−ϕ2c2 lnN

∆

)
,

where c2 is the same as the above.
(4) Finally, assume that α1 > 8α2 + 1 + 2ϕ2c2

∆ .

Then Assumption 2.2 (6) holds.

Idea of Proof. In fact, as b and σ are smooth with bounded derivatives all the conditions
in Theorem 6.12 are satisfied by choosing γ3 > 1, γ̇6 > 1 and noting that conditions (iii),
(viii) and (ix) are satisfied with r3, ṙ6 and q̇6 big enough (therefore (35) is satisfied).
All the other conditions in Theorem 6.12 can be verified by using the smoothness of b
and σ. �

Therefore roughly speaking, a1(N) = 1
m(N) + h(N)2.

Finally, we remark that one also needs to approximate the invariant measure but this
problem can be solved with an extra term. The quality of approximation is studied in
Talay [21] and the references therein.

4. Proof of Theorem 2.3

We start introducing some notation; let p and q be positive functions of two variables.
Define

H(p, q) :=

∫∫ (
ln p(y, z)

)
q(y, z)µθ0(y)dydz.

We also let

ZN (θ) :=
1√
N

N−1∑
i=0

{
ln pθ(Yi, Yi+1)−H(pθ, pθ0)

}
,

ε(θ) := H(pθ, pθ0)−H(pθ0 , pθ0),

βN (θ) := ZN (θ)− ZN (θ0),

ζ(θ) := µθ(Y0)π(θ).

R1
N (θ) :=

1√
N

N−1∑
i=0

(
ln p̂Nθ (Yi, Yi+1)− ln p̄Nθ (Yi, Yi+1)

)
,

R2
N (θ) :=

1√
N

N−1∑
i=0

(
ln p̄Nθ (Yi, Yi+1)− ln pθ (Yi, Yi+1)

)
,
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Some of notations above are related to the information theory and its approximations,
for example ε(θ) is the Kullback-Leibler divergence and so on.

The following proposition states the key properties that are needed to achieve the
proof of Theorem 2.3.

Proposition 4.1. Under Assumption 2.2,

(i). There exist strictly negative constants c1, c2 such that the following inequality is
satisfied

c1 ≤ inf
N

inf
θ∈Θ0

ε(θ)

(θ − θ0)2
≤ sup

N
sup
θ∈Θ0

ε(θ)

(θ − θ0)2
≤ c2 < 0.

(ii). There exist ε ∈ (0, 1
2 ) and a random variable M on (Ω× Ω̂,F ⊗F̂ , Pθ0 ⊗ P̂ ) such

that

sup
N

sup
θ∈Θ0

∣∣∣∣N−εβN (θ)

θ − θ0

∣∣∣∣ ≤M a.s.

(iii). For any i = 1, 2 and ε ∈ (0, 1
2 ) there exists a random variable M on (Ω× Ω̂,F ⊗

F̂ , Pθ0 ⊗ P̂ ) such that

sup
N

sup
θ∈Θ0

∣∣∣∣N−ε(RiN (θ)−RiN (θ0))

θ − θ0

∣∣∣∣ ≤M a.s.

We will give the proof of this proposition in section 5.

Proof of Theorem 2.3. We decompose the approximation error as follows;

EN [f ]− ÊnN,m[f ] =

(
IN (f)− f(θ0)IN (1)

IN (1)

)
−

(
ÎnN,m(f)− f(θ0)ÎnN,m(1)

ÎnN,m(1)

)
=: ∆1 −∆2.

First we consider ∆1: We will prove that there exists some positive random variable C1

such that

(5) |∆1| ≤
C1

N
1
2−ε

a.s.

Indeed, using the definitions provided at the beginning of this section, we can write
IN (f) as follows;

(6) IN (f) = eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

∫
Θ0

f(θ)eNε(θ)+
√
NβN (θ)ζ(θ)dθ.

Here, we perform the following change of variables; θ = θ0 + r√
N

. Then,

|IN (f)− f(θ0)IN (1)|

=

∣∣∣∣eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

∫
Θ0

(f(θ)− f(θ0))eNε(θ)+
√
NβN (θ)ζ(θ)dθ

∣∣∣∣
= eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

×

∣∣∣∣∣
∫ √N(θu−θ0)

√
N(θl−θ0)

(
f

(
θ0 +

r√
N

)
− f(θ0)

)
e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ

(
θ0 +

r√
N

)
dr√
N

∣∣∣∣∣
=
eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

N

×

∣∣∣∣∣
∫ √N(θu−θ0)

√
N(θl−θ0)

rf ′ (ξr,N ) e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ

(
θ0 +

r√
N

)
dr

∣∣∣∣∣ .
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In the above, we have used the mean-value theorem: there exists a constant ξr,N which

is between θ0 + r√
N

and θ0. Set ΘN = [
√
N(θl− θ0),

√
N(θu− θ0)]. Now we separate the

above integral into two parts:

(7)

=
eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

N

∣∣∣∣∣
∫
{|r|≤cNa}∩ΘN

+

∫
{|r|>cNa}∩ΘN

rf ′ (ξr,N ) e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ

(
θ0 +

r√
N

)
dr

∣∣∣∣∣ ,
where a and c are two positive constants, which will be defined later.

We start considering the first term in (7), by dividing it by IN (1), we have, using that
{|r| ≤ cNa} ∩ΘN ⊂ ΘN :
(8)

eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

NIN (1)

×

∣∣∣∣∣
∫
{|r|≤cNa}∩ΘN

rf ′ (ξr,N ) e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ

(
θ0 +

r√
N

)
dr

∣∣∣∣∣
≤ ‖f

′‖∞√
N

∫
{|r|≤cNa}∩ΘN

|r|
e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ
(
θ0 + r√

N

)
∫√N(θu−θ0)√

N(θl−θ0)
e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ
(
θ0 + r√

N

)
dr
dr

≤ cNa‖f ′‖∞√
N

∫
{|r|≤cNa}∩ΘN

e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ
(
θ0 + r√

N

)
∫√N(θu−θ0)√

N(θl−θ0)
e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ
(
θ0 + r√

N

)
dr
dr

≤ c‖f ′‖∞
N

1
2−a

.

For the moment we let a > 0 be such that a > ε.
For the second term in (7), we again separate the integral into two parts:

eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

N

∣∣∣∣∣
∫
{r>cNa}∩ΘN

+

∫
{r<−cNa}∩ΘN

rf ′ (ξr,N ) e
Nε(θ0+ r√

N
)+
√
NβN (θ0+ r√

N
)
ζ

(
θ0 +

r√
N

)
dr

∣∣∣∣∣
≤ ‖f

′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

N

{∫
r>cNa

+

∫
r<−cNa

}
|r| ec2(r)r2+d2(r)Nεrdr

where we have set c2(r) =
Nε(θ0+ r√

N
)

r2 and d2(r) =
N

1
2
−εβN (θ0+ r√

N
)

r . From Proposition
4.1 (i) and (ii), we have

(9)
≤ ‖f

′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

N

×
{∫

r>cNa
re−|c2|r

2+MNεrdr −
∫
r<−cNa

re−|c2|r
2−MNεrdr

}
.
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For the first integral term in (9), we have

‖f ′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

N

∫
r>cNa

re−|c2|r
2+MNεrdr

=
‖f ′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

N

×
{

1

2|c2|
e−|c2|(cN

a)2+MNε(cNa) +
MN ε

2|c2|

∫ ∞
cNa

e−|c2|r
2+MNεrdr

}
.

For cNa ≥ MNε

2|c2| , we have, from Lemma 7.3,

(10)

≤ ‖f
′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

N

×

{
1

2|c2|
e−|c2|(cN

a)2+MNε(cNa) +
MN ε

2|c2|
e
−|c2|((cNa)2−MNε|c2|

cNa)√
|c2|

}

=
‖f ′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

2|c2|N

×

{
1 +

MN ε√
|c2|

}
e−|c2|c

2N2a+cMNε+a .

By using a symmetric argument, we have the same results for the second term in (9),

namely we have, from Lemma 7.3, for cNa ≥ MNε

2|c2| ,

−
∫
{r<−cNa}∩ΘN

re−|c2|r
2−MNεrdr(11)

≤ ‖f
′‖∞‖ζ‖∞eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

2|c2|N

{
1 +

MN ε√
|c2|

}
e−|c2|c

2N2a−cMNε+a .

From now on, we estimate the denominator IN (1) from below using similar arguments.

Set θ = θ0 + r√
N

and Θ′N = [
√
N(θl − θ0),

√
N(θu − θ0)].

IN (1) =
eNH(pθ0 ,pθ0 )+

√
NZN (θ0)

√
N

∫ √N(θu−θ0)

√
N(θl−θ0)

ec
′
2(r)r2+d′2(r)Nεrζ

(
θ0 +

r√
N

)
dr,

where set c′2(r) =
Nε(θ0+ r√

N
)

r2 and d′2(r) =
N

1
2
−εβN (θ0+ r√

N
)

r , ε > 0. From Assumption 2.2
(2) and (3), there exists some random variable κ > 0 on (Ω,F , Pθ0) such that ζ ≥ κ,
then we have, for N large enough, using Proposition 4.1 (i) and (ii),

IN (1) ≥ κeNH(pθ0 ,pθ0 )+
√
NZN (θ0)

√
N

∫
Θ′N

ec1r
2−MrNεdr.

Now we just compute the integral explicitly, using the change of variables y = r− MNε

2c1
,

in order to find a lower bound as follows:∫
Θ′N

ec1r
2−MrNεdr = e

M2N2ε

2c1

∫
Θ′′N

ec1y
2

dy ≥
√
π√

2c1
e
M2N2ε

2|c1| .

Here Θ′′N = [
√
N(θl − θ0)− MNε

2c1
,
√
N(θu − θ0)− MNε

2c1
].

Taking the quotient between (10), (11) and the above lower bound, we get

≤ ‖f
′‖∞‖ζ‖∞|c1|√
πκ|c2|

√
N

{
1 +

MN ε√
|c2|

}
e−|c2|c

2N2a+cMNε+a−M2N2ε

2c1 .
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Putting together the above bound with (8) and as a > ε, one obtains the announced
rate. This finishes the proof of (5). Similarly we can prove that there exists some
positive random variable C2, independent of N , such that

|∆2| ≤
C2

N
1
2−a

a.s.

The only important point in the treatment of this term is to first note that instead of
the decomposition (6), we will have

ÎN (f) = eNH(pθ0 ,pθ0 )+
√
NZN (θ0)

∫
Θ0

f(θ)eNε(θ)+
√
NβN (θ)+

√
N(R1

N (θ)+R2
N (θ))ζ(θ)dθ

Therefore we obtain our conclusion if one follows the same calculations as above and
further uses the result in Proposition 4.1 (iii). �

5. Proof of Proposition 4.1

5.1. Proof of the upper estimate for Proposition 4.1 (i).

Proposition 5.1. Under Assumption 2.2 (3), (4) and (5), there exists some strictly
negative constant c2 such that

sup
θ∈Θ0

ε(θ)

(θ − θ0)2
≤ c2 < 0.

Proof. From Exercise 1.22 (c) in pp.353 of Eggermont, LaRiccia [11], we have the fol-
lowing generalization of Pinsker’s inequality; for all θ ∈ Θ0,

0 ≤ 1

2

(∫
|pθ(y, z)− pθ0(y, z)| dz

)2

≤
∫

ln
pθ0(y, z)

pθ(y, z)
pθ0(y, z)dz.

The finiteness and good definition of the above upper bound follows from Assumption
2.2 (3) and (5). Therefore from the definition of ε, we have that for all θ ∈ Θ0,

ε(θ) =

∫ {
−
∫ (

ln
pθ0(y, z)

pθ(y, z)

)
pθ0(y, z)dz

}
µθ0(y)dy

≤ −1

2

∫ (∫
|pθ(y, z)− pθ0(y, z)|dz

)2

µθ0(y)dy ≤ 0.

From the identifiability condition (Assumption 2.2 (4)), we obtain the following; for
all θ ∈ Θ0,

ε(θ) ≤ −1

2

∫
c(y)2(θ − θ0)2µθ0(y)dy = −1

2
C(θ0)(θ − θ0)2.

Hence we have

sup
θ∈Θ0

ε(θ)

(θ − θ0)2
≤ −1

2
C(θ0) <∞.

�

5.2. Proof of the lower estimate for Proposition 4.1 (i). First we give a useful
lemma for the first derivative of H(pθ, pθ0) in θ. Its proof is straightforward.

Lemma 5.2. Let q be a transition density, which depends on a parameter θ. We assume
that for all θ ∈ Θ,

∂

∂θ

∫∫
(ln q(y, z; θ)) q(y, z; θ0)µθ0(y)dydz =

∫∫ (
∂

∂θ
ln q(y, z; θ)

)
q(y, z; θ0)µθ0(y)dydz,
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and the following exchange of derivative and integral

∫∫
∂

∂θ
q(y, z; θ)

∣∣∣∣
θ=θ0

µθ0(y)dydz =

∫
∂

∂θ

∫
q(y, z; θ)dz

∣∣∣∣∣
θ=θ0

µθ0(y)dy.

Then

∂

∂θ

∫∫
(ln q(y, z; θ)) q(y, z; θ0)µθ0(y)dydz

∣∣∣∣
θ=θ0

= 0.

Proposition 5.3. Under Assumption 2.2 (3), (4) and (5), there exists some strictly
negative constant c1 such that

−∞ < c1 ≤ inf
θ∈Θ

ε(θ)

(θ − θ0)2
< 0.

Proof. For θ ∈ Θ0, we apply the Taylor expansion to θ 7→ H(pθ, pθ0) around θ0 and by
Lemma 5.2,

(12) H (pθ, pθ0) = H (pθ0 , pθ0) +
1

2
(θ − θ0)2 ∂

2

∂θ2
H (pθ, pθ0)

∣∣∣∣
θ=θ(γ)

,

where θ(γ) := γθ + (1− γ)θ0, for some γ ∈ (0, 1).
From (12), we have

ε(θ) = H (pθ, pθ0)−H (pθ0 , pθ0) =
1

2
(θ − θ0)2 ∂

2

∂θ2
H (pθ, pθ0)

∣∣∣∣
θ=θ(γ)

.

From Assumption 2.2 (5), ∂2

∂θ2H(pθ, pθ0) satisfies;

sup
θ∈Θ

∣∣∣∣ ∂2

∂θ2
H (pθ, pθ0)

∣∣∣∣ <∞.
Finally from Proposition 5.1, we have

0 > inf
θ∈Θ

ε(θ)

(θ − θ0)2
≥ −1

2
sup
θ∈Θ

∣∣∣∣ ∂2

∂θ2
H (pθ, pθ0)

∣∣∣∣ > −∞.
�

5.3. Proof of Proposition 4.1 (ii). Our next goal is to prove the uniform estimates
for βN . The difference with the previous section lies on the fact that now these quantities
are random. Therefore one naturally is lead to the consideration of limit theorems in the
space of continuous functions in θ with the supremum norm.

In what follows we use the following notation for a sequence of strongly mixing se-
quence of random variables valued on the Banach space of continuous functions on [θl, θu]
with the maximum norm, denoted by ‖ · ‖.

ηi(θ) =
ln (pθ/pθ0(Yi, Yi+1))− (H(pθ, pθ0)−H(pθ0 , pθ0))

θ − θ0
, θ ∈ [θl, θu].
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As pθ is C1 in θ, we have
(13)

sup
N

sup
θ∈Θ0

∣∣∣∣N−εβN (θ)

θ − θ0

∣∣∣∣
= sup

N
sup
θ∈Θ0

1

N1/2+ε

∣∣∣∣∣
N−1∑
i=0

ln pθ(Yi, Yi+1)− ln pθ0(Yi, Yi+1)− (H(pθ, pθ0)−H(pθ0 , pθ0))

θ − θ0

∣∣∣∣∣
= sup

N
sup
θ∈Θ0

1

N1/2+ε

∣∣∣∣∣
N−1∑
i=0

∫ 1

0
∂θ ln p(1−α)θ0+αθ(Yi, Yi+1)dα(θ − θ0)

θ − θ0

−
∫ 1

0
∂θH(p(1−α)θ0+αθ, pθ0)dα(θ − θ0)

θ − θ0

∣∣∣∣∣
= sup

N
sup
θ∈Θ0

1

N1/2+ε

∣∣∣∣∣
N−1∑
i=0

∫ 1

0

(
∂θ ln p(1−α)θ0+αθ(Yi, Yi+1)− ∂θH(p(1−α)θ0+αθ, pθ0)

)
dα

∣∣∣∣∣ .
Therefore an equivalent way of setting the random variable, ηi, is

ηi(θ) :=

∫ 1

0

(
∂θ ln pθ̃(α)(Yi, Yi+1)− ∂θH(pθ̃(α), pθ0)

)
dα,

where θ̃(α) := (1− α)θ0 + αθ. Note that E[ηi(θ)] = 0 holds.
In order to carry out the proof we will follow similar steps as in the proof of Theorem

3 in Dehling [9] which also uses an argument which appears in Proposition 2.2 in Kuelbs
and Philips [19]. To apply their arguments, one needs to have moment estimates which
can be easily obtained but they need to be explicit in order to work with the Banach
space of continuous functions on [θl, θu] with the supremum norm. Here, we will also use

the moment norm notation ‖η‖p := E [|η|p]1/p for a real valued random variable η.

Lemma 5.4. Under Assumption 2.2 (5), one has that for δ ∈ [0, 2]∥∥∥∥∥∥sup
θ

N∑
j=1

ηj(θ)

∥∥∥∥∥∥
2+δ

≤ CN1/2.

Here C is an explicit constant that depends only on δ, θl, θu, Ar(α) :=
∑∞
i=0(i +

1)r/2−1[α(i)]
2
r+2 , r = 2, 4 and finally the constants in the Assumption 2.2 (5).

Proof. In fact, for any δ ≥ 0, using the fundamental theorem of calculus and Hölder’s
inequality

sup
θ

∣∣∣∣∣∣
N∑
j=1

ηj(θ)

∣∣∣∣∣∣
2+δ

≤ 21+δ sup
θ

∣∣∣∣∣∣
N∑
j=1

∫ θ

θl

∂θηj(θ)dθ

∣∣∣∣∣∣
2+δ

+ 21+δ

∣∣∣∣∣∣
N∑
j=1

ηj(θl)

∣∣∣∣∣∣
2+δ

≤ 21+δ(θu − θl)1+δ

∫ θu

θl

∣∣∣∣∣∣
N∑
j=1

∂θηj(θ)

∣∣∣∣∣∣
2+δ

dθ + 21+δ

∣∣∣∣∣∣
N∑
j=1

ηj(θl)

∣∣∣∣∣∣
2+δ

.(14)

The second term on the right hand side of the above expression can be dealt with
usual estimates for the moments of mean zero random variables which are α-mixing of
the required order as explained in Theorem 1 in Yokoyama [22].

Rather than following the general path in that article, we will only use the case for
the integer power of 4 proved in Theorem 1, case (i), as the constant is explicit and easy
to understand in that case. Therefore we let δ ≤ 2 and then
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E


∣∣∣∣∣∣
N∑
j=1

∂θηj(θ)

∣∣∣∣∣∣
2+δ
 ≤

∥∥∥∥∥∥
N∑
j=1

∂θηj(θ)

∥∥∥∥∥∥
2+δ

4

≤ K
2+δ

4
α,3 E

[
|∂θηj(θ)|4+δ

] 2+δ
4+δ

n
2+δ

2 ,

Kα,3 :=36A4(α) + 288(A2(α))2.

Therefore putting these estimates together in (14), we obtain that

E

sup
θ

∣∣∣∣∣∣
N∑
j=1

ηj(θ)

∣∣∣∣∣∣
2+δ


≤ C(δ, θu, θl)

(
K

2+δ
4

α,3 N
2+δ

2

∫ θu

θl

E
[
|∂θηj(θ)|4+δ

] 2+δ
4+δ

dθ + E
[
|∂θηj(θl)|2+δ

])
,

C(δ, θu, θl) := 21+δ
(
1 + (θu − θl)1+δ

)
.

Using the finiteness for E [|∂θηj(θ)|r] for r = 4 + δ, 2 + δ in Assumption 2.2 (5) and
the above argument one concludes that for any N ∈ N

E

sup
θ

∣∣∣∣∣∣
N∑
j=1

ηj(θ)

∣∣∣∣∣∣
2+δ
 ≤ CN1+δ/2.(15)

Note that the finiteness of A2(α) and A4(α) follows from Assumption 2.2 (1).
�

We will be using in what follows the following result.

Theorem 5.5. (Dehling [9], Theorem 2) Let {ηj , j ≥ 1} be a weakly stationary strong
mixing sequence of random variables with values in the separable Banach space X with
norm ‖ · ‖ such that E[ηj ] = 0 for each j ≥ 1 and supj≥1E[‖ηj‖2+δ] ≤ ρ2+δ < ∞ for

some 0 < δ < 2
3 and suppose that the mixing rate is

α(n) = O(n−(1+ε)(1+2/δ)) as n→∞ for some ε ∈ (0, 1].

Let Pm be a sequence of bounded operators on X with m-dimensional range satisfying

sup
‖x‖=1

‖Pmx‖ = O(mr) as m→∞ for some r > 0,(16)

and uniformly on a and N

E


∥∥∥∥∥∥N−1/2

a+N∑
j=a+1

(ηj − Pmηj)

∥∥∥∥∥∥
2
 = O(m−s) as m→∞ for some s > 0.(17)

Then there exists a covariance operator T which converges absolutely such that the Banach
valued Gaussian random variable B(T ) with covariance structure T satisfies the following
law distance estimate for κ = sδε

200(2+ε)(9+3r+s)

M

n−1/2
n∑
j=1

ηj , B(T )

 = O((1 + ρ
1/3
2+δ)n

−κ) as n→∞.
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Here M stands for the Lévy-Prohorov distance between probability measures and the
covariance operator T is given for f, g ∈ B∗ by the following absolutely convergence sum

T (f, g) = E [fg(η1)] +
∑
k≥2

E [f(η1)g(ηk)] +
∑
k≥2

E [g(η1)f(ηk)] .

Lemma 5.6. Assume the conditions stated in Lemma 5.4. Then the conditions stated
in Theorem 5.5 are satisfied with s = 3, any r > 0 and δ ∈ (1/3, 2/3).

Proof. The boundedness of supj≥1E[‖ηj‖2+δ] follows from Lemma 5.4 for N = 1 and
the stationarity hypothesis for Y . The α-mixing condition follows from Assumption 2.2
(take e.g ε = 1 and any δ ∈ (0, 2/3)).

For m ∈ N and i = 0, 1, ...,m, set θi := θl + i
m (θu− θl). Let Pm be a projection which

is defined as

Pmx(θ) =
m

θu − θl
(x(θi+1)− x(θi))(θ − θi) + x(θi) when θ ∈ [θi, θi+1),

for x ∈ C(Θ0). Then note that Pmx is continuous in θ and that for any m ∈ N, ‖Pmx‖‖x‖ ≤ 1

holds, therefore {Pm} is a sequence of bounded operators. Therefore the condition (16)
with any r > 0 (in fact it is bounded).

Now we start to consider the assumption (17) for the projection operator Pm. Without
loss of generality, we consider the case a = 0.

E

sup
θ

∣∣∣∣∣∣
N∑
j=1

(ηj(θ)− Pmηj(θ))

∣∣∣∣∣∣
2


(18)

= E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

∣∣∣∣∣∣
N∑
j=1

{
(ηj(θ)− ηj(θi))

− m

θu − θl
(ηj(θi+1)− ηj(θi)) (θ − θi)

}∣∣∣∣2
]

= E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

∣∣∣∣∣∣
N∑
j=1

{∫ θ

θi

∂θηj (β) dβ − m(θ − θi)
θu − θl

∫ θi+1

θi

∂θηj (γ) dγ

}∣∣∣∣∣∣
2


≤ E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

∣∣∣∣∣∣
N∑
j=1

{∫ θ

θi

(∂θηj (β)− ∂θηj (θ)) dβ
θu − θl −m(θ − θi)

θu − θl

−m(θ − θi)
θu − θl

∫ θi+1

θ

(∂θηj (γ)− ∂θηj (θ)) dγ

}∣∣∣∣∣
2


≤ 2E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)


∣∣∣∣∣∣
N∑
j=1

∫ θ

θi

∫ θ

β

∂2
θηj (γ) dγdβ

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N∑
j=1

∫ θi+1

θ

∫ γ

θ

∂2
θηj (β) dβdγ

∣∣∣∣∣∣
2


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≤ 2E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)


∣∣∣∣∣∣
∫ θ

θi

(γ − θi)
N∑
j=1

∂2
θηj (γ) dγ

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∫ θi+1

θ

(θi+1 − β)

N∑
j=1

∂2
θηj (β) dβ

∣∣∣∣∣∣
2

 .

Let us compute the first term above. The second is dealt with similarly. In fact,

E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

∣∣∣∣∣∣
∫ θ

θi

(γ − θi)
N∑
j=1

∂2
θηj (γ) dγ

∣∣∣∣∣∣
2


≤ E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

(θ − θi)2


∫ θ

θi

∣∣∣∣∣∣
N∑
j=1

∂2
θηj (γ)

∣∣∣∣∣∣ dγ


2


≤ E

 max
i=0,1,...,m−1

sup
θ∈[θi,θi+1)

(θi+1 − θi)3

∫ θu

θl

∣∣∣∣∣∣
N∑
j=1

∂2
θηj (γ)

∣∣∣∣∣∣
2

dγ


≤ (θu − θl)3

m3

∫ θu

θl

E


∣∣∣∣∣∣
N∑
j=1

∂2
θηj (γ)

∣∣∣∣∣∣
2
 dγ.

We would like to prove this upper boundedness using Yokoyama [22]. To use it, we need
E[∂2

θηj(γ)] = 0 for all γ ∈ [θl, θu]. In fact, using Assumption 2.2, (5), we have that the
expectation and the partial derivative in θ are exchangable and therefore

E[∂2
θηj(γ)] = E

[
∂2
θ

∫ 1

0

(
∂θ ln pθ̃(α)(Yi, Yi+1)− ∂θH(pθ̃(α), pθ0)

)
dα

]
= ∂2

θ

∫ 1

0

E
[
∂θ ln pθ̃(α)(Yi, Yi+1)− ∂θH(pθ̃(α), pθ0)

]
dα

= ∂2
θ

∫ 1

0

{
∂θE

[
ln pθ̃(α)(Yi, Yi+1)

]
− ∂θH(pθ̃(α), pθ0)

}
dα = 0.

Then, from the satarionarity and eq. (4.2) in Yokoyama [22], we have

E

 N∑
j=1

∂2
θηj (γ)

2
+ 2

N−1∑
j=1

N∑
k=j+1

∂2
θηj (γ) ∂2

θηk (γ)


= NE

[
∂2
θη1 (γ)

2
]

+ 2

N−1∑
j=1

(N − j)E
[
∂2
θη1 (γ) ∂2

θηj+1 (γ)
]

≤ NE
[
∂2
θη1 (γ)

2
]

+ 2N

N−1∑
j=1

∣∣E [∂2
θη1 (γ) ∂2

θηj+1 (γ)
]∣∣

≤ NE
[
∂2
θη1 (γ)

2
]

+ 24NE
[∣∣∂2

θη1 (γ)
∣∣2+δ

] 2
2+δ

∞∑
i=0

α(i)
δ

2+δ ,
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for any δ ∈ (0, 2] where we need that
∑∞
i=0 α(i)

δ
2+δ < ∞ and for all γ ∈ [θl, θu],

E
[∣∣∂2

θη1 (γ)
∣∣2+δ

] 2
2+δ

<∞ holds. Therefore we have for δ = 2

(θu − θl)3

m3

∫ θu

θl

E


∣∣∣∣∣∣
N∑
j=1

∂2
θηj (γ)

∣∣∣∣∣∣
2
 dγ

≤ N (θu − θl)3

m3

{∫ θu

θl

E
[
∂2
θη1 (γ)

2
]
dγ + 24

∫ θu

θl

E
[∣∣∂2

θη1 (γ)
∣∣4] 1

2

dγ

∞∑
i=0

α(i)
1
2

}
.

Using the proof in Lemma 5.4, we have that∫ θu

θl

E
[
∂2
θη1 (γ)

2
]
dγ <∞ and

∫ θu

θl

E
[∣∣∂2

θη1 (γ)
∣∣4] 1

2

dγ <∞

holds. Therefore, we have proved the uniform boundedness in θ for the first term of eq.
(18). The second term of eq. (18) can be proved similarly.

From the above estimate one can easily obtain that

E


∥∥∥∥∥∥N−1/2

N∑
j=1

(ηj − Pmηj)

∥∥∥∥∥∥
2
 = O(m−3) as m→∞.

�

Theorem 5.7. For any a > 0, we have that

P

N−1/2−a sup
θ

N∑
j=1

ηj(θ)→ 0, as N →∞

 = 1.

Proof. Before starting the proof, we remark in order to prove the statement in Theorem
5.7, we can assume without loss of generality that T is non-degenerate.

In fact, consider a sequence of i.i.d. Gaussian r.v. βj . Then repeat the same proof

to follow for both n−1/2−a∑n
j=1 (ηj + βj) and n−1/2−a∑n

j=1 βj which will converge to
zero almost surely if we prove that their corresponding covariance operators are non-
degenerate. Note that for the first sum, we have

T1(f, g) = E [fg(η1 + β1)] +
∑
k≥2

E [f(η1 + β1)g(ηk + βk)] +
∑
k≥2

E [g(η1 + β1)f(ηk + βk)] .

Using the linearity of f and g, the fact that Banach valued Gaussian random variables
have mean zero and the independence between the sequences ηj , βj (as well as within all
βj) we obtain

T1(f, g) = T (f, g) + E [fg(β1)] .

Therefore the non-degeneracy follows.
The proof as previously announced, although long, it uses basic ideas which are ex-

plained in Dehling between other references. The idea is to separate the sum
∑N
j=1 ηj(θ)

into blocks so that half of the blocks will be negligible and the other blocks will converge
to the Gaussian law on the Banach space of continuous functions. The removal of neg-
ligible blocks will allow us to obtain the convergence almost surely. This idea of using
“Bernstein” blocks is very old in probability theory and it can be found for example in
Section 18.1 of Ibragimov and Linnik [15].
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Let us denote the blocks, following Dehling [9], page 423, as Hk and Ik which are

subsets of consecutive indices so that #(Hk) = nk = [k1+β′ ], #(Ik) = [k
2+β′

4 ]. Here
β′ := β−1 > 0, where s = 3 and r > 0 can be chosen freely (recall Lemma 5.6) and

β :=
sλ

9 + 3r + s

λ :=
δε

200(2 + ε)
.

The sum
∑N
j=1 ηj(θ) is then divided using these blocks. The main blocks are defined as

Yk(θ) :=
∑
ν∈Hk ην(θ).

Furthermore, the above defined constants appear when one wants to apply Theorem
2 of Dehling which it further requires that α(k) ≤ Ck−(1+ε)(1+ 2

δ ) for some ε ∈ (0, 1] and
δ ∈ (0, 2

3 ). Finally as ‖ην‖2+δ ≤ ‖ην‖4 ≤ ρ for some constant ρ then for all k ∈ N,

M
(
L
(
n
−1/2
k Yk

)
, N(0, T )

)
≤ C(1 + ρ

2+δ
3 )n−βk .

Here without loss of generality, we assume that T is a well defined non-trivial covariance
operator of the Gaussian law N(0, T ) in the corresponding Banach space. Here M
denotes the Lévy-Prohorov distance between probability laws.

Now the argument follows by proving that one can apply Borel-Cantelli lemma for

the study of the almost sure convergence of n
−1/2−a
k Yk for any a > 0. In fact, using the

definition of the Prohorov distance and Chebyshev’s inequality together with Fernique’s

theorem we have that for any r ≥ C(1 + ρ
2+δ

3 )n−βk

P (‖n−1/2
k Yk‖ ≥ nak) ≤P (‖N(0, T )‖ ≥ nak − r) + r

≤c exp
(
−c(nak − r)2

)
+ r.

Therefore, as nk ≤ Ck1+β′ ,∑
k∈N

P (‖n−1/2
k Yk‖ ≥ nak) ≤ 2C(1 + ρ

2+δ
3 )
∑
k∈N

n−βk <∞.

From Borel-Cantelli’s lemma then we conclude that ‖n−1/2
k Yk‖ ≤ nak, for all k sufficiently

large almost surely.
Now, in order to deal with the smaller blocks Ij , we have to use a similar technique as

in Kuelbs and Philipp [19], Proposition 2.2. That is, define for tk :=
∑k
j=1 #(Hj ∪ Ij),

Fk(r, s) :=

∥∥∥∥∥
tk+r+s∑

ν=tk+1+r

ην

∥∥∥∥∥ .
Note that there exists two positive constants c0 and c1 such that tk ∈ [c0k

2+β′ , c1k
2+β′ ].

Suppose that tk ≤ N < tk+1 and let n̄k ≡ n̄k(N) := max{n; 2n ≤ N − tk}. If we write

N − tk =
∑n̄k
l=0 εl2

l, εl ∈ {0, 1} in its dyadic expansion we obtain from a combinatorics
lemma in S. and L. Gaal [13], Lemma 3.10, that there exists 0 ≤ ml < 2n−l (which
depends on the sequence ε) so that

Fk(0, N − tk) ≤
n̄k∑
l=0

Fk(ml2
l+1, 2l).

With the introduction of this notation we now claim that our objective is to prove that

max
tk<N≤tk+[k

2+β′
4 ]

∥∥∥∥∥
N∑

ν=tk+1

ην

∥∥∥∥∥ ≤ t1/2−γk ,(19)
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for any γ ∈ (0, 1/2) to be explicitly determined in the proof.
To prove the above statement, define the sets

Gk(m, l) :=
{
Fk(m2l+1, 2l) ≥ t

1−γ
2

k

}
Gk := ∪l≤n̄k ∪m<2n̄k−lGk(m, l).

Then using Chebyshev’s inequality and the moment bounds in Lemma 5.4, we obtain

P (Gk(m, l)) =P

∥∥∥∥∥∥
tk+m2l+1+2l∑
ν=tk+m2l+1+1

ην

∥∥∥∥∥∥ ≥ t 1−γ
2

k


≤C22lt

−2(1−γ)
k .

Therefore

P (Gk) ≤Ct−2(1−γ)
k

n̄k∑
l=1

2n̄k+l ≤ Ck−2(2+β′)(1−γ)22n̄k

≤Ck−2(2+β′)(1−γ)(N − tk)2 ≤ Ck−2(2+β′)(1−γ)(tk+1 − tk)2

≤Ck−2+2(2+β′)γ .

If we choose any γ < 1
2(2+β′) , we have that

∑
k P (Gk) <∞ therefore by Borel-Cantelli’s

lemma we obtain that for k sufficiently large, and for all l ≤ n̄k and all m ≤ 2n̄k−l, then

Fk(m2l+1, 2l) < t
1−γ

2

k almost surely. Therefore for all k sufficiently large, we have that
for any γ′ < γ

Fk(0, N − tk) ≤
n̄k∑
l=0

Fk(ml2
l+1, 2l) ≤ n̄kt

1−γ
2

k ≤ Ct
1−γ′

2

k .

Note that here we have used the fact that n̄k ≤ C log2(tk). In fact,

n̄k ≤ log2(N − tk) ≤ log2(tk+1 − tk) = log2(#(Hk ∪ Ik)) ≤ log2(2k1+β′)

≤ 1 +
1 + β′

2 + β′
log2(c−1

0 tk).

From the above, we can conclude the claimed statement in (19).
Now, we can conclude the proof, using the above estimates for each sum in Hj and Ij

as follows for some a′ to be chosen later

t
− 1

2−a
′

k

∥∥∥∥∥∥
k∑
j=1

∑
ν∈Hj∪Ij

ην

∥∥∥∥∥∥ ≤t− 1
2−a

′

k

k∑
j=1

(
n

1/2+a
j + t

1/2−γ
j

)
≤Ct−

1
2−a

′

k

(
k(1+β′)(1/2+a)+1 + k(2+β′)(1/2−γ)+1

)
≤Ct−

1
2−a

′

k

(
t

(1+β′)(1/2+a)+1

2+β′

k + t
(2+β′)(1/2−γ)+1

2+β′

k

)
.

Therefore in order to obtain that the above converges to zero almost surely, we need to
have that a′ satisfies

a′ > max

{
2(1 + β′)a+ 1

2(2 + β′)
,

1

2 + β′
− γ
}
.

Finally in order to prove that a′ can be chosen as small as possible, we recall that
β′ = β−1 = 9+3r+s

sλ , therefore taking r large enough, β′ can be large as desired. Therefore
the result will follow by taking a as small as needed. �
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5.4. Proof of Proposition 4.1 (iii). The fact that R1
N also includes randomness com-

ing from the simulation process makes the proof of the estimate in Proposition 4.1 (iii)
particularly difficult. Instead of dealing with it in full generality, we made a strong as-
sumption. That is, the hypothesis (6) in Assumption 2.2. Later in Section 6 we give
conditions in order to verify this hypothesis. This hypothesis expresses the main param-
eter tuning between the parameters n, h and N . Note that

J1
N (θ, ω) :=

R1
N (θ, ω)−R1

N (θ0, ω)

θ − θ0

=


1√
N

N−1∑
i=0

1

θ − θ0

{
ln
p̂Nθ
p̄Nθ

(Yi, Yi+1)− ln
p̂Nθ0
p̄Nθ0

(Yi, Yi+1)

}
, θ 6= θ0

1√
N

N−1∑
i=0

∂

∂θ
ln
p̂Nθ
p̄Nθ

(Yi, Yi+1)

∣∣∣∣
θ=θ0

, θ = θ0.

J2
N (θ, ω) :=

R2
N (θ, ω)−R2

N (θ0, ω)

θ − θ0
.

Proposition 5.8. Under Assumption 2.2 (6), we have for i = 1, 2

sup
N

sup
θ∈Θ

N−ε
∣∣J iN (θ, ω)

∣∣ < +∞, a.s.

Proof. Using the mean value theorem for qθ = p̂Nθ , p̄
N
θ , and the assumptions we have

J1
N (θ, ω) =

N−ε√
N

N−1∑
i=0

∫ 1

0

(
∂

∂θ
ln p̂Ntθ+(1−t)θ0(Yi, Yi+1)− ∂

∂θ
ln p̄Ntθ+(1−t)θ0(Yi, Yi+1)

)
dt

≤ sup
N

sup
θ∈Θ

∣∣∣∣∣N−ε√
N

N−1∑
i=0

(
∂

∂θ
ln p̂Nθ (Yi, Yi+1)− ∂

∂θ
ln p̄Nθ (Yi, Yi+1)

)∣∣∣∣∣ < +∞ a.s.(20)

The proof for J2
N is similar and omitted. �

6. Main Theorem: Parameter Tuning and Assumption 2.2 (6)

This section is devoted to show that Assumption 2.2 (6) is satisfied under sufficient
smoothness hypothesis on the random variables and processes that appear in the problem
as well as a certain parameter tuning condition.

The conditions in (6) are for the comparison between p̂ and p̄ and then between p̄ and
p. The second is easier to deal with than the first. Therefore we only perform the first
and leave the second for the reader. For the study of the second we will only give some
remarks in Section 6.5

In order to understand the role of all the approximation parameters, we rewrite p̂Nθ
and p̄Nθ as follows

p̂Nθ (y, z) =
1

nh

n∑
k=1

K

Xy,(k)
(m) (θ, ω)− z

h

 , p̄Nθ (y, z) = E

 1

h
K

Xy,(1)
(m) (θ, ·)− z

h

 .
The idea in order to obtain the property (3) is to first restrict to a compact set of

values for the random variables Yi, i = 0, ...., N−1. This is obtained using an exponential
type Chebyshev’s inequality and the Borel-Cantelli Lemma.

Lemma 6.1. Assume the following hypothesis
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(H0). The expectation, mc1 := E[ec1|Y1|2 ] is finite for some constant c1 > 0. Fur-
thermore let aN ≥ θu − θl be a sequence of strictly positive numbers such that

∞∑
N=1

N exp
(
−c1a2

N

)
<∞.

Then we have by Borel-Cantelli’s lemma that for a.s. ω ∈ Ω, there exists N0(ω)
big enough such that for any N ≥ N0, we have maxi=1,...,N |Yi| < aN . That is, for
AN := {ω ∈ Ω; ∃i = 1, ..., N s.t. |Yi| > aN}, we have P (lim supN→∞AN ) = 0.

The decomposition that we will use in order to prove (3) is as follows

BN :=
{

(x, θ) = (y, z, θ) ∈ R2 ×Θ; ‖x‖ < aN
}
,

where ‖ · ‖ is the max-norm. Then, note that

sup
(x,θ)∈BN

∣∣∣∣∂θp̂Nθp̂Nθ
(y, z)− ∂θp̄

N
θ

p̄Nθ
(y, z)

∣∣∣∣
≤ sup

(x,θ)∈BN

∣∣∣∣∂θp̂Nθ (y, z)

p̄Nθ (y, z)
− ∂θp̄

m
θ (y, z)

p̄Nθ (y, z)

∣∣∣∣+ sup
(x,θ)∈BN

∣∣∣∣∂θp̂Nθ (y, z)

p̂Nθ (y, z)
− ∂θp̂

N
θ (y, z)

p̄Nθ (y, z)

∣∣∣∣
≤

sup(x,θ)∈BN
∣∣∂θp̂Nθ (y, z)− ∂θp̄Nθ (y, z)

∣∣
inf(x,θ)∈BN p̄

N
θ (y, z)

+ sup
(x,θ)∈BN

∣∣∣∣∂θp̂Nθ (y, z)

p̂Nθ (y, z)

∣∣∣∣ sup(x,θ)∈BN
∣∣p̂Nθ (y, z)− p̄Nθ (y, z)

∣∣
inf(x,θ)∈BN p̄

N
θ (y, z)

=:
A

B
+ C

D

B
,(21)

where we remark that

∂θ ln p̂Nθ (Yi, Yi+1) =
∂θp̂

N
θ (Yi, Yi+1)

p̂Nθ (Yi, Yi+1)
,

∂θ ln p̄Nθ (Yi, Yi+1) =
∂θp̄

N
θ (Yi, Yi+1)

p̄Nθ (Yi, Yi+1)
,

∂θp̂
N
θ (y, z) =

1

nh2

n∑
k=1

K ′

Xy,(k)
(m) (θ, ω)− z

h

 ∂θX
y,(k)
(m) (θ, ω) ,

∂θp̄
N
θ (y, z;ω) = E

 1

h2
K ′

Xy,(k)
(m) (θ, ·)− z

h

 ∂θX
y,(k)
(m) (θ, ·)

 .
Therefore in order to prove the finiteness of (3), we need to bound

√
N
(
A
B + CD

B

)
.

This will be done in a series of Lemmas using Borel-Cantelli arguments together with
the modulus of continuity for the quantities p̄Nθ and p̂Nθ . First, we start analyzing the

difficult term: CD
B .

6.1. Upper bound for CD
B in (21). We work in this section under the following

hypotheses:
(H1). Assume that there exist some positive constants ϕ1, ϕ2, where ϕ1 is independent
of N and ϕ2 is independent of N and ∆, such that the following holds;

inf
(x,θ)∈BN

p̄Nθ (y, z) ≥ ϕ1 exp

(
−ϕ2a

2
N

∆

)
.
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(H2). Assume that the kernel K is the Gaussian kernel; K(z) := 1√
2π

exp
(
− 1

2z
2
)

.

(H3). Assume that for some constant r3 > 0 and a sequence {b3,N ;N ∈ N} ⊂ [1,∞),

we have that
∑∞
N=1

na
2r3
N E[|Z3,N (·)|r3 ]

(h2b3,N )r3 <∞, where

(22) Z
(k)
3,N (ω) := a−2

N

(
sup

(x,θ)∈BN

∣∣∣Xy,(k)
(m) (θ, ω)

∣∣∣+ 1

)
sup

(x,θ)∈BN

∣∣∣∂θXy,(k)
(m) (θ, ω)

∣∣∣ .
(H4). Assume that for some constant r4 > 0 and a sequence {b4,N ;N ∈ N} ⊂ [1,∞),

we have that
∑∞
N=1

nE[|Z4,N (·)|r4 ]
(b4,N )r4 <∞, where

(23) Z
(k)
4,N (ω) := a−1

N

(
sup

(x,θ)∈BN

∣∣∣∂yXy,(k)
(m) (θ;ω)

∣∣∣+ sup
(x,θ)∈BN

∣∣∣∂θXy,(k)
(m) (θ;ω)

∣∣∣+ 1

)
.

(H5). Assume that there exists some positive constant C5 > 0 such that for all y, z ∈
R, m ∈ N and θ ∈ Θ,∣∣∂yp̄Nθ (y, z)

∣∣ , ∣∣∂z p̄Nθ (y, z)
∣∣ , ∣∣∂θp̄Nθ (x, y)

∣∣ ≤ C5 < +∞.
(H6). Assume that ηN and νN are sequences of positive numbers so that

∞∑
N=1

ν3
N exp

(
− (ηN )2nh2

64‖K‖∞

)
<∞,

where ‖ · ‖∞ denotes the sup-norm.

(H7). Assume that X
y,(1)
(m) (θ) is once differentiable with respect to y and θ a.s.

Note that from assumption (H1), we have a lower bound for B in (21).

6.2. Upper bound of C in (21).

Lemma 6.2. Assume hypotheses (H2), (H3) and (H7), then we have that

P

(
lim sup
N→∞

{
sup

(x,θ)∈BN

∣∣∣∣∂θp̂Nθ (y, z)

p̂Nθ (y, z)

∣∣∣∣ > b3,N

})
= 0.

Proof. Consider

sup
(x,θ)∈BN

∣∣∣∣∂θp̂Nθ (y, z)

p̂Nθ (y, z)

∣∣∣∣ =
1

h
sup

(x,θ)∈BN

∣∣∣∣∣∣∣∣
∑n
k=1K ·

K′

K

(
X
y,(k)

(m)
(θ,ω)−z
h

)
∂θX

y,(k)
(m) (θ, ω)

∑n
k=1K

(
X
y,(k)

(m)
(θ,ω)−z
h

)
∣∣∣∣∣∣∣∣

≤ 1

h
sup

(x,θ)∈BN
max

k=1,...,n

∣∣∣∣∣∣K
′

K

Xy,(k)
(m) (θ, ω)− z

h

 ∂θX
y,(k)
(m) (θ, ω)

∣∣∣∣∣∣ .(24)

Note that under hypothesis (H2), K′

K (x) = −x. So we have

(24) ≤ 1

h2
sup

(x,θ)∈BN
max

k=1,...,n

{(∣∣∣Xy,(k)
(m) (θ, ω)

∣∣∣+ |z|
) ∣∣∣∂θXy,(k)

(m) (θ, ω)
∣∣∣}

≤ 1

h2
max

k=1,...,n
sup

(x,θ)∈BN

{(∣∣∣Xy,(k)
(m) (θ, ω)

∣∣∣+ |z|
) ∣∣∣∂θXy,(k)

(m) (θ, ω)
∣∣∣}

≤ a2
N

h2
max

k=1,...,n

{
Z

(k)
3,N (ω)

}
.

where we have used the definition (22). Define the set

BmaN ,n :=

{
a2
N

h2
max

k=1,...,n
Z

(k)
3,N (ω) > b3,N

}
.
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Note that {Z(k)
3,N (ω)}k∈N is a sequence of i.i.d. r.v.’s, then from the Chebyshev’s

inequality, we have

∞∑
N=1

P
(
BmaN ,n

)
≤
∞∑
N=1

n∑
k=1

P

(
Z

(k)
3,N (ω) >

h2

a2
N

b3,N

)
≤
∞∑
N=1

na2r3
N E [|Z3,N (·)|r3 ]

(h2b3,N )r3
<∞,

where the above follows due to hypothesis (H3). Then by the Borel-Cantelli lemma we
have the conclusion. �

The above Borel-Cantelli argument is used repeatedly in what follows. We will use it
from now on, without giving further details.

6.3. Upper bound of D in (21). In this section, we use the modulus of continuity for
p̂N and p̄N in order to find an upper bound for B. For νN ∈ N, set

BNl1l2 :=

{
(x, θ) ∈ R2 ×Θ; ‖x− xNl1 ‖ ≤

aN
νN

, |θ − θNl2 | ≤
θu − θl

νN

}
,

l1 = 1, · · · , ν2
N , l2 = 1, · · · , νN ,

such that B̊Nl1l2 ∩ B̊
N
l′1l
′
2

= ∅ ((l1, l2) 6= (l′1, l
′
2)) and appropriate set of points xNl1 , θNl2 ,

l1 = 1, ..., ν2
N and l2 = 1, ..., νN such that ∪ν

2
N

l1=1 ∪
νN
l2=1 B

N
l1l2

= BN . Then

(25)

sup
(x,θ)∈BN

∣∣p̂Nθ (x)− p̄Nθ (x)
∣∣ = max

1≤l1≤ν2
N

1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣p̂Nθ (x)− p̄Nθ (x)
∣∣

≤ max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̂Nθ (x)− p̂NθNl2
(
xNl1
)∣∣∣+ max

1≤l1≤ν2
N

1≤l2≤νN

∣∣∣p̂NθNl2 (xNl1 )− p̄NθNl2 (xNl1 )
∣∣∣

+ max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̄NθNl2 (xNl1 )− p̄Nθ (x)
∣∣∣ .

Now, consider the first term of (25).

Lemma 6.3. Under (H2), (H4) and (H7), we have that

P

lim sup
N→∞

 max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̂Nθ (x)− p̂NθNl2
(
xNl1
)∣∣∣ > ‖K ′‖∞

h2

a2
N

νN
(b4,N + 1)


 = 0.

Proof. If (x, θ) = (y, z, θ) ∈ BNl1l2 , then we have

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̂Nθ (x)− p̂NθNl2
(
xNl1
)∣∣∣

= max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∣∣∣ 1

nh

n∑
k=1

K
Xy,(k)

(m) (θ;ω)− z
h

−K
XyNl1

,(k)

(m)

(
θNl2 ;ω

)
− zNl1

h


∣∣∣∣∣∣

≤
‖K ′‖∞
h2

max
k=1,...,n

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∣Xy,(k)
(m) (θ;ω)−X

yNl1
,(k)

(m)

(
θNl2 ;ω

)
−
(
z − zNl1

)∣∣∣∣
=
‖K ′‖∞
h2

max
k=1,...,n

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∣(y − yNl1 ) ∫ 1

0

∂yX
εy+(1−ε)xNl1 ,(k)

(m) (θ;ω) dε

+
(
θ − θNl2

) ∫ 1

0

∂θX
yNl1

,(k)

(m)

(
εθ + (1− ε)θNl2 ;ω

)
dε−

(
z − zNl1

)∣∣∣∣
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≤
‖K ′‖∞
h2

aN
νN

max
k=1,...,n

 max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

sup
|y−ylN |≤

aN
νN

∣∣∣∂yXy,(k)
(m) (θ;ω)

∣∣∣
+ max

1≤l1≤ν2
N

1≤l2≤νN

sup
(x,θ)∈BNl1l2

sup
|θ−θNl2 |≤

θu−θl
νN

∣∣∣∣∂θXyNl1
,(k)

(m) (θ;ω)

∣∣∣∣+ 1


≤
‖K ′‖∞
h2

a2
N

νN

{
max

k=1,...,n
Z

(k)
4,N (ω) + 1

}
.

Here we have used definition (23) and that aN ≥ θu − θl. The proof finishes by using
Markov’s inequality with Borel-Cantelli Lemma as in the proof of Lemma 6.2. �

Now we consider the third term in (25).

Lemma 6.4. Assume (H5), then,

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̄NθNl2 (xNl1 )− p̄Nθ (x)
∣∣∣ ≤ 3C5

aN
νN

.

Proof. From the mean value theorem and (H5), we have
(26)

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣p̄NθNl2 (xNl1 )− p̄Nθ (x)
∣∣∣

= max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∣(y − yNl1 ) ∫ 1

0

∂yp̄
N
θ

(
εy + (1− ε)yNl1 , z

)
dε

+
(
z − zNl1

) ∫ 1

0

∂z p̄
N
θ

(
yNl1 , εz + (1− ε)zNl1

)
dε+

(
θ − θNl2

) ∫ 1

0

∂θp̄
N
εθ+(1−ε)θNl2

(
xNl1
)
dε

∣∣∣∣
≤ aN
νN

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

{
sup

0≤ε≤1

∣∣∂yp̄Nθ (εy + (1− ε)yNl1 , z
)∣∣

+ sup
0≤ε≤1

∣∣∂z p̄Nθ (yNl1 , εz + (1− ε)zNl1
)∣∣+ sup

0≤ε≤1

∣∣∣∂θp̄Nεθ+(1−ε)θNl2

(
xNl1
)∣∣∣} .

From here the result follows. �

Finally, we consider the second term of (25).

Lemma 6.5. Assume (H2) and that ηN satisfies (H6), then we have that

P

lim sup
N→∞

 max
1≤l1≤ν2

N
1≤l2≤νN

∣∣∣p̂NθNl2 (xNl1 )− p̄NθNl2 (xNl1 )
∣∣∣ > ηN


 = 0.

Proof. Set

W j,x
m,h (θ;ω) :=

1

h
K

Xy,(j)
(m) (θ;ω)− z

h

− 1

h
E

K
Xy,(1)

(m) (θ; ·)− z
h

 .
Note that {W j,x

m,h (θ;ω)}j∈N is a sequence of i.i.d. r.v. with E
[
W j,x
m,h (θ;ω)

]
= 0. For all

x ∈ R2, θ ∈ Θ, m ∈ N and h > 0,

(27) sup
j=1,...,n

∣∣∣W j,x
m,h (θ;ω)

∣∣∣ ≤ 2

h
‖K‖∞ =: bh.
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Set

Sn,xm,h(θ;ω) :=

n∑
j=1

W j,x
m,h (θ;ω) .

If we use inequality (1.25) of pp.27 in Bosq [5] with q = n
2 , then we have, for all ε > 0,

∞∑
N=1

P

 max
1≤l1≤ν2

N
1≤l2≤νN

∣∣∣p̂NθNl2 (xNl1 )− p̄NθNl2 (xNl1 )
∣∣∣ > ηN


≤
∞∑
N=1

νN∑
l2=1

ν2
N∑

l1=1

P
(∣∣∣p̂NθNl2 (xNl1 )− p̄NθNl2 (xNl1 )

∣∣∣ > ηN

)

=

∞∑
N=1

νN∑
l2=1

ν2
N∑

l1=1

P
(∣∣∣Sn,xm,h(θNl2 ;ω)

∣∣∣ > nηN

)

≤
∞∑
N=1

νN∑
l2=1

ν2
N∑

l1=1

4 exp

(
− (ηN )2nh2

64‖K‖∞

)

=

∞∑
N=1

ν3
N4 exp

(
− (ηN )2nh2

64‖K‖∞

)
.

Finally, from the Borel-Cantelli lemma the result follows. �

Now we can conclude this section with the following upper bound for CD
B .

Theorem 6.6. Assume conditions (H2), (H4), (H5), (H6) and (H7), then for any
ω, there exists N0 ≡ N0(ω) such that for all N ≥ N0 we have that

sup
(x,θ)∈BN

∣∣p̂Nθ (x)− p̄Nθ (x)
∣∣ ≤ 2 ‖K ′‖∞

h2

a2
N

νN
b4,N + ηN + 3C5

aN
νN

.

Therefore if we also assume (H1) and (H3), then we have

C
D

B
≤ b3,N ×

1

ϕ1
exp

(
ϕ2a

2
N

∆

)
×
(

2 ‖K ′‖∞
h2

a2
N

νN
b4,N + ηN + 3C5

aN
νN

)
.

6.4. Upper bound for A
B in (21). The proof in this case is simpler on the one hand

because many of the previous estimates can be used. On the other hand, when considering
the analogous result of Lemma 6.5 for the derivatives of p̂θ, the proof has to be reworked
as the condition analogous to (27) can only be obtained with a random upper bound.
Therefore, we only briefly sketch the results when the proofs are similar to previous ones.
From the hypothesis (H1), we have

A

B
≤ 1

ϕ1
e
ϕ2a

2
N

∆ × sup
(x,θ)∈BN

∣∣∂θp̂Nθ (y, z)− ∂θp̄Nθ (y, z)
∣∣ .
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Here we consider the above sup-term as before. We use the same notations as the previous
section.

sup
(x,θ)∈BN

∣∣∂θp̂Nθ (x)− ∂θp̄Nθ (x)
∣∣

≤ max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̂Nθ (x)− ∂θp̂NθNl2
(
xNl1
)∣∣∣+ max

1≤l1≤ν2
N

1≤l2≤νN

∣∣∣∂θp̂NθNl2 (xNl1 )− ∂θp̄NθNl2 (xNl1 )
∣∣∣

+ max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̄NθNl2 (xNl1 )− ∂θp̄Nθ (x)
∣∣∣ .(28)

As in previous sections, if (x, θ) = (y, z, θ) ∈ BNl1l2 , then from (H2), we have

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̂Nθ (x;ω)− ∂θp̂NθNl2
(
xNl1
)∣∣∣

≤
‖K ′‖∞ ∨ ‖K ′′‖∞

h3

a2
N

νN
max

k=1,...,n

{
Ż

(k)
4,N (ω)

}
,

where

Ż
(k)
4,N (ω) := a−1

N

(
h sup

(x,θ)∈BN

∣∣∣∂y∂θXy,(k)
(m) (θ;ω)

∣∣∣+ h sup
(x,θ)∈BN

∣∣∣∂θ∂θXy,(k)
(m) (θ;ω)

∣∣∣
+
(
Z

(k)
4,N + 1

)
sup

(x,θ)∈BN

∣∣∣∂θXy,(k)
(m) (θ;ω)

∣∣∣).
Note that {Ż(k)

4,N (·)}k∈N is a sequence of i.i.d. random variables. Then we set the following
hypothesis and obtain the following lemma which is the parallel of Lemma 6.3.
(H4’) Assume that for some constant ṙ4 > 0 and a sequence {ḃ4,N ;N ∈ N} ⊂ [1,∞), we

have that
∑∞
N=1

nE
[
|Ż4,N (·)|ṙ4

]
(ḃ4,N )ṙ4

<∞.

(H7’) Assume that X
y,(1)
(m) (θ) is twice differentiable with respect to θ a.s. and ∂θX

y,(1)
(m) (θ)

is differentiable with respect to y a.s.

Lemma 6.7. Under (H2), (H4’), (H7) and (H7’), we have that

P

lim sup
N→∞

 max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̂Nθ (x)− ∂θp̂NθNl2
(
xNl1
)∣∣∣

≥
‖K ′‖∞ ∨ ‖K ′′‖∞

h3

a2
N

νN
ḃ4,N

})
= 0.

Next we set the following hypothesis;
(H5’). Assume that there exists some positive constant Ċ5 > 0 such that for all y, z ∈
R, m ∈ N and θ ∈ Θ,∣∣∂y∂θp̄Nθ (y, z)

∣∣ , ∣∣∂z∂θp̄Nθ (y, z)
∣∣ , ∣∣∂2

θ p̄
N
θ (y, z)

∣∣ ≤ Ċ5 < +∞.

Lemma 6.8. Assume (H5’). Then, we have

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̄NθNl2 (xNl1 )− ∂θp̄Nθ (x)
∣∣∣ ≤ 3Ċ5

aN
νN

.
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Proof. Using a similar argument as in the proof of Lemma 6.4, we consider the third
term of (28).

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

∣∣∣∂θp̄NθNl2 (xNl1 )− ∂θp̄Nθ (x)
∣∣∣

≤ aN
νN

max
1≤l1≤ν2

N
1≤l2≤νN

sup
(x,θ)∈BNl1l2

{
sup

0≤ε≤1

∣∣∂y∂θp̄Nθ (εy + (1− ε)yNl1 , z
)∣∣

+ sup
0≤ε≤1

∣∣∂z∂θp̄Nθ (yNl1 , εz + (1− ε)zNl1
)∣∣+ sup

0≤ε≤1

∣∣∣∂2
θ p̄
N
εθ+(1−ε)θNl2

(
xNl1
)∣∣∣} .

�

Finally, we consider the second term of (28). Set

Ẇ j,x
m,h (θ;ω) :=

1

h2
K ′

Xy,(j)
(m) (θ;ω)− z

h

 ∂θX
y,(j)
(m) (θ;ω)

− 1

h2
E

K ′
Xy,(1)

(m) (θ; ·)− z
h

 ∂θX
y,(1)
(m) (θ; ·)

 .
Note that {Ẇ j,x

m,h (θ;ω)}j∈N is a sequence of i.i.d. r.v. with E
[
Ẇ j,x
m,h (θ; ·)

]
= 0. To study

this term, we assume:
(H6’). There exists Ċ6 > 0 and α̇6 > 0 and a sequence of positive numbers ḃ6,N such

that
∑∞
N=1 ν

3
N exp

(
− n(ηN )2h4

2‖K′‖2∞(ḃ6,N )2a2
N

){
1 + Ċ6

n1+α̇6

}n
<∞.

(H6a’). Assume that there exists ṙ6 > 0 and that the sequence of positive numbers ḃ6,N

in (H6’) satisfy
∑∞
N=1 n

E
[
|Ż6,N (·)|ṙ6

]
(ḃ6,N )ṙ6

<∞ for

Ż
(j)
6,N (ω) := a−1

N sup
(x,θ)∈BN

{∣∣∣∂θXy,(j)
(m) (θ;ω)

∣∣∣+ E
[∣∣∣∂θXy,(1)

(m) (θ; ·)
∣∣∣]} .

(H6b’). Assume that for some q̇6 > 1, supN∈NE

[∣∣∣Ż6,N (·)
∣∣∣q̇6] < +∞ and for α̇6 > 0,

Ċ6 > 0 and ḃ6,N given in (H6’) the following is satisfied

(
ηNh

2

(‖K ′‖∞ḃ6,N )2aN
exp

(
− (ηN )2

2(‖K
′‖∞
h2 ḃ6,NaN )2

))q̇6
≤ Ċ6

n1+α̇6
,

sup
N

ηNh
2

ḃ6,NaN
<∞.

The following result is analogous to Lemma 6.5. The proof requires a further use of
Borel-Cantelli’s lemma.

Lemma 6.9. Assume (H6’), (H6a’) and (H6b’). Then for a.s. ω, there exists N ≡
N(ω) big enough such that

max
1≤l1≤ν2

N
1≤l2≤νN

∣∣∣∂θp̂NθNl2 (xNl1 )− ∂θp̄NθNl2 (xNl1 )
∣∣∣ ≤ ηN .
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Proof. First, note that

sup
(x,θ)∈BN

∣∣∣Ẇ j,x
m,h (θ;ω)

∣∣∣ ≤ ‖K ′‖∞Ż(j)
6,N (ω)aN

h2
.

Define

Dm
aN :=

{
max

j=1,...,n
Ż

(j)
6,N (ω) > ḃ6,N

}
.

Note that {Ż(j)
6,N (ω)}j∈N is a sequence of i.i.d. random variables.

From Chebyshev’s inequality, we have by (H6a’)

∞∑
N=1

P
(
Dm
aN

)
≤
∞∑
N=1

n

E

[∣∣∣Ż(j)
6,N (·)

∣∣∣ṙ6]
(ḃ6,N )ṙ6

<∞.

Therefore, by Borel-Cantelli’s lemma we have that

P

(
lim sup
N→∞

Dm
aN

)
= 0.

Now, set

S̃n,xm,h(θ;ω) := n
(
∂θp̂

N
θ (x)− ∂θp̄Nθ (x)

)
=

n∑
j=1

Ẇ j,x
m,h (θ;ω) .

Therefore using Lemma 7.2 in the Appendix with X1(ω) := Ẇx
m,h(θ;ω), ε := ηN , fn :=

‖K ′‖∞h2ḃ6,NaN and Ċq̇6 =
‖K′‖q̇6∞ supN∈N E[|Ż6,N |q1 ]a

q̇6
N

h2q̇6
and the hypothesis (H6b’), we

obtain

∞∑
N=1

P

 max
1≤l1≤ν2

N
1≤l2≤νN

∣∣∣∂θp̂NθNl2 (xNl1 )− ∂θp̄NθNl2 (xNl1 )
∣∣∣ > ηN ;

∣∣∣Ẇ j,x
m,h (θ;ω)

∣∣∣ ≤ ‖K ′‖∞
h2

ḃ6,NaN , j = 1, · · · , n
)

≤
∞∑
N=1

νN∑
l2=1

ν2
N∑

l1=1

P

(∣∣∣S̃n,xm,h (θ)
∣∣∣ > nηN ;

∣∣∣Ẇ j,x
m,h (θ)

∣∣∣ ≤ ‖K ′‖∞
h2

ḃ6,NaN , j = 1, · · · , n
)

≤ 2

∞∑
N=1

ν3
N exp

(
− n(ηN )2h4

2 ‖K ′‖2∞ (ḃ6,N )2a2
N

){
1 +

Ċ6

n1+α̇6

}n
.

Finally, from hypothesis (H6) and Borel-Cantelli’s lemma, the conclusion follows. �

Theorem 6.10. Assume conditions (H1), (H2), (H4’), (H5’), (H6’), (H6a’),
(H6b’), (H7) and (H7’). Then we have that for a.s. ω, there exists N0 ≡ N0(ω)
such that for all N ≥ N0 we have

A

B
≤ 1

ϕ1
e
ϕ2a

2
N

∆ ×
(
‖K ′‖∞ ∨ ‖K ′′‖∞

h3

a2
N

νN
ḃ4,N + ηN + 3Ċ5

aN
νN

)
.

Finally collecting all our results together, we have (see Theorem 6.6).

Theorem 6.11. Assume conditions (H0), (H1), (H2), (H3), (H4), (H5), (H6),
(H4’), (H5’), (H6’), (H6a’), (H6b’), (H7) and (H7’). Then for a.s. ω, there exists
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N0 ≡ N0(ω̂) such that for all N ≥ N0 we have

N−1/2−ε
(
A

B
+ C

D

B

)
≤ 6N−1/2−ε 1

ϕ1
e
ϕ2a

2
N

∆

×

(
‖K ′‖∞ ∨ ‖K ′′‖∞

h2

a2
N

νN

(
ḃ4,N
h

+ b4,Nb3,N

)
+

(
ηN +

C5 ∨ Ċ5

νN
aN

)
b3,N

)
.

6.5. The treatment of J2
N (θ). As dealing with J2

N (θ) follows the same steps taken
throughout this section with simplifications we will just remark here these and the hy-
potheses to be added.

Overall the argument will follow in a similar way but replacing instead of p̂Nθ (y, z),
pθ(y, z).

First note that although we may still use the decomposition (21), there is no explicit
expression for ∂θpθ(y, z).

Now one adds to hypothesis (H1).

inf
(x,θ)∈BN

pθ(y, z) ≥ ϕ1 exp

(
−ϕ2a

2
N

∆

)
.

Similarly, to (H5). one adds that for all y, z ∈ R, m ∈ N and θ ∈ Θ,

|∂ypθ(y, z)| , |∂zpθ(y, z)| , |∂θpθ(x, y)| ≤ C5 < +∞.

Assume that for each y, z ∈ R, there exist a positive constant C and such that∣∣pθ(y, z)− p̄Nθ (y, z)
∣∣+
∣∣∂θpθ(y, z)− ∂θp̄Nθ (y, z)

∣∣ ≤ Ca1(N),(29)

where a1(N)→ 0 as N →∞.
The above assumption is usually obtained using Malliavin Calculus techniques (in a

non-straightforward manner) as in Bally and Talay [1] or Guyon [14]. Usually the choice

m(N) =
√
N will satisfy the above assumption

Now instead of the Lemma 6.2, one has the trivial bound

sup
(x,θ)∈BN

∣∣∣∣∂θpθ (y, z)

p̂θ (y, z)

∣∣∣∣ ≤ C5ϕ
−1
1 exp

(
ϕ2a

2
N

∆

)
.

Using Assumption (29), one can obtain the analogous result of Theorem 6.6, which
gives

C
D

B
≤ 1

ϕ2
1

exp

(
2
ϕ2a

2
N

∆

)
a1(N).

Similarly,

A

B
≤ 1

ϕ1
e
ϕ2a

2
N

∆ a1(N).

As we will see later we will choose aN :=
√
c2 ln(N). Therefore in order to assure (4),

we need that

sup
N
N1/2−ε exp

(
2
ϕ2a

2
N

∆

)
a1(N) <∞.(30)

This can be achieved by choosing the parameters h(N) and m(N) appropriately as proven
in [1].
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6.6. Main Theorem: Tuning for n and h. In this section, we rewrite the previous
hypothesis (H0)-(H6b’) in a simpler form, so that we can verify them easily in examples,
such as the case of smooth diffusions.

We need to find now a sequence of values for n and h such that all the hypothesis in
the previous Theorem are satisfied and that the upper bound is uniformly bounded in
N . Now, we rewrite the needed conditions that are related to the parameters n and h.
We assume stronger hypothesis that may help us understand better the existence of the
right choice of parameters n and h.

As we are only interested in the relationship between n and h with N , we will denote
by C1, C2 etc., various constants that may change from one equation to the next. These
constants depend on K, ∆ and Θ. They are independent of n, h and N but they depend
continuously on other parameters. We will assume the existence of some sequences of
strictly positive numbers which are bigger than 1.

(i). There exists some positive constant CK,∆,Θ ≥ 0, which depends on K,∆,Θ, and
is independent of N such that

(31) N1/2−εe
ϕ2a

2
N

∆ ×

(
a2
N

νNh2

(
ḃ4,N
h

+ b4,Nb3,N

)
+

(
ηN +

aN
νN

)
b3,N

)
≤ CK,∆,Θ.

(ii). (Borel-Cantelli for Yi, (H0)) Assume that mc1 := E[ec1|Y1|2 ] < +∞ for some
constant c1 > 0 and {aN}N∈N ⊂ [θu − θl,∞) is a sequence such that for the
same c1,

∑∞
N=1

N
exp(c1a2

N )
< +∞.

(iii). (Borel-Cantelli for Z
(k)
3,N (ω), (H3)) For some r3 > 0 and b3,N ≥ 1,

∞∑
N=1

na2r3
N

(h2b3,N )r3
< +∞ and sup

N∈N
E [|Z3,N (·)|r3 ] < +∞.

(iv). (Borel-Cantelli for Z
(k)
4,N (ω), (H4)) For some r4 > 0 and b4,N ≥ 1,

∞∑
N=1

n

(b4,N )r4
< +∞ and sup

N∈N
E [|Z4,N (·)|r4 ] < +∞.

(v). (Borel-Cantelli for |p̂Nθ (x)− p̄Nθ (x)|, (H6))

∞∑
N=1

ν3
N exp

(
− (ηN )2nh2

64‖K‖∞

)
< +∞.

(vi). (Borel-Cantelli for Ż
(k)
4,N (ω), (H4’)) For some ṙ4 > 0 and ḃ4,N ≥ 1,

∞∑
N=1

n

(ḃ4,N )ṙ4
< +∞ and sup

N∈N
E

[∣∣∣Ż4,N (·)
∣∣∣ṙ4] < +∞.

(vii). (Borel-Cantelli for |∂θp̂Nθ (x)−∂θp̄Nθ (x)|, (H6’)) For some α̇6 > 0, and a constant

Ċ6,

∞∑
N=1

ν3
N exp

(
− n(ηN )2h4

2 ‖K ′‖2∞ (ḃ6,N )2a2
N

){
1 +

Ċ6

n1+α̇6

}n
< +∞.

(viii). (Borel-Cantelli for Ż
(k)
6,N (ω), (H6a’)) For some ṙ6 > 0 and ḃ6,N ≥ 1,

sup
N

ηNh
2

ḃ6,NaN
<∞ and

∞∑
N=1

n

(ḃ6,N )ṙ6
< +∞ and sup

N
E

[∣∣∣Ż6,N (·)
∣∣∣ṙ6] < +∞.
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(ix). ((H6b’)) For some q̇6 > 1,(
ηNh

2

(‖K ′‖∞(ḃ6,N )2aN
exp

(
− (ηN )2

2(‖K
′‖∞
h2 ḃ6,NaN )2

))q̇6
≤ Ċ6

n1+α̇6

and sup
N∈N

E

[∣∣∣Ż6,N (·)
∣∣∣q̇6] < +∞

where Ċ6 and α̇6 are the same as (vii) above.

6.6.1. Parameter Tuning. Choose aN :=
√
c2 lnN for some positive constant c2, n =

C1N
α1 for α1, C1 > 0, and h = C2N

−α2 for α2, C2 > 0.
For (ii) to be satisfied, we need to have

∞∑
N=1

N

exp(c1c2 lnN)
=

∞∑
N=1

1

N c1c2−1
.

Then we need c1c2 − 1 > 1 ⇔ c1 >
2
c2

. Note that if we choose c2 as large enough, we
can choose c1 as small enough.

Next we substitute aN =
√
c2 lnN into (31). We have

(32) N
ϕ2c2

∆ + 1
2−ε

(
c2 lnN

h2νN

(
ḃ4,N
h

+ b4,Nb3,N

)
+ b3,N

(
ηN +

√
c2 lnN

νN

))
≤ CK,∆,Θ.

For (iii), we assume that there exists some γ3 > 1, r3 > 0 and some constant C3 6= 0
such that

n(c2 lnN)r3

(h2b3,N )r3
=

C3

Nγ3
and therefore b3,N =

C3(Nγ3n)
1
r3 c2 lnN

h2
.

For (iv), we assume that there exists some γ4 > 1, r4 > 0 and some constant C4 6= 0
such that

n

(b4,N )r4
=

C4

Nγ4
and therefore b4,N = (C4nN

γ4)
1
r4 .

For (vi), we assume that there exists some γ̇4 > 1, ṙ4 > 0 and some constant Ċ4 6= 0
such that

n

(ḃ4,N )ṙ4
=

Ċ4

N γ̇4
and therefore ḃ4,N =

(
Ċ4nN

γ̇4

) 1
ṙ4
.

For (viii), we assume that there exists some γ̇6 > 1, ṙ6 > 0 and some constant Ċ6 6= 0
such that

n

(ḃ6,N )ṙ6
=

Ċ6

N γ̇6
and therefore ḃ6,N =

(
Ċ6nN

γ̇6

) 1
ṙ6
.

Furthermore note that as ḃ6,N ∧ aN → ∞ as N → ∞, then condition (vii) implies

condition (v). Note that all min(b3,N , b4,N , ḃ4,N , ḃ6,N ) ↑ ∞ as N ↑ ∞.
Taking (32) into consideration, we set νN and ηN as follows; (here we assume that N

is large enough)

• νN := CK,∆,ΘN
ϕ2c2

∆ + 1
2−ε

c2 lnN

h3
max

{(
nN γ̇4

) 1
ṙ4 ,

(Nγ3n)
1
r3 c2 lnN

h
(nNγ4)

1
r4

}
→∞,

• ηN :=
CK,∆,Θh

2

N
ϕ2c2

∆ + 1
2−ε(Nγ3n)

1
r3 c2 lnN

→ 0.
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Note in particular that this choice ensures that (32) is satisfied. And therefore (i)
also follows. To finish, we only need to check conditions (vii) and (ix). Instead of
separating the study of the above parameters in cases, we prefer to use the following

notation νN = CνN
δ1 (lnN)

δ2 h−δ3 , ηN = Cb6h
δ4N−δ5n−δ6 (lnN)

−δ7 for some positive
constants Cν , Cb6 , δ1,...,δ7. From (vii), we need, for some λ6 > 1 and some constant

C̈6 6= 0,

(33) ν3
N exp

(
− n(ηN )2h4

2‖K ′‖2∞(ḃ6,N )2a2
N

){
1 +

Ċ6

n1+α̇6

}n
≤ C̈6

Nλ6
.

As we are only proving the existence of appropriate parameters n and h so that the
conditions (i)-(ix) are satisfied, we are going to ignore certain constants putting them
together under the notation C. Replacing all the above values found so far we have that
the inequality (33) is equivalent to

Nα1(1−2δ6)N−4α2N−2α2δ4N−2δ5
(
Nα1N γ̇6

)− 2
ṙ6 (lnN)

−2δ7−1

≥ C ln

(
Nλ6CνN

3δ1 (lnN)
3δ2 h−3δ3

{
1 +

Ċ6

n1+α̇6

}n)
.

Therefore the condition needed here is that

(34) α1(1− 2δ6)− 4α2 − 2α2δ4 − 2δ5 − 2
α1 + γ̇6

ṙ6
> 0.

Finally, we consider (ix); C2
2N
−2α2−2

α1+γ̇6
ṙ6 ηN

(‖K ′‖∞
(
Ċ6C1

) 1
ṙ6

)2
√
c2 lnN

exp

− C4
2N
−4α2−2

α1+γ̇6
ṙ6 (ηN )2

2(‖K ′‖∞
(
Ċ6C1

) 1
ṙ6

)2c2 lnN



q̇6

≤ Ċ6

Nα1(1+α̇6)
.

As ηN → 0 as N →∞, it is enough to have

(35)

(
4α2 + 2

α1 + γ̇6

ṙ6
+
ϕ2c2

∆
+

1

2
− ε+

γ3

r3
+
α1

r3

)
q̇6 > α1,

which has to be satisfied together with (34) which we recall is

(36) α1

(
1− 2

r3
− 2

ṙ6

)
> 8α2 + 1− 2ε+

2ϕ2c2
∆

+
2γ3

r3
+ 2

γ̇6

ṙ6
.

Notice that the above two inequalities will always be satisfied if q̇6 is chosen big enough.
Furthermore the only condition needed of ηN for the all the above conditions to hold
is that ηN → 0 as N → ∞. Putting all the above calculations together, we obtain the
following result.

Theorem 6.12. Assume that the constants are chosen so as to satisfy c1 >
2
c2

, (30), (35)

and (36). Assume that (H7) and (H7’). And also assume that the moment conditions
stated in (ii), (iii), (iv), (vi), (viii) and (ix) above are satisfied. Then (H0), (H3),
(H4), (H4’), (H6), (H6’), (H6a’) and (H6b’) are satisfied. Furthermore, if we
assume (H1), (H2), (H5), (H5’), then Assumption 2.2 (6) is satisfied.

Furthermore if all other conditions on Assumption 2.2 are satisfied, then there exist
some positive finite random variables Ξ1 and Ξ2 such that

|EN [f ]− f(θ0)| ≤ Ξ1

N1/2−ε a.s., and
∣∣EnN,m[f ]− f(θ0)

∣∣ ≤ Ξ2

N1/2−ε a.s.,



50 ARTURO KOHATSU-HIGA, NICOLAS VAYATIS, AND KAZUHIRO YASUDA

and ∣∣EN [f ]− EnN,m[f ]
∣∣ ≤ Ξ1 + Ξ2

N1/2−ε a.s.

In fact, we remark that we are able to simplify the inequalities (35) and (36) to the
above α1 > 8α2 + 1 + 2ϕ2c2

∆ if one can freely choose the constants r3, r4, ṙ4, ṙ6 and q̇6

due to the existence of all moments associated with the processes in the hypotheses (iii),
(iv), (vi) (viii) and (ix). Remember that ϕ2 is the constant which was introduced
in the lower bound of p̄Nθ in assumption (H1) and c1 is the constant related to the
integrability condition in Hypothesis (H0). Hence from the assumptions c1c2 > 2 and
α1 > 8α2 + 1 + 2ϕ2c2

∆ , we can find that c1 and ϕ2 are connected through the parameter
c2.

7. Appendix

7.1. Refinements of Markov’s inequalities. In this section we state a refinement of
Markov’s inequality that is applied in this article. For λ > 0, let Sn :=

∑n
i=1Xi where

Xi is a sequence of i.i.d. r.v.’s with E[Xi] = 0.

Lemma 7.1. Let X be a random variable with E[X] = 0. Then, for λ ∈ R, c > 0 and
p := P (|X| < c), we have

E
[
eλX1 (|X| < c)

]
≤ −e

λc − e−λc

2c
E[X1(|X| ≥ c)] + pe

λ2c2

2 .

Proof. From the convexity of the exponential function, we have, for a ≤ x ≤ b,

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb.

Now we let a = −c and b = c for some positive constant c. Then

E
[
eλX1 (|X| < c)

]
≤ cp− E[X1(|X| < c)]

2c
e−λc +

E[X1(|X| < c)] + cp

2c
eλc

=
eλc − e−λc

2c
E[X1(|X| < c)] + p

eλc + e−λc

2
.

The conclusion follows using that E[X] = 0 and analyzing the function ln(ex+e−x)−ln 2,
which gives

eλc + e−λc

2
≤ eλ

2c2

2 .

�

Lemma 7.2. Let q−1
1 + q−1

2 = 1 and assume that E[|Xi|q1 ] < C̄q1 , then for all 0 < ε < 1
and {fn}n∈N ⊂ R+ satisfying that εf−1

n ≤ K we have

(37)

P (|Sn| > nε; |Xi| < fn, i = 1, · · · , n)

≤ 2e
−nε2

2f2
n

{
1 + (q2 − 1)

(
q−1
2 K1

ε

f2
n

C̄
q−1
1
q1 e

− ε2

2f2
n

)q1}n
.

Here K1 = max
{

1, e
K−e−K

2K

}
.

Proof. By Markov’s inequality, we have that for λ > 0,

(38) A := P (Sn > t; |Xi| < fn, i = 1, · · · , n) ≤ e−λt
n∏
i=1

E
[
eλXi1 (|Xi| < fn)

]
.

From Lemma 7.1, we have

A ≤ e−λt
{
−e

λfn − e−λfn
2fn

E[Xi1(|Xi| ≥ fn)] + pne
λ2f2

n
2

}n
,
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where pn := P (ω ∈ Ω; |X1(ω)| < fn). Here we take λ = ε
f2
n

and t = nε; to obtain

A ≤ e−
nε2

f2
n

{
−e

ε
fn − e−

ε
fn

2fn
E[Xi1(|Xi| ≥ fn)] + pne

ε2

2f2
n

}n
Furthermore if we assume that εf−1

n ≤ K then

e
ε
fn − e−

ε

fn

2εf−1
n

≤ eK − e−K

2K
=: K1.

Therefore by Cauchy-Schwarz’s inequality with q−1
1 + q−1

2 = 1, we have∣∣∣∣∣−e
ε
fn − e−

ε
fn

2fn
E[Xi1(|Xi| ≥ fn)] + pne

ε2

2f2
n

∣∣∣∣∣ ≤ K1
ε

f2
n

C̄
q−1
1
q1 (1− pn)

q−1
2 + pne

ε2

2f2
n .

Next, we consider the function g(x) = β(1 − x)q
−1
2 + αx for x ∈ [0, 1]. This function

has its absolute maximum at x∗ = 1 −
(

β
q2α

)q1
and its maximum value is given by

maxx∈[0,1] g(x) = α
(

1 + (q2 − 1)
(

β
q2α

)q1)
. Therefore if applied to the above inequality,

we have (37).
For P (Sn < −t; |Xi| < fn, i = 1, · · · , n), we can apply the same argument, and from

P (|Sn| < t; |Xi| < fn, i = 1, · · · , n)

= P (Sn > t; |Xi| < fn, i = 1, · · · , n) + P (Sn < −t; |Xi| < fn, i = 1, · · · , n) ,

we can obtain our conclusion. �

7.2. An application of Komatsu inequality.

Lemma 7.3. Let c be a positive constant and M be a positive random variable.

(i). For fixed ω and all a ≥ M(ω)
2c , we have

e−c(a
2−Mc a)

c(a− M
2c ) +

√
c2(a− M

2c )2 + 2c
≤
∫ ∞
a

e−cx
2+Mxdx ≤ e−c(a

2−Mc a)

c(a− M
2c ) +

√
c2(a− M

2c )2 + c
.

Proof. Set y =
√

2c(x− M
2c ). We can rewrite the middle term as follow:∫ ∞

a

e−cx
2+Mxdx = e

M2

4c

∫ ∞
a

e−c(x−
M
2c )2

dx =
e
M2

4c

√
2c

∫ ∞
√

2c(a−M2c )

e−
y2

2 dy.

From Komatsu’s inequality in p.17 of Itô and McKean [16], we have

e
M2

4c

√
2c

2e−c(a−
M
2c )2

√
2c(a− M

2c ) +
√

2c(a− M
2c )2 + 4

≤
∫ ∞
a

e−cx
2+Mxdx ≤ e

M2

4c

√
2c

2e−c(a−
M
2c )2

√
2c(a− M

2c ) +
√

2c(a− M
2c )2 + 2

.

Now we have obtained the inequality. �
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