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BERNSTEIN-VON MISES THEOREM AND SMALL NOISE

ASYMPTOTICS OF BAYES ESTIMATORS FOR PARABOLIC

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

The Bernstein-von Mises theorem, concerning the convergence of suitably normalized

and centred posterior density to normal density, is proved for a certain class of linearly
parametrized parabolic stochastic partial differential equations (SPDEs) driven by

space-time white noise as the intensity of noise decreases to zero. As a consequence,
the Bayes estimators of the drift parameter, for smooth loss functions and priors, are

shown to be strongly consistent and asymptotically normal, asymptotically efficient

and asymptotically equivalent to the maximum likelihood estimator as the intensity
of noise decreases to zero. Also computable pseudo-posterior density and pseudo-

Bayes estimators based on finite dimensional projections are shown to have similar

asymptotics as the noise decreases to zero and the dimension of the projection remains
fixed.

1. Introduction

Parameter estimation is an inverse problem. Loges [17] initiated the study of parame-
ter estimation in infinite dimensional stochastic differential equations. When the length
of the observation time becomes large, he obtained consistency and asymptotic normality
of the maximum likelihood estimator (MLE) of a real valued drift parameter in a Hilbert
space valued SDE. Koski and Loges [15] extended the work of Loges [17] to minimum
contrast estimators. Koski and Loges [14] applied the work to a stochastic heat flow prob-
lem. Bishwal [4] obtained asymptotic statistical results for discretely sampled diffusions.
See Bishwal [5] for recent results on likelihood asymptotics and Bayesian asymptotics for
drift estimation of finite and infinite dimensional stochastic differential equations. Large
time asymptotics for Bayes estimators for Hilbert valued SDEs is studied in Bishwal [5].

Huebner, Khasminskii and Rozovskii [10] started statistical investigation in SPDEs.
They gave two contrast examples of parabolic SPDEs in one of which they obtained con-
sistency, asymptotic normality and asymptotic efficiency of the MLE as noise intensity
decreases to zero under the condition of absolute continuity of measures generated by
the process for different parameters (the situation is similar to the classical finite dimen-
sional case) and in the other they obtained these properties as the finite dimensional
projection becomes large under the condition of singularity of the measures generated by
the process for different parameters. The second example was extended by Huebner and
Rozovskii [11] and the first example was extended by Huebner [9] to MLE for general
parabolic SPDEs where the partial differential operators commute and satisfy different
order conditions in the two cases.

Huebner [8] extended the problem to the ML estimation of multidimensional param-
eter. Lototsky and Rozovskii [18] studied the same problem without the commutativity
condition. Small noise asymptotics of the nonparmetric estimation of the drift coefficient
was studied by Ibragimov and Khasminskii [13].
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The Bernstein-von Mises theorem (BVT, in short), concerning the convergence of
suitably normalized and centered posterior distribution to normal distribution, plays
a fundamental role in asymptotic Bayesian inference, see Le Cam and Yang (1990).
Borwanker et al. (1971) obtained the BVT for discrete time Markov processes. Bose [7]
extended the BVT to the homogeneous nonlinear diffusions. As a further refinement
in BVT, Bishwal [2] obtained sharp rates of convergence to normality of the posterior
distribution and the Bayes estimators for the Ornstein-Uhlenbeck process.

All these above work on BVT are concerned with finite dimensional SDEs. Bishwal [1]
proved the BVT and obtained asymptotic properties of regular Bayes estimator of the
drift parameter in a Hilbert space valued SDE when the corresponding ergodic diffusion
process is observed continuously over a time interval [0, T ]. The asymptotics are studied
as T → ∞ under the condition of absolute continuity of measures generated by the
process. Results are illustrated for the example of an SPDE.

Bishwal (2002) obtained BVT and spectral asymptotics of Bayes estimators for par-
abolic SPDEs when the number of Fourier coefficients becomes large. In that case, the
measures generated by the process for different parameters are singular. Here we treat
the case when the measures generated by the process for different parameters are abso-
lutely continuous under some conditions on the order of the partial differential operators.
We study the asymptotic properties of the posterior distributions and Bayes estimators
when we have either fully observed process or finite-dimensional projections. The asymp-
totic parameter is only the intensity of noise. In this paper we treat the more general
model.

The rest of the paper is organized as follows : Section 2 contains model, assumptions
and preliminaries. In Section 3 we prove the Bernstein-von Mises theorems and Sec-
tion 4 contains the asymptotic properties of regular Bayes estimator and pseudo Bayes
estimator. Section 5 provides heat equation as an example of SPDE.

2. Model and Preliminaries

Let G be a smooth bounded domain in Rd. We assume that the boundary ∂G of this
domain is a C∞-manifold of dimension (d−1) and locally G is totally on one side of ∂G.
For a multi-index γ = (γ1, . . . , γd) we write

Dγf(x) :=
∂|γ|

∂xγ11 . . . ∂xγdd
f(x)

where |γ| = γ1 + γ2 + . . .+ γd.
Let A0 and A1 be partial differential operators of order m0 and m1 (the order of the

highest derivative in it) respectively, written in the form

Ai(x)u := −
∑

|α|,|β|≤mi

(−1)|α|Dα(aαβi (x)Dβ(u))

where aαβi (x) ∈ C∞(G). For θ ∈ R, write Aθ = θA1 + A0 and aαβ(θ, x) = θaαβ1 (x) +

aαβ0 (x). Let us fix θ0, the unknown true value of the parameter θ. Let (Ω,F , P ) be
a complete probability space and W (t, x) be a cylindrical Brownian motion on on this
space with values in the Schwarz space of distributions D′(G).

A cylindrical Brownian motion (C.B.M) is W = W (t, x) is a distribution valued pro-
cess such that for every such that for every φ ∈ C∞0 (G) with ‖φ‖L2(G) = 1 the inner prod-
uct 〈W (t, ·), φ(·)〉 is a one dimensional Brownian motion and for every φ1, φ2 ∈ C∞0 (G),

E(〈W (s, ·), φ1(·)〉〈W (t, ·), φ2(·)〉) = (s ∧ t)(φ1, φ2)L2(G).
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The C.B.M. W can be expanded in the series W (t, x) =
∑∞
i=1Wi(t)hi(x) where

{Wi(t)}∞i=1 are independent one dimensional Brownian motions and {hi}∞i=1 is complete
orthonormal system in L2(G). The latter series converges P -a.s.

We will consider the Dirichlet problem for a parabolic SPDE associated with the
operator Aθ, and driven by the C.B.M. W :

∂u(t, x)

∂t
= Aθ(x)u(t, x) +

∂

∂t
W (t, x) (2.1)

u(0, x) = u0(x) (2.2)

Dγu(t, x)|∂G = 0 (2.3)

for all multi-indices γ with |γ| ≤ m− 1.

The problem (2.1) - (2.3) is understood in the sense of distributions.
Let ε be the strength of noise. On the complete probability space (Ω,F , P ) define the

parabolic SPDE

duε(t, x) = Aθuε(t, x)dt+ εdW (t, x), 0 ≤ t ≤ T, x ∈ G (2.4)

with Dirichlet boundary conditions

u(0, x) = u0(x) (2.5)

Dγu(t, x)|∂G = 0 (2.6)

for all multi-indices γ with |γ| ≤ m− 1.

where Aθ = θA1 +A0, A1 and A0 are partial differential operators of orders m1 and m2

respectively, Aθ has order 2m = max(m1,m0), the process W (t, x) is a cylindrical Brow-
nian motion in L2([0, T ]×G) where G is a bounded domain in Rd and u0 ∈ L2(G). Here
θ ∈ Θ ⊆ R is the unknown parameter to be estimated on the basis of the observations of
the field uθ(t, x), t ∈ [0, T ], x ∈ G. Let θ0 be the true value of the unknown parameter.

The following conditions are assumed:
(H1) m1 < m− d/2 where d denotes the dimension of the x−space G.
(H2) The operators A1 and A0 are formally self-adjoint, i.e., for i = 0, 1,∫

G

Aiuvdx =

∫
G

uAivdx for all u, v ∈ C∞0 (G).

(H3) There is a compact neighborhood Θ of θ0 so that {Aθ, θ ∈ Θ} is a family of
uniformly strongly elliptic operators of order 2m = max(m1,m0).

The latter means that there exists a positive constant δ such that for all x ∈ G, θ ∈ Θ
and ξ ∈ Rd, ∑

|α|,|β|=m

aαβ(θ, x)ξαξβ ≥ δ|ξ|2m,

where ξγ := ξγ1i . . . ξγdd .
For s > 0 denote the closure of C∞0 (G) in the Sobolev space W s,2(G) by W s.2

0 .
It is well known from the theory of self-adjoint elliptic operators that the operator Aθ

with boundary condition (2.6) can be extended to a closed, self-adjoint operator Lθ on

L2(G). The domain of Lθ, written D(Lθ), is the set of all functions u ∈Wm,2
0 such that

Lθu ∈ L2(G). For all v ∈Wm,2
0

aθ(u, v) := −
∑

|α|,|β|≤m

∫
G

aαβ(θ, x)Dβu(x)Dαv(x)dx

= (Lθu, v)L2(G)

and Lθu = Aθu in the sense of distribution. Under (H3), Lθ is lower semibounded (i.e.,
there is a constant k(θ) so that k(θ)I − Lθ > 0 and the resolvent (k(θ)I − Lθ)−1 is
compact). Let Λθ := (k(θ)I − Lθ)1/2m, the spectrum of this operator is a discrete set



BERNSTEIN-VON MISES THEOREM . . . 9

σ(Λθ) consisting of eigenvalues of finite multiplicity. We enumerate them in order of
magnitude,

σ(Λθ) = {λi(θ)}∞i=1, 0 < λi(θ) < λ2(θ) < . . .

where each one is counted repeatedly as many times as its multiplicity. Let {hi(θ)}∞i=1

be an orthonormal system of eigenfunctions of Λθ. Then {hi(θ)}∞i=1 is complete in L2(G)

and hi(θ) ∈Wm,2
0 (G) ∩ C∞(G) for all i.

In general, the functions hi(θ) might depend on θ. For the sake of simplicity we shall
rule out this possibility in future. We assume :

(H4) There exists a complete orthonormal system {hi}∞i=1 in L2(G) such that for

every i = 1, 2, . . . , hi ∈Wm,2
0 (G) ∩ C∞(G) and

Λθhi = λi(θ)hi, and Lθhi = µi(θ)hi for all θ ∈ Θ

where Lθ is a closed self adjoint extension of Aθ, Λθ := (k(θ)I − Lθ)1/2m, k(θ) is a
constant and and the spectrum of the operator Λθ consists of eigenvalues {λi(θ)}∞i=1 of
finite multiplicities and µi(θ) = −λ2m

i (θ) + k(θ).
(H5) The operator A1 is uniformly strongly elliptic and has the same system of

eigenfunctions {hi}∞i=1 as Lθ.
For α > d/2, define the Hilbert space H−α with norm ‖ · ‖ as in Huebner and

Rozovskii [11]. Let PT,εθ the measure generated by the solution {uε(t, x), t ∈ [0, T ], x ∈ G}
to the problem (2.4) – (2.6) on the space C([0, T ];H−α) with the associated Borel σ-
algebra BT . Note that condition (H1) is equivalent to∫ T

0

‖ A1u
ε(s) ‖2 ds <∞ a. s. for fixed ε.

Thus under (H1), for different θ, the measures PT,εθ are mutually absolutely continuous.

The Radon-Nikodym derivative (likelihood) of PT,εθ with respect to PT,εθ0
is given by

ZθT,ε(u) :=
dPT,εθ

dPT,εθ0

(uε) = exp

{
ε−1(θ − θ0)

∫ T

0

(A1u
ε(s), duε(s))0

−1

2
ε−2(θ2 − θ2

0)

∫ T

0

‖A1u
ε(s)‖20ds

−ε−1(θ − θ0)

∫ T

0

(A1u
ε(s), A0u

ε(s))0ds

}
.

(2.7)

Maximizing ZθT,ε(u) with respect to θ provides the maximum likelihood estimator (MLE)
given by

θ̂ε =

∫ T
0

(A1u
ε(s), duε(s)−A0u

ε(s)ds)0∫ T
0
‖A1uε(s)‖20ds

. (2.8)

The Fisher information I(θ0) related to
dPT,εθ

dPT,εθ0

is given by

I(θ0) := Eθ0

∫ T

0

‖A1u
ε(s)‖20ds.

Note that uε(t, x) is the observation at time t at point x. In practice, it is impossible to
observe the field uε(t, x) at all points t and x. Hence, only a finite dimensional projection
un,ε := (uε1(t), . . . , uεn(t)), t ∈ [0, T ] of the solution of the equation (2.4) are observable.
In other words, we can observe the first n highest nodes in the Fourier expansion

uε(t, x) =

∞∑
t=1

uεi(t)φi(x)
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corresponding to some orthogonal basis {φi(x)}∞i=1. We consider observation continuous
in time t ∈ [0, T ]. Note that uθi (t), i ≥ 1 are independent one dimensional Ornstein-
Uhlenbeck processes (see Huebner and Rozovskii [11]).

Consider the projection of H−α on to the subspace Rn. Let PT,n,εθ be the measure
generated by un,ε on C[(0, T ];Rn) with the associated Borel σ-algebra BnT .

For θ ∈ Θ, the measures PT,n,εθ and PT,n,εθ0
are mutually absolutely continuous with

Radon-Nikodym derivative (likelihood ratio) given by

ZθT,n,ε(u) :=
dPT,n,εθ

dPT,n,εθ0

(un,ε) = exp

{
ε−1(θ − θ0)

∫ T

0

(A1u
n,ε(s), dun,ε(s))0

−1

2
ε−2(θ2 − θ2

0)

∫ T

0

‖A1u
n,ε(s)‖20ds

−ε−1(θ − θ0)

∫ T

0

(A1u
n,ε(s), A0u

n,ε(s))0ds

}
.

(2.9)

Maximizing Zθn,ε(u) with respect to θ provides the approximate maximum likelihood
estimator (AMLE) given by

θ̂n,ε =

∫ T
0

(A1u
n,ε(s), dun,ε(s)−A0u

n,ε(s)ds)0∫ T
0
‖A1un,ε(s)‖20ds

. (2.10)

Assumption (H5) implies in particular that for every i, µi := µi(θ0) = θ0νi + ki and
A1hi = νihi and A0hi = kihi.

Thus

θ̂ε =

∑∞
i=1 λ

2α
i νi

∫ T
0
uεi(t)(du

ε
i(t)− kiuεi(t)dt)∑∞

i=1 λ
2α
i ν2

i

∫ T
0
|uεi |2(t)dt

and

θ̂n,ε =

∑n
i=1 λ

2α
i νi

∫ T
0
uεi(t)(du

ε
i(t)− kiuεi(t)dt)∑n

i=1 λ
2α
i ν2

i

∫ T
0
|uεi |2(t)dt

.

The normalized errors are given by

ε−1(θ̂ε − θ0) =

∑∞
i=1 λ

2α
i νi

∫ T
0
uεi(t)dWi(t)∑∞

i=1 λ
2α
i ν2

i

∫ T
0
|uεi |2(t)dt

and

ε−1(θ̂n,ε − θ0) =

∑n
i=1 λ

2α
i νi

∫ T
0
uεi(t)dWi(t)∑n

i=1 λ
2α
i ν2

i

∫ T
0
|uεi |2(t)dt

.

By the central limit theorem for stochastic integrals, ε−1(θ̂ε − θ0)→ N (0, I(θ0)−1) as

ε→ 0 and ε−1(θ̂n,ε − θ0)→ N (0, In(θ0)−1) as ε→ 0.
Now we will derive the Fisher information I(θ0). Recall that the Fisher information

is given by

I(θ0) = Eθ0

∫ T

0

‖A1u
ε(s)‖20ds.

The observations uεi(t), u
ε
2(t), . . . where uεi(t), i ≥ 1 are the Fourier coefficients of the

uε(t, x) satisfy the system of ordinary stochastic differential equations

duεi(t) = µi(θ)u
ε
i(t)dt+ ελ−αi Wi(t),

uεi(0) = u0i
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where µi(θ0) = ki + θ0νi. The solution of the above SDE is

uεi(t) = u0ie
µi(θ0)t + ελ−αi

∫ t

0

eµi(θ0)(t−s)dWi(s).

The likelihood ZθT,n,ε(u) can be written as

ZθT,n,ε(u) :=
dPT,n,εθ

dPT,n,εθ0

(un,ε) = exp

{
ε−1(θ − θ0)

n∑
i=1

λ2α
i νi

∫ T

0

uεi(t)dWi(t)

−1

2
ε−2(θ − θ0)2

n∑
i=1

λ2α
i ν2

i

∫ T

0

|uεi |2(t)dt

} (2.11)

The Fisher information corresponding to the likelihood ZθT,n,ε(u) is given by

In,ε(θ0) = ε−2E

n∑
i=1

λ2α
i ν2

i

∫ T

0

|uεi(t)|2dt

= ε−2
n∑
i=1

λ2α
i ν2

i

2µi
u2

0i(e
2µiT − 1)− T

n∑
i=1

ν2
i

2µi
+

n∑
i=1

ν2
i

(
e2µiT − 1

4µ2
i

)
.

For smooth initial conditions, i.e.,
∑∞
i=1 i

2s/du2
0i < ∞ for some s, the first sum con-

verges as n→∞. The second sum dominates the third.
Similar to the operator Aθ, the operator A1 supplemented by the Dirichlet boundary

conditions Dγu(t, x)|∂G = 0 for all |γ| ≤ r − 1 can be extended to a closed self-adjoint
operator on L2(G). We will denote this operator by L1. Its domain D(L1) consists of all

functions u ∈W r,2
0 such that L1 ∈ L2(G). Thus A1hi = νihi for all i = 1, 2, . . .. Accord-

ing to the spectral theory of self-adjoint operators, the asymptotics of the eigenvalues µi
and νi are given by |νi| ∼ im1/d and µi ∼ −i2m/d, 2m = max(m0,m1).

Due to the asymptotics of the eigenvalues we have

−
∞∑
i=1

ν2
i

µi
=

∞∑
i=1

i2(m1−m)/d <∞

since 2(ord(A1)− ord(A0 + θA1))/d = 2(m1 −m)/d < −1 by (H1).
Hence

lim
n→∞

lim
ε→0

ε2In,ε(θ0) = lim
ε→0

lim
n→∞

ε2In,ε(θ0) =

∞∑
i=1

λ2α
i ν2

i

2µi
u2

0i(e
2µiT − 1) =: I(θ0).

With smooth initial condition this sum converges and the Fisher information is finite
I(θ0) <∞ and if u0i 6= 0, then I(θ0) > 0.

The Fisher information In(θ0) related to
dPT,n,εθ

dPT,n,εθ0

is given by

lim
ε→0

ε2In,ε(θ0) =

n∑
i=1

λ2
i

2µi
u2

0i(e
2µiT − 1) =: In(θ0)

Let ω be a real valued, non-negative loss function of polynomial majorant defined on R,
which are symmetric, ω(0) = 0 and monotone on the positive real line.

Under the conditions (H1) - (H5), Huebner [9] showed that θ̂ε and θ̂ε,n are strongly
consistent, asymptotically normally distributed with normalization ε−1 and asymptoti-
cally efficient with respect to the loss function ω as ε→ 0 and n and T are fixed.
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3. Bernstein-von Mises Theorem

In this section, we show the convergence of the posterior distributions to normal
distribution, which is called the Bernsten-von Mises theorem or Bayesian central limit
theorem. Suppose that Π is a prior probability measure on (Θ,D), where D is the σ-
algebra of Borel subsets of Θ. Assume that Π has a density π(·) with respect to the
Lebesgue measure and the density is continuous and positive in an open neighborhood
of θ0.

The posterior density of θ given uε is given by

p(θ|uε) :=
ZθT,ε(u)π(θ)∫

Θ
ZθT,ε(u)π(θ)dθ

. (3.1)

Let τ := ε−1(θ − θ̂ε). Then the posterior density of ε−1(θ − θ̂ε) is given by

p∗(τ |uε) := ε−1p(θ̂ε + ετ |uε).
Let

νT,ε(τ) :=
dPT,ε

θ̂ε+ετ
/dPT,εθ0

dPT,ε
θ̂ε
/dPT,εθ0

=
dPT,ε

θ̂ε+ετ

dPT,ε
θ̂ε

,

Cε :=

∫ ∞
−∞

νε(τ)π(θ̂ε + ετ)dτ.

Clearly

p∗(τ |uε) = C−1
ε νT,ε(τ)π(θ̂ε + ετ).

The pseudo-posterior density of θ given in un,ε is given by

q(θ|un,ε) :=
ZθT,n,ε(u)π(θ)∫

Θ
ZθT,n,ε(u)π(θ)dθ

. (3.2)

The idea behind pseudo-posterior density is that while a regular posterior density uses
the full exact likelihood, pseudo-posterior uses the partial likelihood based on the finite
number of Fourier coefficients un,ε := (uε1(t), . . . , uεn(t)), t ∈ [0, T ]. Because the complete
observation can not be observed in practice, pseudo-posterior density has computational
advantage.

Let φ := ε−1(θ− θ̂n,ε). Then the pseudo-posterior density of ε−1(θ− θ̂n,ε) is given by

q∗(φ|un,ε) := ε−1q(θ̂n,ε + εφ|un,ε).
Let

νT,n,ε(φ) :=
dPT,n,ε

θ̂n,ε+εφ
/dPT,n,εθ0

dPT,n,ε
θ̂n,ε/dPT,n,εθ0

=
dPT,n,ε

θ̂n,ε+εφ

dPT,n,ε
θ̂n,ε

,

Dn,ε :=

∫ ∞
−∞

νT,n,ε(φ)π(θ̂ε + εφ)dφ.

Clearly

q∗(φ|un,ε) = D−1
n,ενT,n,ε(φ)π(θ̂n,ε + εφ).

Let K(·) be a non-negative measurable function satisfying the following two conditions :
(K1) There exists a number η, 0 < η < 1, for which∫ ∞

−∞
K(τ) exp{−1

2
τ2(1− η)}dτ <∞.

(K2) For every λ > 0 and δ > 0

e−λε
−2

∫
|τ |>δ

K(ε−1τ)π(θ̂ε + τ)dτ → 0 a.s. [Pθ0 ] as ε→ 0.
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We need the following Lemma to prove the Bernstein-von Mises theorem.

Lemma 3.1. Under the assumptions (H1) - (H5) and (K1) - (K2),
(i) There exists a δ0 > 0 such that

lim
ε→0

∫
|τ |≤δ0ε−1

K(τ)

∣∣∣∣νε(τ)π(θ̂ε + ε−1τ)− π(θ0) exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

(ii) For every δ > 0,

lim
ε→0

∫
|τ |≥δε−1

K(τ)

∣∣∣∣νε(τ)π(θ̂ε + ε−1τ)− π(θ0) exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. From (3.1) and (3.2), it is easy to check that

log νε(τ) = −1

2
τ2ε2

∫ T

0

‖A1u
ε(s)‖20ds

Now (i) follows by an application of dominated convergence theorem.
For every δ > 0, there exists λ > 0 depending on δ and β such that

lim
ε→0

∫
|τ |≥δε−1

K(τ)

∣∣∣∣νε(τ)π(θ̂n + ετ)− π(θ0) exp(−1

2
τ2)

∣∣∣∣ dτ
≤

∫
|τ |≥δε−1

K(τ)νε(τ)π(θ̂n + ετ)dτ +

∫
|τ |≥δε−1

π(θ0) exp(−1

2
τ2)dτ

≤ e−λε
−2

∫
|τ |≥δε−1

K(τ)π(θ̂n + ετ)dτ + π(θ0)

∫
|τ |≥δε−1

exp(−1

2
τ2)dτ

=: Fε +Gε

By condition (K2), it follows that Fε → 0 a.s. [Pθ0 ] as ε→ 0 for every δ > 0. Condition
K(1) implies that Gε → 0 as ε→ 0. This completes the proof of the Lemma. �

Now we are ready to prove the generalized version of the Bernstein-von Mises theorem
for parabolic SPDEs.

Theorem 3.1. Under the assumptions (H1) - (H5) and (K1) - (K2), we have

lim
ε→0

∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |uε)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. From Lemma 3.1, we have

lim
ε→0

∫ ∞
−∞

K(τ)

∣∣∣∣νε(τ)π(θ̂ε + ετ)− π(θ0) exp(−1

2
I(θ)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ]. (3.3)

Substituting K(τ) = 1 which trivially satisfies (K1) and (K2), we have

Cε =

∫ ∞
−∞

νn(τ)π(θ̂ε + ετ)→ π(θ0)

∫ ∞
−∞

exp(−1

2
I(θ)τ2)dτ a.s. [Pθ0 ]. (3.4)

Therefore, by (3.3) and (3.4), we have∫ ∞
−∞

K(τ)

∣∣∣∣p∗(τ |uε)− (
β

2π
)1/2 exp(−1

2
τ2)

∣∣∣∣ dτ
≤

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
ε νn(τ)π(θ̂ε + ετ)− C−1

ε π(θ0) exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ
+

∫ ∞
−∞

K(τ)

∣∣∣∣C−1
ε π(θ0) exp(−1

2
τ2)− (

I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ
−→ 0 a.s. [Pθ0 ] as ε→ 0.

�
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Theorem 3.2. Suppose (H1)-(H5) and
∫∞
−∞ |θ|

rπ(θ)dθ < ∞ for some non-negative in-
teger r hold. Then

lim
ε→0

∫ ∞
−∞
|τ |r

∣∣∣∣p∗(τ |uε)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem follows from
Theorem 3.1. Suppose r ≥ 1. Let K(τ) = |τ |r, δ > 0 and ε > 0. Using |a + b|r ≤
2r−1(|a|r + |b|r), we have

e−λε
−2

∫
|τ |>δ

K(τε−1)π(θ̂ε + τ)dτ

≤ ε−r/2e−λε
−1

∫
|τ−θ̂ε|>δ

π(τ)|τ − θ̂ε|rdτ

≤ 2r−1ε−re−λε
−2

[

∫
|τ−θ̂ε|>δ

π(τ)|τ |rdτ +

∫
|τ−θ̂ε|>δ

π(τ)|θ̂ε|rdτ ]

≤ 2r−1ε−re−λε
−1

[

∫ ∞
−∞

π(τ)|τ |rdτ + |θ̂ε|r]

−→ 0 a.s. [Pθ0 ] as ε→ 0

from the strong consistency of θ̂ε (see Huebner [9]) and hypothesis of the theorem. Thus
the theorem follows from Theorem 3.1. �

Results similar to Theorems 3.1 and 3.2 hold when the posterior density is replaced
by the pseudo-posterior density, the MLE by the AMLE and the Fisher information by
In(θ0).

Theorem 3.3. Under the assumptions (H1) - (H5) and (K1) - (K2), we have

lim
ε→0

∫ ∞
−∞

K(τ)

∣∣∣∣q∗(φ|un,ε)− (
In(θ0)

2π
)1/2 exp(−1

2
In(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Theorem 3.4. Suppose (H1)-(H5) and
∫∞
−∞ |θ|

rπ(θ)dθ < ∞ for some non-negative in-
teger r hold. Then

lim
ε→0

∫ ∞
−∞
|φ|r

∣∣∣∣q∗(φ|un,ε)− (
In(θ0)

2π
)1/2 exp(−1

2
In(θ0)τ2)

∣∣∣∣ dφ = 0 a.s. [Pθ0 ].

Remark 3.1. For r = 0 in Theorem 3.2, we have

lim
ε→0

∫ ∞
−∞

∣∣∣∣p∗(τ |uε)− (
I(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

For r = 0 in Theorem 3.4, we have

lim
ε→0

∫ ∞
−∞

∣∣∣∣q∗(τ |uε)− (
In(θ0)

2π
)1/2 exp(−1

2
I(θ0)τ2)

∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

These are the classical forms of Bernstein-von Mises theorem for parabolic SPDEs in
its simplest form.

As a special case of Theorem 3.2, we obtain for all r ≥ 1,

Eθ0 [ε−1(θ̂ε − θ0)]r → E[ξr]

as ε→ 0 where ξ ∼ N (0, I(θ0)).
As a special case of Theorem 3.4, we obtain for all r ≥ 1,

Eθ0 [ε−1(θ̂n,ε − θ0)]r → E[ζr]

as ε→ 0 where ζ ∼ N (0, In(θ0)).
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4. Bayes Estimation

As an application of Theorem 3.1, we obtain the asymptotic properties of a regular
Bayes estimator of θ. Suppose l(θ, φ) is a loss function defined on Θ×Θ. Assume that
l(θ, φ) = l(|θ − φ|) ≥ 0 and l(·) is non decreasing. Suppose that J is a non-negative
function on R+ and K(·) and G(·) are functions on R such that

(B1) J(ε)l(τε) ≤ G(τ) for all ε > 0,
(B2) J(ε)l(τε)→ K(τ) as ε→ 0 uniformly on bounded subsets of R.
(B3)

∫∞
−∞K(τ + s) exp{− 1

2τ
2}dτ has a strict minimum at s = 0.

(B4) G(·) satisfies (K1) and (K2).
Let

Bε(ψ) :=

∫
Θ

l(θ, ψ)p(θ|uε)dθ.

A regular Bayes estimator θ̃ε based on uε is defined as

θ̃ε := arg inf
ψ∈Θ

Bε(ψ).

Assume that such an estimator exists.
Further assume that R is a non-negative function on N × R+ and K(·) and G(·) are

functions on R such that
(M1) R(n, ε)l(τε) ≤ G(τ) for all n and ε > 0,
(M2) R(n, ε)l(τε)→ K(τ) as ε→ 0 uniformly on bounded subsets of R.
(M3)

∫∞
−∞K(τ + s) exp{− 1

2τ
2}dτ has a strict minimum at s = 0.

(M4) G(·) satisfies (K1) and (K2).
Let

Mn,ε(ψ) =

∫
Θ

l(θ, ψ)q(θ|un,ε)dθ.

A pseudo-Bayes estimator θ̃n,ε based on un,ε is defined as

θ̃n,ε := arg inf
ψ∈Θ

Mn,ε(ψ).

Assume that such an estimator exists.
The following Theorem shows that MLE and Bayes estimators are asymptotically

equivalent as ε→ 0.

Theorem 4.1. Assume that (H1) - (H5), (K1) - (K2) and (B1) - (B4) hold. Then we
have

(i) ε−1(θ̃ε − θ̂ε)→ 0 a.s. [Pθ0 ] as ε→ 0,

(ii) lim
ε→0

J(ε)Bε(θ̃
ε) = lim

ε→0
J(ε)Bε(θ̂

ε)

= (
1

2π
)1/2

∫ ∞
−∞

K(τ) exp(−1

2
I−1(θ0)τ2)dτ a.s. [Pθ0 ].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1971). We omit the
details. �

Corollary 4.1. Under the assumptions of Theorem 4.1, we have
(i) θ̃ε → θ0 a.s. [Pθ0 ] as ε→ 0.

(ii) ε−1(θ̃ε − θ0)
L→ N (0, I−1(θ0)) as ε→ 0.

Proof. (i) and (ii) follow easily by combining Theorem 4.1 and the strong consistency
and asymptotic normality results of the MLE in Huebner [9]. �

Theorem 4.2. Under the assumptions of Theorem 4.1, we have

lim
δ→∞

lim
ε→0

sup
|θ−θ0|<δ

Eω
(
ε−1(θ̃ε − θ0)

)
= Eω(ξ), L(ξ) = N (0, I−1(θ0)),
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where ω(·) is a loss function as defined at the end of Section 2.

Proof. The Theorem follows from Theorem III.2.1 in Ibragimov, Has’minskii [12] since
here conditions (N1) - (N4) of the said theorem are satisfied using Lemma 3.1-3.3 and
local asymptotic normality (LAN) property. �

The following theorem shows that the AMLE and pseudo-Bayes estimators are asymp-
totically equivalent.

Theorem 4.3. Assume that (H1) - (H5), (K1) - (K2) and (M1) - (M4) hold. Then we
have

(i) ε−1(θ̃n,ε − θ̂n,ε)→ 0 a.s. [Pθ0 ] as ε→ 0,

(ii) lim
ε→0

R(n, ε)Mn,ε(θ̃
n,ε) = lim

ε→0
R(n, ε)Mn,ε(θ̂

n,ε)

= (
1

2π
)1/2

∫ ∞
−∞

K(φ) exp(−1

2
I−1
n (θ0)φ2)dφ a.s. [Pθ0 ].

Corollary 4.2. Under the assumptions of Theorem 4.3, we have
(i) θ̃n,ε → θ0 a.s. [Pθ0 ] as ε→ 0.

(ii) ε−1(θ̃n,ε − θ0)
L→N (0, I−1

n (θ0)) as ε→ 0.

Theorem 4.4. Under the assumptions of Theorem 4.3, we have

lim
δ→∞

lim
ε→0

sup
|θ−θ0|<δ

Eω
(
ε−1(θ̃n,ε − θ0)

)
= Eω(ζ), L(ζ) = N (0, I−1

n (θ0)),

where ω(·) is a loss function as defined at the end of Section 2.

5. Example

Here we give an example where the conditions of the previous theorems are satisfied.
Consider the parabolic SPDE

duε(t, x) = θuε(t, x) +
∂2

∂x2
uε(t, x)dt+ εdW (t, x), 0 ≤ t ≤ T, x ∈ [0, 1] (5.1)

u(0, x) = u0(x) ∈ L2([0, 1]) (5.2)

uε(t, 0) = uε(t, 1) (5.3)

Here A0 = ∂2

∂x2 , A1 = I. Thus m1 = ord(A1) = ord(I) = 0, m0 = ord(A0) =

ord( ∂2

∂x2 ) = 2. Recall that 2m = ord(Aθ) = max(m1,m0). Hence m = ord( ∂2

∂x2 +θI)/2 =

1. The dimension of the x-space d = 1 since x ∈ [0, 1]. Hence m − d
2 = 1 − 1

2 = 1
2 > 0.

So (H1) is satisfied. Other conditions are trivially satisfied. Thus al the results of the
previous sections hold for this case.
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