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GEORGII I. ZELENOV

ON DISTANCES BETWEEN DISTRIBUTIONS OF POLYNOMIALS

We estimate total variation distances between distributions of polynomials via L2-
norms.

1. Introduction

Let f, g : Rn → R be two polynomials of degree at most d and let γn be the standard
Gaussian measure on Rn. We study estimates of the type

(1.1) ‖γn ◦ f−1 − γn ◦ g−1‖TV ≤ C(d, ‖f‖, ‖g‖)‖f − g‖1/d2 ,

where the number C may depend on the degree d of our polynomials and some (semi-
)norm ‖·‖ on polynomials, but does not depend on the number of variables n. The latter
requirement is crucial: it enables one to consider the case of measurable polynomials on
an infinite-dimensional space with a Gaussian measure, in particular, the case of multiple
stochastic integrals with respect to the Wiener process. About this circle of problems,
we refer to the recent papers [2], [4], [5], [3], [9], [11], and [13].

Important results of this type are presented in [10, Theorem 1] and [9, equation (2) and
Section 3.1], where the case of multiple stochastic integrals is considered, but the proofs
can be easily applied to general polynomials; they use Fubini’s theorem (or conditional
measures) to derive the general case from the one-dimensional case. However, these
proofs are based on the following nice theorem due to G.V. Martynova.

Theorem 1.1. For each d ∈ N, there is a number c(d) such that for every pair of
polynomials

f =

d∑
k=0

akx
k, g =

d∑
k=0

bkx
k

of degree d on the real line one has

(1.2) ‖γ1 ◦ f−1 − γ1 ◦ g−1‖TV ≤ c(d)C(ad) max
k
|ak − bk|,

where C(ad) is a number depending only on ad.

The proof of this theorem, along with a number of other useful results, is contained
in Martynova’s PhD thesis [12] (see Theorem I.3), which unfortunately remained un-
published, but is available in some libraries in Saint Petersburg and Moscow. The aim
of our paper is to provide an alternative estimate of this type and its multidimensional
version (see Theorem 3.1 below). The power 1/d at the L2-norm is the same as the one
obtained by Martynova and Davydov [10] (see also [9]), and this power is best possible
(a bound with an additional logarithmic factor was obtained in [3]), but we also obtain
some new information about the constant in this estimate. The proof of our theorem
is different from that of [12, Theorem I.3] and is based on the Malliavin calculus (see,
e.g., [7] and [14]) and the Carbery–Wright inequality [8]. Moreover, in Theorem 3.5 we
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give certain generalizations of Theorems I.1 and I.2 from [12] to the case of log-concave
measures.

2. Definitions and notation

Let γn denote the standard Gaussian measure on Rn, i.e., the measure on Rn with
density

(2π)−n/2 exp(−|x|2/2)

with respect to Lebesgue measure.
The image of a measure µ on a measurable space under a measurable mapping f with

values in Rk is denoted by the symbol µ ◦ f−1 and defined by the formula

µ ◦ f−1(B) = µ(f−1(B)) for Borel sets B ⊂ Rk.

We set ‖ϕ‖∞ = supx |ϕ(x)| for any bounded function ϕ on any set.
The total variation distance dTV(µ, ν) between two Borel measures µ, ν on Rk is

generated by the norm

‖µ− ν‖TV := sup

{∫
ϕd(µ− ν), ϕ ∈ C∞b (Rk), ‖ϕ‖∞ ≤ 1

}
,

where here and throughout we omit indicating the domain of integration in case of
integrating over the whole space.

We need the following important inequality proved by Carbery and Wright [8]. There
is an absolute constant c such that, for every Gaussian measure (more generally, for every
logarithmically concave measure) γ on Rn and for every polynomial f of degree d, one
has

(2.1) γ(|f | ≤ t)
(∫
|f | dγ

)1/d

≤ cdt1/d, t ≥ 0.

Some generalizations of this estimate to the case of measurable polynomials on infinite-
dimensional locally convex spaces are discussed in [1] and [2].

Lemma 2.1. For every d ∈ N there is a number c(d) such that for each n and each
polynomial f : Rn → R of degree at most d one has

(2.2)

∫
1

f2 + ε
dγn ≤ ε−1+1/(2d)c(d)

(∫
f2 dγn

)−1/(2d)

Proof. To simplify notation we set β = 1/2d. Note that f2 ≥ 0. Hence∫
(f2 + ε)−1 dγn =

∫ ε−1

0

γn
(
(f2 + ε)−1 ≥ t

)
dt =

∫ ∞
0

(s+ ε)−2γn
(
f2 ≤ s

)
ds.

The Carbery–Wright inequality (2.1) yields∫ ∞
0

(s+ ε)−2γn
(
f2 ≤ s

)
ds ≤ c(2d)

(∫
f2 dγn

)−β ∫ ∞
0

(s+ ε)−2sβ ds

= ε−1+β2cd

(∫
f2 dγn

)−β ∫ ∞
0

(s+ 1)−2sβ ds.

Letting

c(d) := 2cd

∫ ∞
0

(s+ 1)−2s(1/2d) ds

we arrive at the desired estimate. �
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For a polynomial f : Rn → R of degree at most d one has

(2.3)

∫
|∇f |2 dγn ≤ c(d)

∫
f2 dγn,

where c(d) does not depend on n. This fact follows from the equivalence of all Sobolev
norms and all Lp-norms on the space of measurable polynomials of degree d (see [6,
Example 5.3.4] or [2]).

Remark 2.2. Consider the vector space Pd(R) of all polynomials of degree at most d
in one variable. This is a d + 1-dimensional vector space. Therefore, any two norms on
Pd(R) are equivalent. This enables us to replace the norm maxk |ak−bk| by the standard
L2-norm with respect to the measure γ1.

3. Main results

Let us set

(3.1) ‖∇f‖2∗ := sup
|e|=1

∫
Rn

|∂ef |2 dγn.

Our first theorem is a multidimensional analog of [12, Chapter 3, Theorem I.3].

Theorem 3.1. For each d ∈ N, there is a number c(d) such that, for each n and every
pair of polynomials f, g : Rn → R of degree at most d, one has

‖γn ◦ f−1 − γn ◦ g−1‖TV ≤ c(d)
(
‖∇g‖−1/(d−1)

∗ + 1
)
‖f − g‖1/d2 .

Remark 3.2. The inequality in the theorem is of the type

‖γn ◦ f−1 − γn ◦ g−1‖TV ≤ C‖f − g‖Θ2 .

In our case the constant C does not depend on the number of variables n. Thus, the result
can be generalized to the infinite-dimensional case in the spirit of the recent papers [2], [3],
[4], [5], and [9] (see below). On measurable polynomials on an infinite-dimensional space
with a Gaussian measure γ, see [6], [7], and [2]. For example, multiple stochastic integrals
can be represented as measurable polynomials with respect to the Wiener measure, see
[14, Section 1.1.2], [6, Section 2.11]. In fact, the original inequality of Martynova was
obtained for the study of multiple stochastic integrals. We use the norm ‖∇f‖2∗ in place
of the more standard norm of gradients to avoid dependence on n. It is also worth noting
that in [3] a weaker estimate (with an extra logarithmic factor, which is not needed as we
see) has been obtained, but the proof has not employed reduction to the one-dimensional
case.

Proof. Let us fix a function ϕ ∈ C∞0 (R) with ‖ϕ‖∞ ≤ 1 and a unit vector e ∈ Rn.
Consider the function

Φ(t) =

∫ t

−∞
ϕ(τ) dτ.

Note that

∂e(Φ(f)− Φ(g)) = ∂efϕ(f)− ∂egϕ(g) = ϕ(f)(∂ef − ∂eg) + (ϕ(f)− ϕ(g))∂eg,
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where ∂e denotes the partial derivative along the vector e. Thus, for each ε > 0 we have∫
[ϕ(f)− ϕ(g)] dγn

=

∫
[ϕ(f)− ϕ(g)]

(∂eg)2

(∂eg)2 + ε
dγn + ε

∫
[ϕ(f)− ϕ(g)]

1

(∂eg)2 + ε
dγn

=

∫
∂eg∂e(Φ(f)− Φ(g))

(∂eg)2 + ε
dγn −

∫
∂eg · ϕ(f)(∂ef − ∂eg)

(∂eg)2 + ε
dγn

+ ε

∫
[ϕ(f)− ϕ(g)]((∂eg)2 + ε)−1 dγn.

(3.2)

Let us estimate each term separately. First, let us consider the last term. Applying (2.2)
to the polynomial ∂eg we obtain the bound

ε

∫
[ϕ(f)− ϕ(g)]((∂eg)2 + ε)−1 dγn ≤ 2ε

∫
((∂eg)2 + ε)−1 dγn

≤ 2dc1‖∂eg‖−1/(d−1)
2 ε1/(2d−2)

∫ ∞
0

(s+ 1)−2s1/(2d−2) ds

= c1(d)‖∂eg‖−1/(d−1)
2 ε1/(2d−2).

The second term in (3.2) is easily estimated as follows (here we need (2.3)):

−
∫
∂eg · ϕ(f)(∂ef − ∂eg)

(∂eg)2 + ε
dγn ≤

∫
|∂eg|

(∂eg)2 + ε
|∂ef − ∂eg| dγn

≤ 2−1ε−1/2

∫
|∂ef − ∂eg| dγn ≤ c2(d)ε−1/2‖f − g‖2.

We now estimate the first term in (3.2). Integrating by parts we obtain∫
∂eg∂e(Φ(f)− Φ(g))

(∂eg)2 + ε
dγn

= −
∫

(Φ(f)− Φ(g))

[
∂2
eg − 〈x, e〉∂eg
(∂eg)2 + ε

− 2
(∂eg)2∂2

eg

((∂eg)2 + ε)2

]
dγn

≤ 3

∫
|f − g| |∂2

eg|
(∂eg)2 + ε

dγn + 2−1ε−1/2

∫
|f(x)− g(x)| |〈x, e〉| γn(dx).

Let us show that this sum is bounded by c3(d)ε−1/2‖f−g‖2. To this end, we first consider
the one-dimensional case n = 1. In this case x and e belong to R. Therefore, e = ±1
and ∂eg = ±g′(x), ∂2

eg = g′′(x), |〈x, e〉| = |x|. Thus,∫
|f − g| |∂2

eg|
(∂eg)2 + ε

dγ1 =

∫
|f − g| |g

′′|
(g′)2 + ε

dγ1

=

∫
|f(x)− g(x)| |g

′′(x)|
(g′(x))2 + ε

1√
2π
e−

x2

2 dx.

Observe that there is a number C(d) depending only on d such that

|f(x)− g(x)|
‖f − g‖2

1√
2π
e−

x2

2 ≤ C(d).

This follows from Remark 2.2, because

‖f‖ = sup
x∈R

(f(x)e−
x2

2 )
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is a norm on the space of polynomials of degree at most d. Thus,∫
|f − g| |∂2

eg|
(∂eg)2 + ε

dγ1 ≤ C(d) ‖f − g‖2
∫

|g′′(x)|
(g′(x))2 + ε

dx.

The function g′′ : R → R is a polynomial of degree at most d − 2 and it has k ≤ d − 2
zeros a1 < . . . < ak. Let us consider the intervals (ai, ai+1) with i = 0, . . . , k and

a0 = −∞; ak+1 = +∞.

On each of the k + 1 ≤ d − 1 intervals (ai, ai+1) the polynomial g′′ is of constant sign.
Therefore,∫ ai+1

ai

|g′′|
(g′)2 + ε

dx = sign
(
g′′(x)

)
|x∈(ai,ai+1) ·

∫ ai+1

ai

g′′

(g′)2 + ε
dx

=

∣∣∣∣∫ ai+1

ai

g′′

(g′)2 + ε
dx

∣∣∣∣ =

∣∣∣∣∫ ai+1

ai

1

(g′)2 + ε
d(g′(x))

∣∣∣∣ ≤ π√
ε
.

Taking into account the obtained estimates and the bound k + 1 ≤ d− 1 we have∫
|f − g| |g

′′|
(g′)2 + ε

dγ1 ≤ C(d)‖f − g‖2
∫
R

|g′′|
(g′)2 + ε

dx

= C(d)‖f − g‖2
k∑
i=0

∫ ai+1

ai

|g′′|
(g′)2 + ε

dx ≤ C(d)(d− 1)‖f − g‖2
π√
ε
.

Therefore, for the first term in (3.2) we have∫
g′(Φ(f)− Φ(g))′

(g′)2 + ε
dγ1 ≤ C̃(d)‖f − g‖2

π√
ε

+
1

2
√
ε

∫
|f(x)− g(x)| |x| γ1(dx).

By the Cauchy–Bunyakovskii inequality the integral on the right is estimated by ‖f−g‖2.
Hence in the one-dimensional case we have∫

g′(Φ(f)− Φ(g))′

(g′)2 + ε
dγ1 ≤ C ′(d)‖f − g‖2

1√
ε

with some new number C ′(d).
We now proceed to the case n > 1. The space Rn is decomposed into the sum

Rn = 〈e〉 ⊕ 〈e〉⊥. The corresponding representation of the measure is γn = γn−1 ⊗ γ1,
where γ1 is the standard Gaussian measure on 〈e〉 ' R and γn−1 is the standard Gaussian
measure on 〈e〉⊥ ' Rn−1. By Fubini’s theorem we have∫

Rn

∂eg∂e(Φ(f)− Φ(g))

(∂eg)2 + ε
dγn =

∫
〈e〉⊥

∫
R

g′x(t)(Φ(fx(t))− Φ(gx(t)))′

(g′x(t))2 + ε
γ1(dt)γn−1(dx),

where we use the notation fx(t) := f(x+ te), gx(t) := g(x+ te).
For any fixed x ∈ 〈e〉⊥, the functions fx(t) and gx(t) are polynomials of variable t

and have degrees at most d. Therefore, we can apply the estimate proved in the one-
dimensional case and obtain∫

g′x(Φ(fx)− Φ(gx))′

(g′x)2 + ε
dγ1 ≤ C ′(d)‖fx − gx‖2

1√
ε
,

where fx = fx(t) and gx = gx(t) are considered as functions of one variable t. Now we
integrate in x ∈ 〈e〉⊥ with respect to γn−1 and find that∫

〈e〉⊥

∫
R

g′x(Φ(fx)− Φ(gx))′

(g′x)2 + ε
γ1(dt) γn−1(dx) ≤ C ′(d)

1√
ε

∫
〈e〉⊥
‖fx − gx‖2 γn−1(dx).
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By the Cauchy–Bunyakovskii inequality, ‖F‖L1(P ) ≤ ‖F‖L2(P ) for any probability mea-
sure P . Applying this inequality to F (x) = ‖fx − gx‖2 we get∫

Rn

g′x(Φ(fx)− Φ(gx))′

(g′x)2 + ε
γn(dx dt) =

∫
〈e〉⊥

∫
R

g′x(Φ(fx)− Φ(gx))′

(g′x)2 + ε
γ1(dt) γn−1(dx)

≤ c3(d)
1√
ε

(∫
〈e〉⊥
‖fx − gx‖22 γn−1(dx)

)1/2

= c3(d)
1√
ε
‖f − g‖2.

The third term is estimated.
Now we can combine our estimates for all the three terms in (3.2) and get∫

[ϕ(f)− ϕ(g)] dγn ≤ C(d)‖f − g‖2
1√
ε

+ c1(d)‖∂eg‖−1/(d−1)
2 ε1/(2d−2)

with some new constants. Taking ε = ‖f − g‖(2d−2)/d
2 we arrive at the estimate∫

[ϕ(f)− ϕ(g)] dγn ≤
(
C(d) + c1(d)‖∂eg‖−1/(d−1)

2

)
‖f − g‖1/d2 .

Finally, we take the supremum over all smooth functions ϕ with ‖ϕ‖∞ ≤ 1 and all unit
vectors e and complete the proof. �

There is a straightforward infinite-dimensional extension of our estimate. For simplic-
ity we formulate it for the countable power γ of the standard Gaussian measure on the
real line defined on the space R∞ of all real sequences. The Cameron–Martin space of
this measure is the usual Hilbert space H = l2; this space is used to define a norm on
gradients. Measurable polynomials of degree d are defined as L2-limits of sequences of
finite-dimensional polynomials of degree d. There is an analog of (3.1) defined by the
same formula with γ in place of γn and |e| = |e|l2 .

Corollary 3.3. For all measurable polynomials f and g of degree d on R∞ we have

‖γ ◦ f−1 − γ ◦ g−1‖TV ≤ c(d)
(
‖∇g‖−1/(d−1)

∗ + 1
)
‖f − g‖1/d2 .

To formulate our second result, we recall the definition of a log-concave measure: a
probability measure µ on Rn is called log-concave if for all λ ∈ (0, 1) and all Borel sets
A and B one has

µ(λA+ (1− λ)B) ≥ µ(A)λµ(1−A)1−λ.

An equivalent description is this: the measure µ is concentrated on an affine subspace
and is given there by a density of the form e−V with a convex function V (with values
in (−∞,+∞]). Examples of log-concave measures are Gaussian measures and uniform
distributions in convex sets. For all such measures the Carbery–Wright inequality (2.1)
holds true. Thus, one can prove the following analog of (2.2).

Lemma 3.4. For each d ∈ N, there is a number c(d) such that, whenever µ is a log-
concave measure on the real line and ν is the measure given by a bounded density % with
respect to µ, for every polynomial f of degree at most d on the real line we have

(3.3)

∫
1

f2 + ε
dν ≤ ε−1+1/(2d)c(d)‖%‖∞

(∫
f2 dµ

)−1/(2d)

.

This lemma enables us to prove the following result.

Theorem 3.5. Let µ be an absolutely continuous log-concave measure on the real line.
Suppose that ν is a probability measure given by a bounded density % with respect to µ
such that % is a function of bounded variation on the whole real line. Then there is a
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number c(d, %, µ), depending on d, % and µ, such that for every pair of polynomials f, g
of degree at most d one has

‖ν ◦ f−1 − ν ◦ g−1‖TV ≤ c(d, %, µ)
(
‖g′‖−1/(d−1)

L2(µ) + 1
)
‖f − g‖1/dL2(ν).

The main steps in proof of this theorem are similar to the ones in the proof of Theo-
rem 3.1, so we do not repeat them. The stated conditions on the measure ν come from
Lemma 3.3 and the need to integrate by parts, for which it is important that the gener-
alized derivative of ν is also a bounded measure. Note also that in this theorem we have
n = 1 and thus can use Remark 2.2 in place of inequality (2.3).

Remark 3.6. Theorem 3.5 is a generalization of Theorems I.1 and I.2 from Chapter
3 in Martynova’s dissertation [12]. The latter theorems deal with the case where µ is
the uniform distribution on some interval [a, b] ⊂ R and impose the condition that the
density % is Lipschitz on [a, b]. This condition is stronger than having bounded variation.
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