
In this issue of Theory of Stochastic Processes we publish a paper of a former member
of our editorial board Salah Mohammed with a co-author. It gives us a good reason to
remember this great mind, and to say a few words in his memory. Professor Salah Eldin
Mohammed passed away on December 21, 2016. Since 1998, almost for twenty years,
he had maintained close relations with the Department of the Random Processes of the
Institute of Mathematics of the National Academy of Sciences of Ukraine. That period
of time was marked by active scientific cooperation, mutual visits, interesting and fruitful
discussions. His knowledge of stochastic analysis was so deep and versatile that he could
always offer a new and unexpected approach to the problem. Professor Mohammed was
a contributing and very responsible member of our editorial board. Despite his numerous
duties he always found time to formulate his opinion about certain article or to invite
new authors.

Besides professional activities, Salah Mohammed was staying socially active. He could
not remain indifferent to pain and injustice in the world. In 2007 he became one of the
initiators of idea of organizing a mathematical institute in North Africa that made a
huge difference in lives of many talented students. Also Salah was a very kind person.
He always had a good joke or funny story to tell, to make people around him feel better
and happier. We will remember him as a prominent mathematician, the man of duty
and character.

Editorial board of the journal Theory of Stochastic Processes

Salah Mohammed with his wife and Andrey Dorogovtsev in Cambridge, 2010
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FLAVIA SANCIER AND SALAH MOHAMMED

ON THE SOLUTION OF STOCHASTIC FUNCTIONAL

DIFFERENTIAL EQUATIONS VIA MEMORY GAP

We present an alternative proof for the existence of solutions of stochastic functional
differential equations satisfying a global Lipschitz condition. The proof is based on

an approximation scheme in which the continuous path dependence does not go up

to the present: there is a memory gap. Strong convergence is obtained by closing
the gap. Such approximation is particularly useful when extending stochastic models

with discrete delay to models with continuous full finite memory.

1. Introduction

Stochastic systems with memory are processes whose evolution in time is governed
by random forces as well as an intrinsic dependence of the state on a finite part of its
past history. Such systems are described by stochastic functional differential equations
(SFDEs) [6]. The existence and uniqueness of a general class of SFDEs was first derived
by Mohammed in [6] (Chapter II, sec. 2) through a successive approximation scheme,
and conditions on the coefficients have been improved by others (e.g. [7]).

Our results are based upon approximating stochastic systems with full finite memory
by stochastic systems with a memory gap. Solutions of systems with a memory gap are
processes in which the intrinsic dependence of the state on its history goes only up to a
specific time in the past. In this way, there is a gap between the past and present states.

The paper is outlined as follows. In section 2, we introduce the framework necessary
for the development of our results. In section 3, we describe an approximation scheme
and show the properties necessary to obtain convergence. In section 4, we show strong
convergence of the approximation scheme to the solution of an SFDE with full finite
memory.

2. Framework

Let | · | stand for the (d-dimensional) Euclidean norm, and let | · |d×m stand for
the Frobenius norm in the space of real d × m matrices, Rd×m. Denote by Cd :=
C([−L, 0],Rd) the separable Banach space of all continuous paths η : [−L, 0]→ Rd given
the supremum norm

‖η‖Cd
:= sup

v∈[−L,0]

|η(v)|.

Consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual condi-
tions, viz. the filtration (Ft)t∈[0,T ] is right-continuous, and each Ft, t ∈ [0, T ], con-

tains all P -null sets in F . For a Banach space E, denote by L2(Ω, E) the Banach
space of all (equivalent classes of) (F ,BorelE)-measurable maps Ω → E which are L2

(in the Bochner sense). A Bochner-measurable map η : Ω → E is a map such that
η(ω) = limn→∞ ηn(ω) a.s., where each ηn : Ω→ E has a countable range and for which
η−1{x} is F-measurable for each x in E.
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The norm in L2(Ω, E) is given by

‖η‖L2(Ω,E) :=

[∫
Ω

‖η(ω)‖2EdP (ω)

]1/2

,

for any η ∈ L2(Ω, E).
Let F : [0, T ]× L2(Ω, Cd)→ L2(Ω,Rd) and G : [0, T ]× L2(Ω, Cd)→ L2(Ω,Rd×m) be

jointly continuous and uniformly Lipschitz in the second variable, viz.

‖F (t, ψ1)− F (t, ψ2)‖L2(Ω,Rd) + ‖G(t, ψ1)−G(t, ψ2)‖L2(Ω,Rd×m)

≤ α‖ψ1 − ψ2‖L2(Ω,Cd)(1)

for all t ∈ [0, T ] and ψ1, ψ2 ∈ L2(Ω, Cd). The Lipschitz constant α is independent of t ∈
[0, T ]. For each (Ft)t∈[0,T ]-adapted process y : [0, T ]→ L2(Ω, Cd), the processes F (·, y(·))
and G(·, y(·)) are also (Ft)t∈[0,T ]-adapted. Let W be an m-dimensional Brownian Motion

on the filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) and let θ ∈ L2(Ω, Cd) be an F0-
measurable process.

Remark 2.1. The functionals F and G also satisfy the linear growth property

(2) ‖F (t, ψ)‖L2(Ω,Rd) + ‖G(t, ψ)‖L2(Ω,Rd×m) ≤ D(1 + ‖ψ‖L2(Ω,Cd)),

where D is a positive constant independent of t ∈ [0, T ]. To see this, set ψ1 = ψ and
ψ2 = 0 in the Lipschitz condition (1), and use the joint continuity of F and G.

Consider the stochastic functional differential equation

(3)

{
dx(t) = F (t, xt)dt+G(t, xt)dW (t), t ∈ [0, T ]
x(t) = θ(t), t ∈ [−L, 0],

where the segment xt ∈ L2(Ω, Cd) is given by the relation xt(ω)(s) := x(ω)(t + s),
s ∈ [−L, 0], a.a. ω ∈ Ω. A solution of (3) is a process x ∈ L2(Ω, C([−L, T ],Rd)) adapted
to (Ft)t∈[0,T ], with initial process θ, which satisfies the Itô integral equation

x(t) =

{
θ(·)(0) +

∫ t
0
F (u, xu)du+

∫ t
0
G(u, xu)dW (u), t ∈ [0, T ]

θ(·)(t), t ∈ [−L, 0],

almost surely. In order to prove existence of solutions of the SFDE (3), we will make
frequent use of a martingale-type inequality for the Ito integral, which we state below.

Lemma 2.1. Let W : [a, b] × Ω → Rm be an m-dimensional Brownian Motion on a
filtered probability space (Ω,F , (Ft)t∈[a,b], P ). Suppose g : [a, b] × Ω → L(Rm,Rd) is

measurable, (Ft)t∈[a,b]-adapted and
∫ b
a
E|g(t, ·)|2kdt < ∞, for a positive integer k ≥ 1.

Then

E sup
t∈[a,b]

∣∣∣∣∫ t

a

g(u, ·)dW (u)

∣∣∣∣2k ≤ Ak(b− a)k−1

∫ b

a

E|g(u, ·)|2kdu,

where

Ak := dk−1

(
4k3m2

2k − 1

)k
.

Proof. For a proof, the reader may refer to Mohammed [6] (pg. 27).

3. The approximation scheme

In this section, we introduce an approximation scheme for the linear SFDE (3), and
show the properties necessary to obtain convergence in L2(Ω, C([−1− L, T ],Rd)).

Let θ̂ be given by

(4) θ̂(t) :=

{
θ(t), t ∈ [−L, 0],
θ(−L), t ∈ [−1− L,−L],
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and define the sequence of processes, for any positive integer k ≥ 1,

(5) xk(t) =

{
θ(0) +

∫ t
0
F (u, xku−1/k)du+

∫ t
0
G(u, xku−1/k)dW (u), t ∈ [0, T ]

θ̂(t), t ∈ [−1− L, 0],

where for t ∈ [−1, 0], xkt is given by xkt (s) = θ̂t(s) := θ̂(t + s), s ∈ [−L, 0], a.a. ω ∈ Ω,
k ≥ 1. For t ∈ [−1, 0] define Ft := F0. In what follows, we show existence of the xk’s by
integrating forward over steps of length 1/k.

Proposition 3.1. Each xk satisfies the following properties for any t ∈ [−1/k, T ]:
(i) xk(t) and xkt are well defined and Ft-measurable.
(ii)

(
xk(u)

)
u∈[−1/k,t]

∈ L2(Ω, C([−1/k, t],Rd)) and xkt ∈ L2(Ω, Cd), with

E

[
sup

v∈[−1/k,t]

|xk(v)|2
]

+ ‖xkt ‖2L2(Ω,Cd) ≤ K,

where K is a constant independent of k.

Proof. We use induction with forward steps of length 1/k. For simplicity, consider T a
positive integer. For t ∈ [−1/k, 0], properties (i) and (ii) hold trivially. Now assume that
properties (i) and (ii) hold for any t ∈ [(n − 1)/k, n/k], where n is an integer satisfying
0 ≤ n < kT . Then we show that properties (i) and (ii) hold for any t ∈ [n/k, (n+ 1)/k].
For any t ∈ [n/k, (n+ 1)/k], one can write

(6) xk(t) = xk(n/k) +

∫ t

n/k

F (u, xku−1/k)du+

∫ t

n/k

G(u, xku−1/k)dW (u).

Since
(
xk(t)

)
t∈[(n−1)/k,n/k]

is well defined, (Ft)t∈[(n−1)/k,n/k]-adapted and continuous

(induction hypothesis), then (xkt )t∈[(n−1)/k,n/k] is well defined,
(Ft)t∈[(n−1)/k,n/k]-adapted and continuous (Lemma II-2.1 in Mohammed [6]). This im-

plies that xkt−1/k is Ft−1/k-measurable for any t ∈ [n/k, (n + 1)/k]. Therefore, by the

assumptions in section 2 and the previous discussion, the processes [n/k, (n+1)/k] 3 t 7→
F (t, xkt−1/k) and [n/k, (n+1)/k] 3 t 7→ G(t, xkt−1/k) are continuous and (Ft)t∈[n/k,(n+1)/k]-

adapted. Hence, from (6),
(
xk(t)

)
t∈[n/k,(n+1)/k]

is a well defined (Ft)t∈[n/k,(n+1)/k]-

adapted continuous semimartingale. This shows that property (i) holds for any t ∈
[n/k, (n+ 1)/k].

Next, notice that for any t ∈ [−1/k, (n+ 1)/k],

E

[
sup

s∈[−L,0]

|xkt (s)|2
]
≤ ‖θ‖2L2(Ω,Cd) + E

[
sup
s∈[0,t]

|xk(s)|2
]
.

Now applying lemma 2.1 and the linear growth property (2) of F and G, we have for any
t ∈ [0, (n+ 1)/k] :

E

[
sup
v∈[0,t]

|xk(·)(v)|2
]

= E

[
sup
v∈[0,t]

∣∣∣∣θ(0) +

∫ v

0

F (u, xku−1/k)du+

∫ v

0

G(u, xku−1/k)dW (u)

∣∣∣∣2
]

≤ E
[
3|θ(0)|2

]
+ 3t

[∫ t

0

‖F (u, xku−1/k)‖2L2(Ω,Rd)du

]
+ 3(4m2)

[∫ t

0

‖G(u, xku−1/k)‖2L2(Ω,Rd×m)du

]
≤ 3‖θ‖2L2(Ω,Cd) + 6TD2(T + 4m2)(1 + ‖θ‖2L2(Ω,Cd))
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+ 6D2(T + 4m2)

∫ t

0

E

[
sup
v∈[0,u]

|xk(v)|2
]
du.(7)

Applying Gronwall’s inequality to the above inequality, we obtain:

E

[
sup
v∈[0,t]

|xk(v)|2
]
≤ C1e

C2T

where C1 := 3‖θ‖2L2(Ω,Cd) + 6TD2(T + 4m2)(1 + ‖θ‖2L2(Ω,Cd)) and C2 := 6D2(T + 4m2).

Hence, for each t ∈ [0, (n+ 1)/k],

E

[
sup

v∈[−1/k,t]

|xk(v)|2
]

+ ‖xkt ‖L2(Ω,C) ≤ 2C1e
C2T + 2‖θ‖L2(Ω,C) =: K.

Notice that the constant K does not depend on k or t. This concludes the induction
argument. �

Proposition 3.2. For any integer γ ≥ 1, each xk satisfies E|xk(t)−xk(s)|2γ ≤ Bγ |t−s|γ
for all s, t ∈ [0, T ], where Bγ is a constant independent of k.

Proof. By lemma 2.1, proposition 3.1 (iii), and the linear growth property of F and G
(2), we obtain for any 0 ≤ s < t ≤ T :

E
[∣∣xk(t)− xk(s)

∣∣2γ] = E

[∣∣∣∣∫ t

s

F (u, xku−1/k)du+

∫ t

s

G(u, xku−1/k)dW (u)

∣∣∣∣2γ
]

≤ 22γ−1|t− s|2γ−1

∫ t

s

‖F (u, xku−1/k)‖2γ
L2(Ω,Rd)

du

+ 22γ−1Aγ |t− s|γ−1

∫ t

s

‖G(u, xku−1/k)‖2γ
L2(Ω,Rd×m)

du

≤ 22γ−1D2γ(T γ +Aγ)|t− s|γ−1(1 +
√
K)2γ |t− s| = Bγ |t− s|γ ,

where Aγ := dγ−1( 4γ3m2

2γ−1 )γ and Bγ := 22γ−1D2γ(T γ + Aγ)(1 +
√
K)2γ . By symmetry

in t and s, the proposition holds for any t, s ∈ [0, T ]. �

Next, we state Kolmogorov’s continuity criterion for a sequence of Banach-valued
stochastic processes. The theorem will be used in the proof of proposition 3.3.

Theorem 3.1. Kolmogorov’s continuity criterion for a sequence of stochastic
processes. Let {Xk(t)}∞k=1, t ∈ [0, T ], be a sequence of stochastic processes with values
in a Banach space E. Assume that there exist positive constants ρ1, c and ρ2 > 1, all
independent of k, satisfying

(8) E[‖Xk(t)−Xk(s)‖ρ1E ] ≤ c|t− s|ρ2 ,

for every s, t ∈ [0, T ]. Then each Xk has a continuous modification X̃k. Further, let
b be an arbitrary positive number less than ρ2−1

ρ1
. Then there exists a positive random

variable ξk with E[ξρ1k ] < H, where H is a constant independent of k, such that

‖X̃k(t)− X̃k(s)‖E ≤ ξk|t− s|b,

for every s, t ∈ [0, T ] and a.s..

Proof. The reader may refer to Kunita [5], pg. 31, for a proof. Although the author does
not consider a sequence of stochastic processes satisfying (8), it is easy to check that the
theorem indeed holds for such a sequence.
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Proposition 3.3. Let β ∈ (0, 1/2) be a fixed constant. Each xk satisfies

(i) |xk(t)− xk(s)| ≤ ck|t− s|β for all s, t ∈ [0, T ] a.s.;

(ii) ‖xkt − xks‖2L2(Ω,Cd) ≤ 3c̃|t− s|2β +

2E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

|θ̂(0)− θ̂(s+ v)|2 +

E sup
v∈[−L,−(t∧L)∧0]

|θ̂(t+ v)− θ̂(s+ v)|2 for all − 1 ≤ s < t ≤ T, a.s.,

where c̃ is a constant independent of k and ck is a positive random variable satisfying
E(cγk) ≤ c̃.

Proof. Let ρ > 1
1−2β be an integer. From proposition 3.2, E|xk(t)−xk(s)|2ρ ≤ Bρ|t−s|ρ,

for any s, t ∈ [0, T ]. Since β < ρ−1
2ρ , then it follows from Kolmogorov’s continuity criterion

(theorem 3.1) that there exists a positive random variable ck such that |xk(t)− xk(s)| ≤
ck|t− s|β a.s., with E(cγk) ≤ c̃, where c̃ is a constant independent of k. This proves part
(i).

We now proceed to prove part (ii). For any −1 ≤ s < t ≤ T ,

‖xkt − xks‖2L2(Ω,Cd) = E sup
v∈[−L,0]

|xk(t+ v)− xk(s+ v)|2

≤ E sup
v∈(−(s∧L)∧0,0]

|xk(t+ v)− xk(s+ v)|2(9)

+ E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

|xk(t+ v)− xk(s+ v)|2(10)

+ E sup
v∈[−L,−(t∧L)∧0]

|xk(t+ v)− xk(s+ v)|2.(11)

Using part (i), we obtain the estimate for (9):

E sup
v∈(−(s∧L)∧0,0]

|xk(t+ v)− xk(s+ v)|2 ≤ E sup
v∈(−(s∧L)∧0,0]

(
ck|t− s|β

)2
= E(c2k|t− s|2β) = E(c2k)|t− s|2β ≤ c̃|t− s|2β .

Moreover, from part (i), we also estimate (10):

E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

|xk(t+ v)− xk(s+ v)|2

≤ 2E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

{|xk(t+ v)− xk(0)|2 + |θ̂(0)− θ̂(s+ v)|2}

≤ 2E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

{c2k|t+ v|2β + |θ̂(0)− θ̂(s+ v)|2}

≤ 2c̃|t− s|2β + 2E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

|θ̂(0)− θ̂(s+ v)|2.

Finally, (11) becomes:

E sup
v∈[−L,−(t∧L)∧0]

|xk(t+ v)− xk(s+ v)|2 = E sup
v∈[−L,−(t∧L)∧0]

|θ̂(t+ v)− θ̂(s+ v)|2.

Hence, for −1 ≤ s < t ≤ T,
‖xkt − xks‖2L2(Ω,Cd) ≤ 3c̃|t− s|2β + 2E sup

v∈(−(t∧L)∧0,−(s∧L)∧0]

|θ̂(0)− θ̂(s+ v)|2

+ E sup
v∈[−L,−(t∧L)∧0]

|θ̂(t+ v)− θ̂(s+ v)|2. �

Proposition 3.3(i) shows that each xk is pathwise β-Hölder continuous on [0,T]. Notice
that if t > s > L, part (ii) can be written as ‖xkt − xks‖2L2(Ω,Cd) ≤ 3c̃|t − s|2β , which
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implies that the memory process t 7→ xkt is β-Hölder continuous (as an L2(Ω, C)-valued
function) only for t ∈ [L, T ]. On the other hand, if the initial process θ is pathwise β-
Hölder continuous, then t 7→ xkt is β-Hölder continuous (as an L2(Ω, C)-valued function)
for all t ∈ [0, T ]. We prove this in theorem 4.1.

4. Closing the gap

In this section, we show that the sequence (xk)∞k=1 converges to the solution of (3).
The proof is divided into the following steps:
1. The sequence (xk)∞k=1 converges to a limit x ∈ L2(Ω, C([−1− L, T ],Rd)).
2. The process (x(t))t∈[−L,T ] satisfies the SFDE (3).

3. The process (x(t))t∈[−L,T ] is the unique solution of the SFDE (3).

4. If the initial process θ is pathwise β-Hölder continuous for a fixed β ∈ (0, 1/2), then
the rate at which xk converges to x is β.

Proposition 4.1. The sequence (xk)∞k=1 converges to a limit x ∈ L2(Ω, C([−1−L, T ],Rd)).
Proof. We first notice that for any t ∈ [−1, T ],

‖xlt − xkt ‖2L2(Ω,Cd) ≤ E sup
v∈[−1−L,t]

|xl(v)− xk(v)|2 = E sup
v∈[0,t]

|xl(v)− xk(v)|2.

Now, from lemma 2.1, the Lipschitz condition (1), and inequality (12), we have that for
any t ∈ [0, T ] and l > k:

E sup
v∈[0,t]

|xl(v)− xk(v)|2 = E sup
v∈[0,t]

∣∣∣∣∫ v

0

[F (u, xlu−1/l)− F (u, xku−1/k)]du(12)

+

∫ v

0

[G(u, xlu−1/l)−G(u, xku−1/k)]dW (u)

∣∣∣∣2
≤ 2t

∫ t

0

‖F (u, xlu−1/l)− F (u, xku−1/k)‖2L2(Ω,Rd)du

+2(4m2)

∫ t

0

‖G(u, xlu−1/l)−G(u, xku−1/k)‖2L2(Ω,Rd×m)du

≤ 4α2(t+ 4m2)

∫ t

0

(
‖xlu−1/l − x

l
u−1/k‖

2
L2(Ω,Cd) + ‖xlu−1/k − x

k
u−1/k‖

2
L2(Ω,Cd)

)
du

≤ 4α2(T + 4m2)

∫ t

0

‖xlu−1/l − x
l
u−1/k‖

2
L2(Ω,Cd)du

+4α2(T + 4m2)

∫ t

0

E sup
v∈[0,u]

|xl(v)− xk(v)|2du.

Hence, by Gronwall’s inequality,

E sup
v∈[0,t]

|xl(v)− xk(v)|2 ≤

4α2(T + 4m2)e4α2(T+4m2)t

∫ t

0

‖xlu−1/l − x
l
u−1/k‖

2
L2(Ω,C)du.(13)

From proposition 3.3(ii) and the uniform continuity of θ̂, it follows that
∫ t

0
‖xlu−1/l −

xlu−1/k‖
2
L2(Ω,Cd)du→ 0 as l, k →∞. Therefore, from inequality (13),

E sup
v∈[0,t]

|xl(v)− xk(v)|2 → 0 as l, k →∞.

This shows that the sequence (xk)∞k=1 is a Cauchy sequence in L2(Ω, C([−1−L, T ],Rd))
and therefore convergent to a limit x ∈ L2(Ω, C([−1 − L, T ],Rd)). From (12), it also
follows that for each t ∈ [−1, T ], (xkt )∞k=1 converges to xt in L2(Ω, Cd). �



76 FLAVIA SANCIER AND SALAH MOHAMMED

Proposition 4.2. The process (x(t))t∈[−L,T ] satisfies the SFDE (3).

Proof. To show this, we take limits as k →∞ in both sides of (5). The left-hand side of
(5) converges to x in L2(Ω, C([−1− L, T ],Rd)). Furthermore, (x(t))t∈[0,T ] is (Ft)t∈[0,T ]-

adapted, since each
(
xk(t)

)
t∈[0,T ]

is. Moreover, in a calculation similar to (12), we have

that

E sup
v∈[0,t]

∣∣∣∣∫ v

0

[F (u, xu)− F (u, xku−1/k)]du+

∫ v

0

[G(u, xu)−G(u, xku−1/k)]dW (u)

∣∣∣∣2
≤ 4α2(t+ 4m2)

∫ t

0

‖xu − xu−1/k‖2L2(Ω,Cd)du

+4α2(t+ 4m2)‖xu−1/k − xku−1/k‖
2
L2(Ω,Cd)du.(14)

The continuity of [−1, T ] 3 t 7→ xt ∈ L2(Ω, Cd) implies that∫ t

0

‖xu − xu−1/k‖2L2(Ω,Cd)du→ 0 as k →∞.

Also,

‖xu−1/k − xku−1/k‖
2
L2(Ω,Cd) ≤ E sup

v∈[−L,T ]

|x(v)− xk(v)|2 → 0 as k →∞.

Hence, (14) converges to 0 as k → ∞. This shows that the right-hand side of (5)

converges to θ(0)+
∫ (·)

0
F (u, xu)du+

∫ (·)
0
G(u, xu)dW (u) in L2(Ω, C([−L, T ],Rd)) as k →

∞. Therefore, (x(t))t∈[−L,T ] satisfies the sfde (3). �

Proposition 4.3. (Uniqueness) If x̃ is an (Ft)t∈[0,T ]-adapted process satisfying (3), then
x̃ = x|[−L,T ] a.s..

Proof. In a calculation similar to (12), we find the difference

‖x̃− x|[−L,T ]‖2L2(Ω,C([−L,T ],R)) = E sup
v∈[0,T ]

|x̃(v)− x(v)|2

≤ 4α2(T + 4m2)

∫ t

0

‖x̃u − xu‖2L2(Ω,Cd)du

+4α2(T + 4m2)

∫ t

0

E sup
v∈[0,u]

|x̃(v)− x(v)|2du

≤ 8α2(T + 4m2)

∫ t

0

E sup
v∈[0,u]

|x̃(v)− x(v)|2du.

Hence, from Gronwall’s inequality, it follows that

E sup
v∈[0,T ]

|x̃(v)− x(v)|2 = 0⇒ x̃ = x|[−L,T ] a.s.. �

Thus far, we have proven existence and uniqueness of a strong solution x to the SFDE
(3). Moreover, we have proven that the SFDE (3) can be approximated by the sequence
(xk)∞k=1 described in (5). The following theorem gives the rate in which this sequence
converges to x, when the initial process satisfies a Hölder continuity condition.

Theorem 4.1. Let β ∈ (0, 1/2) be a fixed constant. If the initial process θ satisfies

(15) E|θ(t)− θ(s)|2γ ≤ Cθ|t− s|γ ,
for any γ > 1, where Cθ is a positive constant, then θ is pathwise β-Hölder continuous
and

E sup
v∈[0,t]

|x(v)− xk(v)|2 ≤ c
(

1

k

)2β

,
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where c is a constant independent of k.

Proof. Let ρ > 1
1−2β be an integer. From (15) and the fact that β < ρ−1

2ρ , Kolmogorov’s

continuity criterion (theorem 3.1) implies that there exists a positive random variable cθ
such that |θ(t)− θ(s)| ≤ cθ|t− s|β a.s., with E(cγθ ) ≤ c̃θ, where c̃θ is a positive constant.
That is, θ is pathwise β-Hölder continuous.

Then notice that θ̂ is also pathwise β-Hölder continuous. Indeed, for −1 − L ≤ s <
t ≤ 0,

|θ̂(t)− θ̂(s)| =

 |θ(t)− θ(s)| ≤ cθ|t− s|
β , −L ≤ s, t ≤ 0

|θ(t)− θ(−L)| ≤ cθ|t+ L|β ≤ cθ|t− s|β , s < −L, t > −L;
|θ(−L)− θ(−L)| = 0 ≤ cθ|t− s|β , −1− L ≤ s, t < −L.

Then proposition 3.3(ii) and the pathwise β-Hölder continuity of θ̂ imply that

‖xkt − xks‖2L2(Ω,Cd) ≤ 3c̃|t− s|2β + 2E sup
v∈(−(t∧L)∧0,−(s∧L)∧0]

c2θ|s+ v|2β

+ E sup
v∈[−L,−(t∧L)∧0]

c2θ|t− s|2β

≤ 3c̃|t− s|2β + 2E(c2θ)|t− s|2β + E(c2θ)|t− s|2β

≤ 3(c̃+ c̃θ)|t− s|2β ,
for any s, t ∈ [−1, T ]. Hence, for l > k > 0,

‖xlu−1/l − x
l
u−1/k‖

2
L2(Ω,Cd) ≤ 3(c̃+ c̃θ)|1/k − 1/l|2β ,

which implies that
∫ t

0
‖xlu−1/l − x

l
u−1/k‖

2
L2(Ω,Cd)du ≤ 3T (c̃+ c̃θ)|1/k − 1/l|2β , t ∈ [0, T ].

Therefore, from inequality 13, we obtain

E sup
v∈[0,t]

|xl(v)− xk(v)|2 ≤ 4α2(T + 4m2)e4α2(T+4m2)t3(c̃+ c̃θ)T |1/k − 1/l|2β .

Finally, letting l→∞ and c := 12Tα2(c̃+ c̃θ)(T + 4m2)e4α2(T+4m2)T , we obtain

E sup
v∈[0,t]

|x(v)− xk(v)|2 ≤ c
(

1

k

)2β

, t ∈ [0, T ]. �

5. Remarks

5.1. Order of convergence. Theorem 4.1 gives the order of convergence for the ap-
proximation scheme (5), when the initial process θ is pathwise β-Hölder continuous.
Since the quantity 1/k is the length of a small time interval, the order of convergence is
given with respect to time increments. This result is comparable with the 0.5 order of
convergence of the Strong Euler-Maruyama scheme for SFDEs investigated in [3, 1].

5.2. Existence of SODEs. If we set L = 0 in (3) and (5), the approximation scheme
reduces to the one in [2], which provides an alternative existence theorem for (non-
delayed) stochastic ordinary differential equations (SODEs).

5.3. Alternative scheme. Alternatively, one could use the approximation scheme

(16) xk(t) = θ(0) +

∫ t

0

F (u− 1/k, xku−1/k)du+

∫ t

0

G(u− 1/k, xku−1/k)dW (u),

for t ∈ [0, T ], and xk(t) = θ̂(t), for t ∈ [−1− L, 0]. The process θ̂ is given by (4). In this
case, the functionals F and G need to satisfy the additional regularity condition:

‖F (t, η)− F (s, η)‖L2(Ω,Rd) + ‖G(t, η)−G(s, η)‖L2(Ω,Rd×m)

≤ α1(1 + ‖η‖Cd
)|t− s|,(17)
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for any η ∈ Cd, s, t ∈ [0, T ], where α1 is a positive constant, independent of η, s and t.

5.4. Numerical simulation. The approximation scheme (5) provides a way of numer-
ically simulating the SFDE (3), with the help a numerical method that can approximate
Wiener integrals. More specifically, for each n/k < t ≤ (n + 1)/k with 0 ≤ n < kT , xk

can be written as

xk(t) = xk(n/k) +

∫ t

n/k

F (u, xku−1/k)du+

∫ t

n/k

G(u, xku−1/k)dW (u).

The integral
∫ t
n/k

F (u, xku−1/k)du is a Riemann integral and can be easily approximated.

The integral
∫ t
n/k

G(u, xku−1/k)dW (u) is a Wiener integral, since G(u, xku−1/k) is Fn/k-

measurable for each u ∈ (n/k, (n + 1)/k]. Wiener integrals can be approximated in
the Riemann-Stieltjes sense. In [4], the authors provide several numerical schemes for
SODEs, which include the less general case of a Wiener integral.
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