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B.L.S. PRAKASA RAO

OPTIMAL ESTIMATION OF A SIGNAL PERTURBED BY A MIXED

FRACTIONAL BROWNIAN MOTION

We consider the problem of optimal estimation of the vector parameter θ of the drift

term in a mixed fractional Brownian motion. We obtain the maximum likelihood
estimator as well as the Bayesian estimator when the prior distribution is Gaussian.

1. Introduction

Fractional Brownian motion WH = {WH
t , t ≥ 0} (fBm) has been used for modeling

stochastic phenomena with long-range dependence. It is a centered Gaussian process
with the covariance function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H)

where 0 < H < 1 and the constant H is called the Hurst index. The case H = 1/2 cor-
responds to the Brownian motion. The process fBm is the only Gaussian process which
is self-similar and has stationary increments. For properties of fBm, see Samorodnitsky
and Taqqu [24], Mishura [9] and Prakasa Rao [16]. Geometric Brownian motion has been
widely used for modeling fluctuations of share prices in a stock market. Recently there has
been an interest to study the problem of estimation of parameters for processes driven by
processes which are mixtures of independent Brownian and fractional Brownian motions
starting from the work of Cheridito [3], Rudomino-Dusyatska [23] and more recently in
Prakasa Rao [15], [17], [18], [20], [22] among others. Mixed fractional Brownian models
were studied in Mishura [9] and Prakasa Rao [16]. Cai et al. [2] present a new approach
via filtering for analysis of mixed processes of type {Xt = Bt + Gt, 0 ≤ t ≤ T} where
{Bt, 0 ≤ t ≤ T} is a Brownian motion and {Gt, 0 ≤ t ≤ T} is an independent Gauss-
ian process. Statistical Analysis of mixed fractional Ornstein-Uhlenbebeck process was
investigated in Chigansky and Kleptsyna [4]. Large deviations for drift parameter esti-
mator of mixed fractional Ornstein-Uhlenbeck process were studied by Marushkevych [8].
Optimal estimation of a signal perturbed by a mixed fractional Brownian motion over
a finite time horizon is discussed here. Parameter estimation for linear stochastic dif-
ferential equations driven by a mixed fractional Brownian motion and the asymptotic
properties of the maximum likelihood and Bayes estimators are investigated in Prakasa
Rao [20], [22].

2. Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The nat-
ural filtration of a stochastic process is understood as the P -completion of the filtra-
tion generated by this process. Let {Wt, t ≥ 0} be a standard Wiener process and
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WH = {WH
t , t ≥ 0} be an independent normalized fractional Brownian motion with

Hurst parameter H ∈ (0, 1), that is a Gaussian process with continuous sample paths
such that WH

0 = 0, E(WH
t ) = 0 and

(2.1) E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.

Let

W̃H
t = Wt +WH

t , t ≥ 0.

The process {W̃H
t , t ≥ 0} is called the mixed fractional Brownian motion (mfBm) with

Hurst index H. We assume here after that Hurst index H is known. Following the results
in Cheridito [3], it is known that the process W̃H is a semimartingale in its own filtration
if and only if either H = 1/2 or H ∈ ( 3

4 , 1). We will assume hereafter that H ∈ ( 3
4 , 1).

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral
equation

(2.2) Yt =

∫ t

0

C(s)ds+ W̃H
t , t ≥ 0

where the process C = {C(t), t ≥ 0} is an (Ft)-adapted process. For convenience, we
write the above integral equation in the form of a stochastic differential equation

(2.3) dYt = C(t)dt+ dW̃H
t , t ≥ 0, Y0 = 0

driven by the mixed fractional Brownian motion W̃H . Following the recent works by Cai
et al. [2] and Chigansky and Kleptsyna [4], one can construct an integral transformation

that transforms the mixed fractional Brownian motion W̃H into a martingale MH . Let
gH(s, t) be the solution of the integro-differential equation

(2.4) gH(s, t) +H
d

ds

∫ t

0

gH(r, t)|s− r|2H−1sign(s− r)dr = 1, 0 < s < t.

Cai et al. [2] proved that the process

(2.5) MH
t =

∫ t

0

gH(s, t)dW̃H
s , t ≥ 0

is a Gaussian martingale with quadratic variation

(2.6) < MH >t=

∫ t

0

gH(s, t)ds, t ≥ 0.

Furthermore the natural filtration of the martingale MH coincides with that of the mixed
fractional Brownian motion W̃H . Suppose that, for the martingale MH defined by the
equation (2.5), the sample paths of the process {C(t), t ≥ 0} are smooth enough in the
sense that the process

(2.7) Qt =
d

d < MH >t

∫ t

0

gH(s, t)C(s)ds, t ≥ 0

is well defined. Define the process

(2.8) Zt =

∫ t

0

gH(s, t)dYs, t ≥ 0.

As a consequence of the results in Cai et al. [2], it follows that the process Z is a
fundamental semimartingale associated with the process Y in the following sense.
Theorem 2.1: Let gH(s, t) be the solution of the equation (2.4). Define the process Z
as given in the equation (2.8). Then the following relations hold.
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(i) The process Z is a semimartingale with the decomposition

(2.9) Zt =

∫ t

0

Qsd < MH >s +MH
t , t ≥ 0

where MH is the martingale defined by the equation (2.5).
(ii) The process Y admits the representation

(2.10) Yt =

∫ t

0

ĝH(s, t)dZs, t ≥ 0

where

(2.11) ĝH(s, t) = 1− d

d < MH >s

∫ t

0

gH(r, s)dr.

(iii) The natural filtrations (Yt) and (Zt) of the processes Y and Z respectively coincide.
Applying Corollary 2.9 in Cai et al. [2], it follows that the probability measures µY

and µW̃H generated by the processes Y and W̃H on an interval [0, T ] are absolutely
continuous with respect to each other and the Radon-Nikodym derivative is given by

(2.12) ΛHT =
dµY
dµW̃H

(Y ) = exp[

∫ T

0

QsdZs −
1

2

∫ T

0

Q2
sd < MH >s]

which is also the likelihood function based on the observation {Ys, 0 ≤ s ≤ T.} Since the
filtrations generated by the processes Y and Z are the same, the information contained
in the families of σ-algebras (Yt) and (Zt) is the same and hence the problem of the
estimation of the parameters involved based on the observation {Ys, 0 ≤ s ≤ T} and
{Zs, 0 ≤ s ≤ T} are equivalent.

We call the process ΛH as the likelihood process or the Radon-Nikodym derivative dPY

dP

of the measure PY with respect to the measure P.
Let ξ = {ξt, t ≥ 0} be a stochastic process defined on the filtered probability space

(Ω,F , (Ft, t ≥ 0), P ) satisfying the stochastic differential equation

(2.13) dξt = (

k∑
i=1

θiφi(t))dt+ σ(t)dW̃H
t , t ≥ 0.

We discuss the problem of estimation of the unknown vector parameter θ = (θ1, . . . , θk)

based on the observation of the process ξ over the interval [0, t]. Here W̃H is a mixed
fractional Brownian motion as defined above with the Hurst index H ∈ ( 3

4 , 1), the drift
coefficient is given by

(2.14) a(t) =

k∑
i=1

θiφi(t)

where the vector parameter θ = (θ1, . . . , θk) is unknown but the function

φ(t) = (φ1(t), . . . , φk(t))

and the function σ(t) are assumed to be known. We assume further that the functions
φi(t), 1 ≤ i ≤ k are Liptshitz continuous and satisfy linear growth conditions and the
function σ(t) is positive so that the stochastic differential equation (2.13) has a unique
solution {ξ(t), 0 ≤ t ≤ T} (cf. Guerra and Nualart [7]; Mishura and Shevchenko [10];
da Silva, J.L., Erraoui, M. and Essaky, E.H. [6]). The problem of maximum likelihood
estimation of the parameter θ, given the observations {ξs, 0 ≤ s ≤ t}, has been inves-
tigated and its asymptotic properties such as strong consistency and asymptotic mixed
normality, as t→∞, have been obtained in Prakasa Rao [22].
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The problem of sequential estimation consists of choosing an optimal sequential plan
to stop sampling and construct an estimator based on this sampled data based on mini-
mization of expectation of cost of sampling plus loss incurred up to the time the sampling
is stopped. We now consider the problem of sequential estimation of the vector parameter
θ given the observations {ξs, 0 ≤ s ≤ t} available up to time t using the maximum like-
lihood and Bayesian methods when the loss function is the squared error loss function.
Sequential estimation and testing for parameters, for processes driven by a fractional
Brownian motion, were investigated in Prakasa Rao [12], [13], [14]. For a survey of
problems of estimation for fractional diffusion processes, see Prakasa Rao [16]. Opti-
mal estimation of a signal perturbed by a fractional Brownian noise has been recently
discussed by Artemov and Burnaev [1] and optimal estimation of a signal perturbed by
a sub-fractional Brownian motion is studied in Prakasa Rao [21]. Bayesian sequential
estimation of the drift parameter of fractional Brownian motion is also investigated in
Cetin et al. [5].

3. Maximum likelihood estimation of the drift parameter

We will now investigate the maximum likelihood estimation of the parameter θ =
(θ1, . . . , θk) based on the observation of the process {ξt, 0 ≤ t ≤ T}. Since the filtrations
generated by the processes {ξt, 0 ≤ t ≤ T}, {ζHt , 0 ≤ t ≤ T} and {MH

t , 0 ≤ t ≤ T} are the
same, the information contained in the three sets of observations is the same and hence
the problem of estimation of the parameter θ based on the observations {ξt, 0 ≤ t ≤ T}
is equivalent to the problem of estimation based on the the process {MH

t , 0 ≤ t ≤ T}.
Following the general form of the process QH(t) defined in the previous section, we define

(3.1) QH(t) =

k∑
i=1

θi
d

d < MH >t

∫ t

0

gH(t, s)
φi(s)

σ(s)
ds =

k∑
i=1

θiψi(t)

where

(3.2) ψi(t) =
d

d < MH >t

∫ t

0

gH(t, s)
φi(s)

σ(s)
ds, 1 ≤ i ≤ k.

and the function gH(t, s) is as defined in the previous section. We assume that the
functions ψi(.), 1 ≤ i ≤ k are square integrable over the interval [0, t], t ≥ 0 with respect
to the measure induced by the function < MH >t, t ≥ 0. Then the likelihood process
ΛH is given by the equation

(3.3) ΛHt (θ) = exp{
k∑
i=1

θi

∫ t

0

ψi(s)dM
H
s −

1

2

∫ t

0

[

k∑
i=1

θiψi(s)]
2d < MH >s}.

Let JH(t) denote the matrix of order k × k with the (i, j)-th element

(3.4) (JH(t))i,j =

∫ t

0

ψi(s)ψj(s)d < MH >s

and let ψH = {ψHt , t ≥ 0} be a k-dimensional process with the i-th component of ψHt as

(3.5) (ψHt )i =

∫ t

0

ψi(s)dM
H
s , 1 ≤ i ≤ k.

Following the notation defined above, the likelihood process can be written in the form

(3.6) ΛHt (θ) = exp{θ′ψHt −
1

2
θ′JH(t)θ}.

The maximum likelihood estimator θ̂t of the parameter θ is a maximizer of the likelihood
ΛHs (θ) over the interval [0, t] and can be obtained as a solution of the system of linear
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equations

(3.7)

∫ t

0

ψi(s)dM
H
s −

k∑
j=1

θj

∫ t

0

ψi(s)ψj(s)d < MH >s= 0, 1 ≤ i ≤ k

which, in turn, can be written in the form

(3.8) ψHt − JH(t)θ = 0.

The matrix JH(t) is a covariance matrix and is positive semidefinite. If the matrix
JH(t) is positive definite, then the maximum likelihood estimator (MLE) of the vector
parameter θ is given by the equation

(3.9) θ̂t = J−1H (t)ψHt .

where J−1H (t) is the inverse of the matrix JH(t). Let θ0 be the true mean vector. Note
that the martingale MH is a zero mean Gaussian martingale and hence the random
vector ψHt has the multivariate normal distribution. This will imply that the random

vector θ̂t−θ0 has the multivariate normal distribution with mean zero and the covariance
matrix J−1H (t) which in turn will imply that the estimator θ̂t is an unbiased estimator of

the vector θ component wise. Consistency of the i-th component of the estimator θ̂t to
the i-th component θi of the vector parameter θ as t → ∞ follows if the function ψi(t)
satisfies the condition ∫ ∞

0

ψ2
i (s)d < MH >s ds =∞.

Non-singularity of the matrix J−1H (t) will hold if the functions ψi(.), 1 ≤ i ≤ k are linearly
independent in the space L2([0, t], d < MH >). Note that the functions ψi(.), 1 ≤ i ≤ k
in turn depend on the functions φi(.), 1 ≤ i ≤ k and the functions σ(.) and < MH > by
the equation (3.4). If the matrix JH(t) is singular, then one can construct a generalized
inverse J∗H(t) of the matrix and construct a solution of the differential equation (3.8).
However, this solution is not unique and depends on the type of generalized inverse.

4. Bayes estimation of the drift parameter

We now consider the problem of Bayes estimation of the parameter θ ∈ Rk assuming
that the parameter θ has a prior probability measure with density pθ(.) with respect to
the Lebesgue measure on Rk and the loss function is the squared error loss function. It
is well known that the Bayes estimator is the conditional expectation of the parameter
given the observed data, that is, it is the mean or expectation of the posterior distribution
of the parameter θ given the observed data. The posterior density of θ given the observed
data {ξs, 0 ≤ s ≤ t} or equivalently the information Ft, the σ-algebra generated by the
family {ξs, 0 ≤ s ≤ t}, is given by

(4.1) pθ(z|Ft) =
pθ(z)ΛHt (z)∫

Rk pθ(y)ΛHt (y)dy
, z ∈ Rk

where ΛHt (z) is the likelihood process defined earlier. We will also consider the problem

of finding the optimal sequential Bayes estimation rule δ̃ = (τ̃ , θ̃τ ) for estimation of the
parameter θ in the sense that

(4.2) inf
δ∈D

E[cτ + ||θ∗τ − θ||2] = E[cτ̃ + ||θ − θ̃τ̃ ||2]

where D = {δ : (τ, θ∗τ )} is a class of stopping rules with finite stopping time τ ≤ T <∞
with respect to the filtration {Ft, 0 ≤ s ≤ t}and estimate the parameter θ by θ∗τ . Here
Ft is the σ-algebra generated by the process {ξs, 0 ≤ s ≤ t}. The constant c > 0 can
be interpreted as the cost per unit of observation and the Bayes sequential estimation
consists in stopping sampling at time τ̃ and declaring θ̃τ̃ as the optimal estimator of θ.
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Special case: Suppose the vector θ has a multivariate normal prior density with the
mean vector m and the non-singular covariance matrix Σ. Following the standard meth-
ods, it can be shown that the optimal Bayes estimator θ̃t, under the squared error loss
function based on the observations up to time t, is given by

(4.3) θ̃t = E[θ|Ft] = (JH(t) + Σ−1)−1(ψHt + Σ−1m)

and the mean squared error E[||θ− θ̃t||2|Ft] is the trace of the posterior covariance matrix
given by

(4.4) Cov[θ|Ft] = (JH(t) + Σ−1)−1.

This can be checked by the arguments similar to those given in the proof of Theorem 3
in Artemov and Burnaev [1]. We omit the details. The optimal stopping time in this
special case is given by

(4.5) τ̃ = arg inf
τ∈D

E[cτ + E(||θ − θ̃τ ||2|Fτ )] = arg inf
t∈[0,T ]

FH(t)

where

(4.6) FH(t) = ct+ E(||θ − θ̃||2|Ft) = ct+ tr((JH(t) + Σ−1)−1), 0 ≤ t ≤ T.
It can be seen that the function FH(t) is continuous over the interval [0, T ]. Here
arg inf0≤t≤T f(t) denotes the argument of a continuous function f(t) at which the func-
tion f is minimum over the interval [0, T ] and if there are more than one value of t at
which f is minimum over the interval [0, T ], then arg inf0≤t≤T stands for infimum over
all such t ∈ [0, T ].

Note that the function FH(t) is deterministic and hence the optimal stopping rule is
deterministic in this special case.

Suppose the observation process ξ = {ξt, t ≥ 0} satisfies the stochastic differential
equation

(4.7) dξt = θdt+ σdW̃H
t , t ≥ 0

where θ is a scalar and is normally distributed a priori with mean m and variance γ2,
then the posterior distribution of θ given the observed data {ξs, 0 ≤ s ≤ t} is normal
with the mean

(MH
t /σ) + (m/γ2)

< MH >t /σ2 + 1/γ2

and the variance
1

(< MH >t /σ2) + (1/γ2)
.

From the general results on Bayes estimation for squared error loss function, it follows
that the Bayes estimator for the parameter θ is given by

(4.8) θ̃ = E[θ|Ft] =
(MH

t /σ) + (m/γ2)

< MH >t /σ2 + 1/γ2

and the variance of this estimator is

(4.9) E[(θ − θ̃)2|Ft] =
1

(< MH >t /σ2) + (1/γ2)
.

Remarks: It is possible to investigate the problem of Bayes estimation for the vector
parameter θ ∈ Rk when it has a uniform prior on the k-dimensional cube Πk

i=1[ai, bi]
following the arguments in Artemov and Burnaev [1].
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