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ALEXANDER V. KOLESNIKOV AND EGOR D. KOSOV

MOMENT MEASURES AND STABILITY FOR GAUSSIAN

INEQUALITIES

Let γ be the standard Gaussian measure on Rn and let Pγ be the space of prob-

ability measures that are absolutely continuous with respect to γ. We study lower
bounds for the functional Fγ(µ) = Ent(µ) − 1

2
W 2

2 (µ, ν), where µ ∈ Pγ , ν ∈ Pγ ,

Ent(µ) =
∫

log
(µ
γ

)
dµ is the relative Gaussian entropy, and W2 is the quadratic Kan-

torovich distance. The minimizers of Fγ are solutions to a dimension-free Gaussian
analog of the (real) Kähler–Einstein equation. We show that Fγ(µ) is bounded from

below under the assumption that the Gaussian Fisher information of ν is finite and

prove a priori estimates for the minimizers. Our approach relies on certain stability
estimates for the Gaussian log-Sobolev and Talagrand transportation inequalities.

1. Introduction

Given a probability measure ν = %dx one can try to find a log-concave measure
µ = e−Φdx (i.e., Φ is a convex function) satisfying the following remarkable property:
ν is the image of µ under the mapping T generated by the logarithmic gradient of µ:

T (x) = ∇Φ(x), ν = µ ◦ T−1.

Following the terminology from [11], we say that ν is a moment measure if such a function
Φ exists.

There are many motivations to study moment measures. The associated equation on
Φ

e−Φ = %(∇Φ) detD2Φ

is a non-linear elliptic PDE of the Monge–Ampère type. After a suitable complexification
it turns out to be a particular case of the complex Monge–Ampère equation. The case
where ν is Lebesgue measure on a polytope with rational coordinates is of special interest
in differential and algebraic geometry because of its relation to the theory of toric varietes.
First results on the well-posedness of this equation have been established in a series
of geometric papers (see [28], [2], [11], and the references therein). The most general
result on existence of the moment measure has been obtained in [11] under fairly general
assumptions. It is known that Φ is a maximum point of the following functional:

(1.1) J(f) = log

∫
e−f

∗
dx−

∫
fdν,

where f∗ is the Legendre transform of f . This functional has deep relations to the classical
Brunn–Minkowski theory. In particular, J is concave under the usual addition and this
fact is a particular form of the famous Prékopa–Leindler inequality. The measure µ is
unique up to translations. To determine it uniquely we always assume that the barycenter
(mean) of µ equals zero:

∫
xdµ = 0.
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An alternative viewpoint was suggested in [27], where another natural functional was
proposed. It was shown in [27] that ρ = e−Φ gives a minimum to the functional

(1.2) F(ρ) = −1

2
W 2

2 (ν, ρdx) +
1

2

∫
x2ρ dx+

∫
ρ log ρdx.

Here W2 is the Kantorovich distance for the cost function c(x, y) = |x − y|2. Unlike
the approach of [11], the moment measure problem is viewed here as a problem on
the space of probability measures equipped with the quadratic Kantorovich distance.
We emphasize that the mass transportation problem is very relevant here. Indeed, the
mapping x → ∇Φ(x) is the optimal transportation taking e−Φdx to ν. However, since
µ depends on Φ explicitly, there is no simple way to find Φ as a solution to a Monge–
Kantorovich problem.

Following the idea from [27] (see also [17] for further developments), we are looking
for the minima of the Gaussian analog of (1.2)

Fγ(ρ) = −1

2
W 2

2 (g · γ, ρ · γ) + Entρ,

where γ = 1
(
√

2π)n
e−
|x|2
2 dx,

Entρ =

∫
ρ log ρdγ

is the Gaussian entropy of g.
This question is motivated by the following infinite-dimensional analog of the moment

measure problem. Let γ be the standard Gaussian product measure on R∞ and let
ν = g · γ be a probability measure such that∫

xigdγ = 0 for every i ∈ N.

The problem is to find a log-concave measure µ = e−ϕ · γ such that ν is the image of µ
under the mapping

T (x) = x+∇ϕ,
where ∇ϕ is the Cameron–Martin gradient.

There exists a rich theory of optimal transportation on the Wiener space with a num-
ber of interesting results (see [6], [7], [8], [10], [13], [15], and [20]). So the well-posedness
of the moment measure problem on the Wiener space is a natural and interesting ques-
tion. We emphasize that the finite-dimensional estimates obtained in this paper are the
first crucial step towards infinite-dimensional spaces. However, the infinite-dimensional
moment measure problem seems to be delicate and requires hard technical work. This
will be done in a forthcoming paper of the authors.

The following theorem is our main result (see Theorem 3.3).

Theorem 1.1. Assume that g is a probability density satisfying I(g) <∞, where

I(g) =

∫
|∇g|2

g
dγ

is the Gaussian Fisher information of g. Then there exists a constant C > 0 depending
only on I(g) such that

Fγ ≥ −C
and

W 2
2 (g · γ, ρ · γ) ≤ C,

where ρ · γ is the minimum point of Fγ satisfying the condition
∫
xρdγ = 0.
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Our approach is based on certain stability results for the log-Sobolev and the Talagrand
transportation inequalities:

1

2
I(g)− Entg ≥ δ1(g),

Entg − 1

2
W 2

2 (γ, g · γ) ≥ δ2(g),

where δ1, δ2 are some non-negative functionals defined on probability densities.
The stability of the Euclidean isoperimetric inequality (see the survey paper [16]) and

the Gaussian inequalities (see [18], [3], [14], [12], and [24]) has been recently studied by
many researchers. In this paper we establish several new results in this direction and
give new simple proofs of some previously known inequalities.

Finally, we obtain a priori estimates for the (centered) minimum point ρ · γ = e−ϕ · γ
of Fγ . In particular, applying the approach developed in [5] for the standard Monge–
Kantorovich problem, we establish new bounds for the entropy- and information-type
functionals ∫

ρ| log ρ|pdγ,
∫
ρ
∣∣∣∇ρ
ρ

∣∣∣pdγ, p ≥ 1,

and certain exponential moments.

2. Stability results

2.1. Notation. We shall use some standard results and terminology from Gaussian anal-
ysis (see [4]) and optimal transportation theory (see [8]).

Let γ be the standard Gaussian measure on Rn:

γ =
1

(
√

2π)n
e−
|x|2
2 dx.

We denote by T the optimal transportation taking g · γ to γ. Recall that T gives a
minimum to the functional

F →
∫
|F (x)− x|2gdγ

considered on the mappings taking g · γ to γ.
Moreover, T is the gradient of a convex function. It can be written in the form

T (x) = x+∇ϕ(x),

where the potential ϕ satisfies the estimate

D2ϕ ≥ −Id.

The corresponding Kantorovich distance W2(γ, g·γ) for the cost function c(x, y) = |x−y|2
can be computed as follows:

W 2
2 (γ, g · γ) =

∫
|∇ϕ|2gdγ.

The notation

‖A‖ =
√

Tr(AAT )

will be used for the Hilbert–Schmidt norm of the matrix A and ‖A‖op will denote the
operator norm. We also use the standard notation for the (Gaussian) entropy

Entg =

∫
g log gdγ

and information

I(g) =

∫
|∇g|2

g
dγ.
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2.2. Stability for the logarithmic Sobolev inequality. The celebrated Gaussian
logarithmic Sobolev inequality

(2.1)
1

2
I(g) ≥ Entg

is one of the central results in Gaussian analysis. Here g is a sufficiently regular proba-
bility density. For the proofs and the history of (2.1), see [4], [23], and [1].

Throughout the paper we assume that g has finite information.
Assumption I.

I(g) <∞.
It is known that (2.1) is sharp and the corresponding minimizers have the form g = el,

where l is an affine function. This has been proved by Carlen in [9]. He has shown that
the so-called log-Sobolev deficit

1

2
I(g)− Entg

is bounded from below by a non-negative term, which is a functional involving certain
integral transform of g.

Yet another representation has been obtained in [22]:

Theorem 2.1 ([22]). Let T = x +∇ϕ be the optimal transportation taking g · γ nto γ,
where g is a sufficiently regular probability density. Then the following representation
holds:

I(g) = 2Entg + 2

∫ (
∆ϕ− log det(I +D2ϕ)

)
gdγ +

∫
‖D2ϕ‖2gdγ

+

∫ n∑
i=1

Tr
[
(Id +D2ϕ)−1(D2ϕxi)

]2
gdγ.(2.2)

Remark 2.2. (Regularity of ϕ). The gradient of ϕ is well-defined almost everywhere

because |x|
2

2 + ϕ is a convex function. Identity (2.2) ensures that ϕ belongs to an ap-
propriate second-order Sobolev space (see [7] for details). The reader can always assume
that g is bounded away from zero and locally smooth; this implies the local smoothness
of ϕ (see [22] and [7]). In almost all our statements the minimal assumption about g is
I(g) <∞. This case follows easily from the case of a smooth potential by the standard
approximation procedure.

It is important to mention that all the terms in the right-hand side of (2.2) are non-
negative. This result is closely related to the so-called Gaussian stability inequalities,
which have been recently investigated in a series of papers [18], [3], [14], [12]. Technically
speaking, these are estimates of the type

1

2
I(g)− Entg ≥ F (g · γ),

where F is a non-negative functional on probability densities (measures). In our work
we apply other well-known results deeply connected with (2.1): the Gaussian Talagrand
transportation inequality

(2.3) Entg ≥ 1

2
W 2

2 (γ, g · γ)

and the HWI inequality

(2.4)
1

2
W 2

2 (g · γ, γ) + Entg ≤
√
I(g)W2(γ, g · γ)

(see [23] and [1]).
The Talagrand inequality and the HWI inequality follow from the following identity

which is widely used in transportation inequalities (see [1, Theorem 9.3.1]).
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Theorem 2.3. Let T (x) = x+∇u(x) be the optimal transportation taking g · γ to f · γ.
Then

(2.5) Entf = Entg+
1

2
W 2

2 (g ·γ, f ·γ) +

∫
〈∇u,∇g〉dγ+

∫ (
∆u− log det(I+D2u)

)
gdγ.

To prove (2.3) we set g = 1 and use that ∆u− log det(I +D2u) is non-negative. For
(2.4) we set f = 1 and apply the Cauchy inequality.

In the proof of our main result we apply the following theorem from [14].

Theorem 2.4 ([14], Theorem 1). Assume that ν = g · γ satisfies the Poincarè inequality∫ (
f −

∫
fgdγ

)2

gdγ ≤ CP
∫
|∇f |2gdγ

and
∫
xgdγ = 0. Then the following inequality holds:

(2.6)
1

2
I(g)− Entg ≥ 1

2

CP logCP − CP + 1

(CP − 1)2
I(g).

Remark 2.5. Stability estimates of the same type, but with non-sharp constants can
be derived from (2.2) and (2.4). Let ν satisfy the assumptions of Theorem 2.4. Then

I(g) ≥ 2Entg +
1

CP
W 2

2 (γ, g · γ).

Indeed, the result follows immediately from (2.2) and the following computations (we
use the Poincarè inequality and the change of variables formula)∫

‖D2ϕ‖2gdγ =

n∑
i=1

∫
|∇ϕxi |2gdγ ≥

1

CP

∫
ϕ2
xigdγ −

1

CP

(∫
ϕxigdγ

)2

,

∫
ϕxigdγ =

∫
(Ti − xi)gdγ =

∫
xidγ −

∫
xigdγ = 0.

Applying (2.4) we get the following estimate for arbitrary K ≥ 1:

1
2W

2
2 (g · γ, γ) + Entg ≤

√
I(g)W2(g · γ, γ) ≤ 1

2

(
KW 2

2 (g · γ, γ) +
1

K
I(g)

)
.

Hence

Entg ≤ 1

2K
I(g) +

K − 1

2
W 2

2 (g · γ, γ) ≤ 1

2K
I(g) +

CP (K − 1)

2
(I(g)− 2Ent).

Equivalently, Entg ≤ 1
2I(g)

(
1
K+(K−1)CP
1+(K−1)CP

)
. Choosing the optimal value of K, which is

K = 1 + 1√
CP

, one gets

(2.7) I(g)− 2Entg ≥ 1

(1 +
√
CP )2

I(g).

Note that this is a result of the same type as in Theorem 2.4, but for large values of
CP the constant in the right-hand side of (2.6) is of order logCP

CP
, which is stronger than

our result. We observe that the proof of (2.7) modulo (2.2) is easier than the proof of
(2.6), but we do not know how to deduce (2.6) from (2.2).

We now prove another stability result (2.8) similar to (2.6). In particularly, both

estimates are sharp: the equalities hold for g = λ
n
2 e

(1−λ)
2 |x|2 . Note, however, that under

the assumption I(g) <∞ the right-hand side of (2.6) is always finite and dimension-free,
which is not the case for (2.8). This fact has rather unexpected interesting consequences
(see Remark 2.7).
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Theorem 2.6. Assume that ν = g · γ satisfies the Poincaré inequality∫
f2 dν ≤ CP

∫
|∇f |2 dν,

∫
fdν = 0

and CP ≤ 1. Then

(2.8)
1

2
I(g)− Entg ≥ n(CP logCP − CP + 1)

2CP
.

Remark 2.7. Applying (2.8) to the infinite-dimensional (n =∞) Gaussian measure γ,
we obtain the following result: if g ·γ satisfies I(g) <∞ and admits a finite Poincaré con-
stant CP (for the Cameron–Martin norm), then CP ≥ 1. We believe that the assumption
I(g) <∞ is unnecessary for this observation and can be relaxed.

For the proof, we write the right-hand side as
n∆(C−1

P −1)

2 , where ∆(t) = t− log(1 + t).

Let us apply (2.2). Let λi, i ∈ {1, . . . , n} be the eigenvalues of D2ϕ. Then

1
2‖D

2ϕ‖2HS +∆ϕ− log det(I+D2ϕ) =

n∑
i=1

1
2λ

2
i +λi− log(1+λi) = 1

2

n∑
i=1

∆((λi+1)2−1).

Note that

∆∗(s) := sup
t≥−1
{st−∆(t)} = −s− log(1− s), s ≤ 1.

Thus,

1
2‖D

2ϕ‖2HS + ∆ϕ− log det(I +D2ϕ) ≥ 1
2

n∑
i=1

[
s((λi + 1)2 − 1)− (−s− log(1− s))

]
= 1

2s

n∑
i=1

(λi + 1)2 + 1
2n log(1− s) = 1

2s‖I +D2ϕ‖2HS + 1
2n log(1− s).

Applying the relations

‖I +D2ϕ‖2HS =

n∑
i=1

|∇(xi + ϕxi)|2,

∫
[xi + ϕxi ] gdγ =

∫
yidγ = 0,

we obtain for s ≥ 0

1

2
I(g)− Entg ≥ s

2CP

n∑
i=1

∫
|xi + ϕxi |2 gdγ +

1

2
n log(1− s)

=
s

2CP

n∑
i=1

∫
|yi|2 dγ + 1

2n log(1− s) =
n

2

( s

CP
+ log(1− s)

)
.

Taking s = 1− CP we obtain the desired result.

Identity (2.2) implies another estimate obtained earlier in [3, Theorem 1.1].

Corollary 2.8. There holds the inequality

I(g)− 2Entg ≥ n∆
( 1

n

∫ ∣∣∣∇g
g
− x
∣∣∣2gdγ − 1

)
.
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Proof. Rewrite (2.2) in the following way:

I(g) = 2Entγg +

∫ (
‖D2Φ‖2 − n− log det(D2Φ)2

)
gdγ

+

n∑
i=1

∥∥(D2Φ)−
1
2D2Φxi(D

2Φ)−
1
2

∥∥2
gdγ.

By another result of [22, Section 5] we have

(2.9)

∫ ∣∣∣∇g
g
− x
∣∣∣2g dγ =

∫
‖D2Φ‖2gdγ +

∑
i

∫ ∥∥(D2Φ)−
1
2D2Φxi(D

2Φ)−
1
2

∥∥2
gdγ.

These two identities imply that∫ ∣∣∣∇g
g

∣∣∣2g dγ = 2Entγg +

∫ (∣∣∣∇g
g
− x
∣∣∣2 − n− log det(D2Φ)2

)
gdγ.

Using Jensen’s inequality and (2.9) we obtain

−
∫

log det(D2Φ)2 gdγ ≥ −n log

∫
‖D2Φ‖2

n
gdγ ≥ −n log

∫
1

n

∣∣∣∇g
g
− x
∣∣∣2 gdγ.

Hence∫ ∣∣∣∇g
g

∣∣∣2g dγ ≥ 2Entγg +

∫ (∣∣∣∇g
g
− x
∣∣∣2 − n) gdγ − n log

∫
1

n

∣∣∣∇g
g
− x
∣∣∣2 gdγ,

which completes the proof. �

Certain stability estimates can be obtained under (one-sided) uniform bounds on the
Hessian of the logarithmic potential − log g. The proof is based on the Caffarelli con-
traction theorem (see [21] and the references therein, some new developments for higher
order derivatives can be found in [19]).

Proposition 2.9. Assume that ∫
xgdγ = 0

and

Id−D2 log g ≥ ε · Id
for some constant ε > 0. Then there exists a universal constant c such that

Entg ≥
(1

2
+ c
√
ε
)
W 2

2 (γ, g · γ).

Proof. Let S(x) = x+∇ψ be the optimal transportation taking γ to g · γ. According to
the Caffarelli contraction theorem

I +D2ψ ≤ 1√
ε
.

Hence ∆ψ − log detD2(I +D2ψ) ≥ c
√
ε‖D2ψ‖2. Then it follows from (2.5) that

Entg ≥ 1

2
W 2

2 (γ, g · γ) + c
√
ε

∫
‖D2ψ‖2dγ.

By the Gaussian Poincaré inequality∫
‖D2ψ‖2dγ =

n∑
i=1

∫
|∇ψxi |2dγ ≥

n∑
i=1

∫
ψ2
xidγ = W 2(g · γ, γ),

which completes the proof. �
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We end this subsection with an extension of Theorem 2.4 under the stronger assump-
tion that g · γ satisfies the log-Sobolev inequality. Roughly speaking, the log-Sobolev
deficit can be estimated from below by

1

CLSI
Kaν ,

where CLSI is the constant in the log-Sobolev inequality and Kaν is the minimum of the
Kantorovich functional with a cost finction c satisfying c(x) ∼ x2 log x2 for large values
of x and c(W2(ν, γ)) = 0.

Theorem 2.10. Assume that ν = g · γ satisfies the logarithmic Sobolev inequality∫
f2 log f2 dν −

∫
f2dν · log

(∫
f2dν

)
≤ CLSI

∫
|∇f |2 dν.

Then
1

2
I(g)− Entg ≥ 1

CLSI
Kaν (ν, γ),

where aν = W2(ν, γ) and Ka(ν, γ) is the minimum of the Kantorovich functional corre-
sponding to the cost function

ca(x) = a2
(

1− |x|
2

a2
+
|x|2

a2
log
|x|2

a2

)
.

Proof. Let T (x) = x+∇ϕ be the optimal transportation taking ν to γ. We apply formula
(2.2) and estimate the integral of ‖D2ϕ‖2HS from below:

CLSI

∫
‖D2ϕ‖2HS dν =

n∑
j=1

CLSI

∫
|∇ϕxj |2 dν ≥

n∑
j=1

∫
ϕ2
xj log

( ϕ2
xj∫

ϕ2
xjdν

)
dν

= W 2
2 (ν, γ)

∫ n∑
j=1

αj
ϕ2
xj∫

ϕ2
xjdν

log
( ϕ2

xj∫
ϕ2
xjdν

)
dν,

where αj =

∫
ϕ2
xj
dν

W 2
2 (ν,γ)

. The function t 7→ t log t is convex for t > 0 and
∑
j=1 αj = 1. Hence

the above expression is not less than

W 2
2 (ν, γ)

∫ ∑n
j=1 ϕ

2
xj

W 2
2 (ν, γ)

log
(∑n

j=1 ϕ
2
xj

W 2
2 (ν, γ)

)
dν

=

∫
|∇ϕ|2

[
log
( |∇ϕ|2
W 2

2 (ν, γ)

)
− 1 +

W 2
2 (ν, γ)

|∇ϕ|2

]
dν ≥ Kaµ(ν, γ),

which completes the proof. �

2.3. Stability for the Talagrand transportation inequality. The aim of the follow-
ing proposition is to give a simplified proof of another result from [14, Theorem 5] with
a more precise constant.

Lemma 2.11. The function ∆(t) = t− log(1 + t), t > −1 has the following properties:

(1) ∆(t) is convex,
(2) ∆(

√
t) is concave on [0,+∞) and, in particular, subadditive,

(3) ∆(t) ≥ ∆(|t|),
(4) ∆(t) ≥ (1− log 2) min(t, t2) on [0,+∞).

Proposition 2.12. Assume that ∫
xgdγ = 0.
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The deficit Entg − 1
2W

2
2 (g · γ, γ) of the Talagrand transportation inequality satisfies the

following estimate:

Entg − 1
2W

2
2 (g · γ, γ) ≥ ∆

(
1
2n
−1/2W1,1(g · γ, γ)

)
≥ (1− log 2) min

{
1
2n
−1/2W1,1(g · γ, γ), 1

4n
−1W 2

1,1(g · γ, γ)
}

where W1,1 is the transportation cost corresponding to c(x, y) =
∑n
i=1 |xi − yi|.

Proof. Let S(x) = x+∇ψ be the optimal transportation taking γ to g · γ and let λi be
all eigenvalues of D2ϕ. Applying (2.5) we obtain

Entg − 1
2W

2
2 (g · γ, γ) =

∫ n∑
i=1

λi − log(1 + λi) dγ

=

∫ n∑
i=1

∆(λi) dγ ≥
∫ n∑

i=1

∆(|λi|) dγ =

∫ n∑
i=1

∆
(√

λ2
i

)
dγ ≥

∫
∆
([ n∑

i=1

λ2
i

]1/2)
dγ

=

∫
∆
(
‖D2ψ‖HS

)
dγ ≥ ∆

(∫
‖D2ψ‖HS dγ

)
.

Now we note that∫
‖D2ψ‖HS dγ =

∫ ( n∑
i=1

|∇ψxi |2
)1/2

dγ ≥ n−1/2

∫ n∑
i=1

|∇ψxi | dγ

≥ 1
2n
−1/2

∫ n∑
i=1

|ψxi | dγ ≥ 1
2n
−1/2W1,1(g · γ, γ),

where we apply the equality∫
ψxi dγ =

∫
(xi + ψxi) dγ =

∫
xig dγ = 0

and the L1-Poincaré (Cheeger) inequality for γ:∫ ∣∣f − ∫ fdγ
∣∣dγ ≤ 2

∫
|∇f |dγ,

which completes the proof. �

3. A priori estimates for the Kähler–Einstein equation

A moment mesure on Rn is a probability measure ν on Rn that is the image of another
probability measure µ = e−Φdx under the mapping x → ∇Φ(x), where Φ is a convex
function. If ν admits a smooth density %, then Φ solves the Kähler–Einstein equation

%(∇Φ) detD2Φ = e−Φ.

It was shown in [11] that every measure ν with zero mean satisfying the condition ν(L) =
0 for any subspace L of dimension less than n is a moment measure. The function Φ is
uniquely determined up to a translation.

We will be interested in the following Gaussian analog of the Kähler–Einstein equation:
given a probability measure

% dx = g · γ,
find ϕ such that g · γ is the image of the log-concave probability measure

ρ · γ = e−ϕ · γ

under the mapping

T (x) = x+∇ϕ(x).
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Clearly, there is a simple connection between this problem and the ”Euclidean” mo-
ment measure problem. Namely, Φ and ϕ are related by the following formula:

Φ(x) =
|x|2

2
+ ϕ(x) +

n

2
log 2π.

However, the Gaussian modification of the moment measure problem is meaningful in
any infinite-dimensional space equipped with a Gaussian measure.

Since Φ is unique up to a translation, it will be natural to impose the following
requirement that determines ϕ uniquely.

Assumption II. The measure ρ · γ = e−ϕ · γ satisfies the condition∫
xie
−ϕdγ = 0 ∀ i.

The existence and uniqueness of ϕ follows from the results of [11]. It follows from the
main result of [27] that e−ϕ gives a minimum to the following functional:

Fγ(ρ) = −1

2
W 2

2 (g · γ, ρ · γ) +

∫
ρ log ρ dγ.

We wish to find a condition on g which guarantees that F is bounded from below by a
dimension-free functional depending on g.

3.1. Information controls F . Throughout this subsection ρ·γ = e−ϕdγ is the (unique)
minimum point of Fγ with zero mean.

Lemma 3.1. Assume that the measure ρ · γ = e−ϕdγ satisfies the inequality

Entρ ≤ 1− δ
2

I(ρ)

for some 0 < δ < 1. Then

W2(ρ · γ, g · γ) ≤ 1 +
√

1− δ
δ

W2(g · γ, γ).

Proof. We have

W 2
2 (ρ · γ, γ) ≤ 2Ent(ρ) ≤ (1− δ)I(ρ) = (1− δ)W 2

2 (ρ · γ, g · γ).

Hence by the triangle inequality

W2(ρ · γ, g · γ) ≤W2(ρ · γ, γ) +W2(g · γ, γ) ≤
√

1− δW2(ρ · γ, g · γ) +W2(g · γ, γ),

which completes the proof. �

Theorem 3.2. There exists a pair of universal constants C1, C2 such that

CP ≤ max{C1, exp(C2I(g))},

where CP is the Poincaré constant of the measure e−ϕ · γ.

Proof. Let x+∇ψ be the optimal transportation taking g · γ to e−ϕ · γ. It is well-known
that

x+∇ψ = T−1 g · γ-a.e.

and

W 2
2 (ρ · γ, g · γ) =

∫
|∇ϕ|2e−ϕdγ =

∫
|∇ψ|2gdγ.

First we note that e−ϕ · γ is a log-concave measure, hence it has finite moments of all
orders and a finite Poincaré constant CP <∞ (see [1, Theorem 4.6.3]).

Note that

I(ρ) = W2(ρ · γ, g · γ) ≤W2(ρ · γ, γ) +W2(g · γ, γ).
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The right-hand side of this inequality is finite, because g · γ and ρ · γ have finite second
moments. Thus, I(ρ) < ∞. Moreover, approximating g by smooth densities with uni-
formly bounded second derivatives of log g we can assume without loss of generality that
∇ψ is globally Lipschitz (see Theorem 3.4).

It follows from the previous lemma and Theorem 2.4 that

W2(ρ · γ, g · γ) ≤ 1 +
√

1− δ
δ

W2(g · γ, γ),

where δ = CP logCP−CP+1
(CP−1)2 . Applying (2.5) we obtain∫ (
∆ψ − log det

(
Id +D2ψ

))
gdγ +

∫
g log gdγ +

1

2

∫
|∇ϕ|2e−ϕdγ

= −
∫
ϕe−ϕdγ −

∫
〈∇ψ,∇g〉dγ.

By the log-Sobolev inequality

−
∫
ϕe−ϕdγ ≤ 1

2

∫
|∇ϕ|2e−ϕdγ.

Hence ∫ (
∆ψ − log det

(
Id +D2ψ

))
gdγ ≤

√∫
|∇g|2
g

dγ ·W2(g · γ, ρ · γ)

≤ 1 +
√

1− δ
δ

W2(g · γ, γ)
√
I(g) ≤ 1 +

√
1− δ
δ

I(g).(3.1)

Let us estimate CP . By the Brascamb–Lieb inequality (see [1])∫
f2e−ϕdγ −

(∫
fe−ϕdγ

)2

≤
∫
〈
(
Id +D2ϕ

)−1∇f,∇f〉e−ϕdγ.

Hence ∫
f2e−ϕdγ −

(∫
fe−ϕdγ

)2

≤
∫ ∥∥(Id +D2ϕ

)−1‖ope−ϕdγ · ‖∇f‖2L∞(e−ϕ·γ)

=

∫
‖Id +D2ψ‖opgdγ · ‖∇f‖2L∞(e−ϕ·γ).

Since e−ϕ ·γ is a log-concave measure, it follows from a result of E. Milman on equivalence
of the isoperimetric and concentration inequalities ([26], [25, Theorem 1.5] or [1, Theorem
8.7.1]) that

CP ≤ c
∫
‖Id +D2ψ‖opgdγ

for some universal constant c. It follows from (3.1) that∫ (
‖D2ψ‖op − log det(I + ‖D2ψ‖op)

)
gdγ ≤ 1 +

√
1− δ
δ

I(g).

Applying the inequality log(1 + t) ≤ 2−1 + 2−1t, we observe that∫ (
‖D2ψ‖op − log det(I + ‖D2ψ‖op)

)
gdγ ≥ −1/2 + 1/2

∫
‖D2ψ‖op gdγ.

Hence for some universal constant C we have

CP ≤ C
(

1 +
1 +
√

1− δ
δ

I(g)
)
.

It remains to note that for large values of CP one has δ ∼ logCP
CP

. This immediately
implies the announced bound. �

Finally, Theorem 3.2, Lemma 3.1, and Theorem 2.4 imply our main result.
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Theorem 3.3. Assume that g is a probability density such that I(g) < ∞. Then there
exists a constant C > 0 depending only on I(g) such that

Fγ ≥ −C
and

W 2
2 (g · γ, ρ · γ) ≤ C,

where ρ · γ is the minimum point of Fγ such that ρ · γ has zero mean.

Yet another result can be obtained under the uniform bound for the Hessian of − log g
by applying the same techniques as in the proof of the Caffarelli contraction theorem.
We do not give the full proof here (see, for instance, [21]), but only explain the main
idea.

Theorem 3.4. Let −D2 log g ≤ c · Id, c > −1. Then CP ≤ 1 + c and Fγ ≥ −C,
W 2

2 (g · γ, ρ · γ) ≤ C, for some constant C depending on c.

Sketch of the proof. According to the Brascamb–Lieb inequality∫
f2dµ−

(∫
fdµ

)2

≤
∫
〈
(
D2ϕ+ Id

)−1∇f,∇f〉dµ, µ = ρ · γ.

Hence it is sufficient to show that (D2ϕ+ Id)−1 ≤ (1 + c)Id, or, equivalently, D2ψ+ Id ≤
(1 + c)Id, where ψ is the dual potential. This estimate can be obtained by the standard
maximum principle and differentiation of the Monge–Ampère equation. The maximum
principle is applied in the situation

1 + ψee = Ψee, Ψ(x) =
|x|2

2
+ ψ(x) + c(n),

where e is a fixed unit vector. Note that Ψ satisfies the Monge–Ampère equation

Φ(∇Ψ)− log detD2Ψ =
x2

2
− log g + c′(n),

where Φ = |x|2
2 + ϕ. Let us differentiate twice the equation

(3.2) 〈∇Φ(∇Ψ),∇Ψee〉+ 〈D2Φ(∇Φ)∇Ψe,∇Ψe〉 − Tr
[
(D2Ψ)−1D2Ψee

]
+ Tr

[
(D2Ψ)−1D2Ψe

]2
= 1− (log g)ee.

At every local maximum point x0 of the function Ψee one has ∇Ψee = 0, D2Ψee ≤ 0.
Note, moreover, that

〈D2Φ(∇Φ)∇Ψe,∇Ψe〉 = Ψee.

From (3.2) we obtain
1 + ψee = Ψee ≤ 1 + c,

which completes the proof.

3.2. High power and exponential integrability. In this subsection we establish a
priori bounds for the entropy- and information-type integrals∫

| log ρ|pρdγ

and ∫ ∣∣∣∇ρ
ρ

∣∣∣pρdγ.
Here again ρ · γ = e−ϕdγ is the (unique) minimum point of Fγ with zero mean. Several
results of this type have been obtained in [5] for the standard Monge–Kantorovich prob-
lem. The proofs of the theorems of this subsection follow the ideas from [5], but here
they are simpler because we benefit from the specific properties of our problem.
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Theorem 3.5. Assume that I(g) <∞. Then∫
ϕ2e−ϕdγ =

∫
(log ρ)2ρdx <∞.

Assume, in addition, that g satisfies the Poincaré inequality with a constant C. Then
for every p > 0 there exists a number c depending on p, I(g), C such that∫

|∇ϕ|pe−ϕdγ =

∫ ∣∣∣∇ρ
ρ

∣∣∣pρdγ ≤ c
and ∫

|ϕ|pe−ϕdγ =

∫
| log ρ|pρdγ ≤ c.

Proof. The assumptions of the theorem imply that µ satisfies the Poincaré inequality
(see Theorem 3.2). Next we note that the γ-integrability of |∇ϕ|pe−ϕ implies the γ-
integrability of |ϕ|pe−ϕdγ. This follows from the Poincaré inequality (see an explanation
in [5, formula (1.3)]) and the γ-integrability of ϕe−ϕ, i.e., the existence of Ent(e−ϕ).

Then our first claim follows immediately from the finiteness of∫
|∇ϕ|2e−ϕdγ = W 2

2 (ρ · γ, g · γ).

We now proceed by induction and assume that the theorem is proved for p = 2m. Let
us show how to prove the claim for 2m+ 1. By the Kantorovich duality identity (see [8])

|∇ϕ|2

2
+ ϕ+ ψ(x+∇ϕ) = 0.

Hence∫
|∇ϕ|2m+1e−ϕdγ = −

∫
ϕ|∇ϕ|2m−1e−ϕdγ −

∫
ψ(x+∇ϕ)|∇ϕ|2m−1e−ϕdγ.

We estimate the right-hand side by

c(m)
(∫
|∇ϕ|2me−ϕdγ +

∫
|ϕ|2me−ϕdγ +

∫
|ψ(x+∇ϕ)|2me−ϕdγ

)
.

The integrals ∫
|ϕ|2me−ϕdγ,

∫
|∇ϕ|2me−ϕdγ

are bounded by a constant depending on C,m, I(g) by the inductive assumption. Since
g · γ satisfies the Poincaré inequality, it remains to show the integrability of |∇ψ|2mg.
But the integral of this function against γ equals the integral of |∇ϕ|2me−ϕ. So the
claim is proved for p = 2m + 1. Repeating the arguments we prove the assertion for
p = 2m+ 2. �

We close this section with a result on the exponential integrability of |∇ϕ|2. We
apply the infimum-convolution inequality, which is known to be another form of the
transportation inequality (see [1]):

(3.3)

∫
e−fdγ ≤ e

∫
f∗dγ ,

where

f∗(y) = − inf
x

(
f(x) +

1

2
|x− y|2

)
.
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The duality identity and (3.3) immediately imply that for every 0 ≤ δ ≤ 1 one has∫
e
δ
2 |∇ϕ|

2

e−(1−δ)ϕdγ =

∫
e−δψ(x+∇ϕ)e−ϕdγ =

∫
e−δψgdγ

≤
(∫

e−ψdγ
)δ(∫

g
1

1−δ dγ
)1−δ

≤ eδ
∫
ϕdγ
(∫

g
1

1−δ dγ
)1−δ

.

In particular, we obtain the following result (note that unlike all other results in this
paper we do not assume that I(g) <∞).

Theorem 3.6. Assume that g ≤ C and ϕ ∈ L1(γ). Then∫
exp
(1

2
|∇ϕ|2

)
dγ ≤ C exp

(∫
ϕdγ

)
.

Remark 3.7. The assumption of integrability of ϕ may seem quite innocent, but it is
not. For instance, if ρ vanishes outside a compact set, then the integral of ϕ is infinite.
On the other hand, if ϕ is defined γ-a.e., then by the Cheeger inequality∫

|ϕ−med|dγ ≤ 2

∫
|∇ϕ|dγ,

where med is the median of ϕ. Then it follows immediately from Theorem 3.6 that the

integral of exp
(

1
2 |∇ϕ|

2
)

is bounded by a constant depending on C,med.
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