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YUGUANG F. IPSEN AND ROSS A. MALLER

NEGATIVE BINOMIAL CONSTRUCTION OF RANDOM DISCRETE

DISTRIBUTIONS ON THE INFINITE SIMPLEX

The Poisson-Kingman distributions, PK(ρ), on the infinite simplex, can be con-

structed from a Poisson point process having intensity density ρ or by taking the

ranked jumps up till a specified time of a subordinator with Lévy density ρ, as pro-
portions of the subordinator. As a natural extension, we replace the Poisson point

process with a negative binomial point process having parameter r > 0 and Lévy

density ρ, thereby defining a new class PK(r)(ρ) of distributions on the infinite sim-

plex. The new class contains the two-parameter generalisation PD(α, θ) of [13] when

θ > 0. It also contains a class of distributions derived from the trimmed stable sub-
ordinator. We derive properties of the new distributions, with particular reference to

the two most well-known PK distributions: the Poisson-Dirichlet distribution PK(ρθ)

generated by a Gamma process with Lévy density ρθ(x) = θe−x/x, x > 0, θ > 0, and
the random discrete distribution, PD(α, 0), derived from an α-stable subordinator.

1. Introduction

The random discrete distributions on the infinite simplex constructed from Poisson
point processes possess both elegant theoretical properties and wide applicability to many
real-world problems. The construction is as follows. Let X =

∑∞
i=1 δ∆(i)

, where δx
denotes a point mass at x ∈ R, be a Poisson point process on (R+,B(R+)) with ordered
points ∆(1) ≥ ∆(2) ≥ · · · and intensity measure Π(·), satisfying

(1.1) Π{(0,∞)} =∞, Π{(x,∞)} <∞ for each x > 0, and

∫ 1

0

xΠ(dx) <∞.

Denote the sum of points in X by T (X) =
∑
i ∆(i). Then condition (1.1) ensures that

P(0 < T (X) < ∞) = 1. Assume that Π admits a density ρ, so that Π(dx) = ρ(x)dx for
any x > 0. Define V to be the ordered jumps normalised by their sum:

(1.2) V = (V1, V2, . . .) =

(
∆(1)

T (X)
,

∆(2)

T (X)
, . . .

)
.

Then V follows a Poisson-Kingman distribution with density ρ, denoted by PK(ρ), fol-
lowing the terminology and notation in [12]. The two most well-known Poisson-Kingman
distributions are the Poisson-Dirichlet distribution, PK(ρθ), where ρθ(x) = θe−x/x,
x > 0, θ > 0, introduced in [9], and the random discrete distribution derived from
an α-stable subordinator, PK(ρα), with ρα(x) = Cαx−α−1, x > 0, for some C > 0
and 0 < α < 1. 1 This distribution is also known as PD(α, 0) in [13], in which a two-
parameter generalisation PD(α, θ) is constructed. These distributions have applications
ranging from the modelling of gene frequencies in population genetics through to models
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for prior distributions in Bayesian nonparametric statistics as well as, recently, in the
machine learning community; for example, [2, 3, 7, 10].

The construction of PK(ρ) from a Poisson point process is equivalent to that from a
subordinator. Let X = (Xt)t≥0 be a driftless subordinator with Lévy density ρ. Write
the jump process of X as (∆Xt := Xt − Xt−)t>0, and its jumps up till time t > 0

arranged in decreasing order as ∆X
(1)
t ≥ ∆X

(2)
t ≥ · · · . Then by the definition in (1.2),

the vector

(1.3)

(
∆X

(1)
t

Xt
,

∆X
(2)
t

Xt
, · · ·

)
∼ PK(tρ),

where “∼” stands for “has the distribution of”.
As a natural extension of (1.3), one can consider the subordinator X after omitting a

fixed number, r ∈ N, of its largest jumps, and forming the analogous normalised vector of

ratios. The corresponding r-trimmed subordinator is (r)Xt := Xt −
∑r
i=1 ∆X

(i)
t . When

X is an α-stable subordinator, we denote the generalised class of distributions by PD(r)
α ,

so that

(1.4)

(
∆X

(r+1)
1

(r)X1
,

∆X
(r+2)
1

(r)X1
, · · ·

)
∼ PD(r)

α .

There is a close connection between the trimmed stable subordinator and the negative
binomial point process of [5] which we develop in Section 5. The “trimming” concept,
of removing the r largest points, is very natural in this context, but having defined the
new distributions, there is no need to keep r as an integer, and any value r > 0 can be
allowed (as we do herein).

Returning to the general situation, this suggests replacing the Poisson construction
with a negative binomial construction. Alternatively to the trimming rationale mentioned
in the previous paragraph, this generalisation is in the same spirit as replacing a Poisson
by a negative binomial distribution in the statistical analysis of discrete data, to cater for
overdispersion in the data. In any event, this procedure produces a new class of random
discrete distributions, parametrised by an extra parameter r > 0, which includes the
important special case PD(α, θ) for θ > 0, hence, in particular, the classes PD(α, 0) and

PD(0, θ), as well as PD(r)
α . We go on to study stick-breaking representations and other

properties of the new class.
The paper is organised as follows. Section 2 sets up the negative binomial construction

and defines the new Poisson-Kingman class, denoted by PK(r)(ρ). We note the connection
of this class to subordinated Lévy processes as well as to the PD(α, θ) distribution when
θ > 0. From previous Poisson formulae, we then derive the joint density of the size-
biased random permutation in Section 3 and note its interesting consequences. In Section
4, we give the stick-breaking representation for important cases of the new class (see
Theorem 4.1) and make explicit how it differs from the original α-stable case. Section 5

defines a special case PD(r)
α of the new family that arises naturally from trimmed stable

subordinators as discussed above. The related stick-breaking property is investigated in
Theorem 5.1 and a characterisation as a shifted sequence from PD(α, 0) is obtained in
Lemma 5.1. Finally, the paper ends with a brief discussion of potential applications of
the new class in Section 6.

2. The Negative Binomial Construction

Throughout, we assume a background probability space (Ω,A,P) is given and all
random variables are measurable mappings from (Ω,A,P) to some appropriate space.
We follow the exposition in [14, Ch.3] for the point process setup. Denote the space
of integer-valued Radon measures on (R+,B(R+)) endowed with its Borel σ-algebra by
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(M,M), and let F+ be the set of nonnegative measurable functions on (0,∞). We use
the abbreviation PPP(Π) (or PPP(ρ)) throughout to denote a Poisson point process with
intensity measure Π (or density ρ).

Given a measure Π on B(R+), locally finite at infinity, and a parameter r > 0, a
negative binomial point process (NBPP) on (R+,B(R+)) generated by Π and r, as defined
in [5], is a measurable mapping B(r) from (Ω,A,P) to (M,M) characterised by its Laplace
functional

(2.1) Φ(f) = E
(
e−B

(r)(f)
)

=
(

1 +

∫
R+

(1− e−f(x))Π(dx)
)−r

, f ∈ F+.

Denote the distribution of such a B(r) by BN (r,Π) or BN (r, ρ) if Π admits a density ρ.
From (2.1), B(r) with distribution BN (r,Π) can be regarded as a Poisson point process
with randomised intensity measure ΓrΠ, where Γr is an independent Gamma(r,1) random
variable.

The “negative binomial” terminology arises as follows. Let B(r) be a point process
on R+ distributed as BN (r,Π) for some r ∈ N, and let B1, . . . , Bn be a sequence of
pairwise disjoint bounded Borel sets on R+. Then the numbers of points of BN (r,Π) in
B1, . . . , Bn follow an n-variate negative binomial distribution NB(r, q0, q1, . . . , qn), with

q0 =
1

1 + Π
{⋃n

i=1Bi
} and qi =

Π(Bi)

1 + Π
{⋃n

i=1Bi
} for i = 1, . . . , n.

Write B(r) in the form

B(r) =
∑
i∈N

δJ(i) ,

where J(1) ≥ J(2) ≥ · · · are the ordered points in B(r), and denote by T (B(r)) :=
∑
i∈N J(i)

the sum of the points in B(r). Since Π satisfies (1.1), P(0 < T (B(r)) < ∞) = 1 for all
r > 0. We now define from BN (r,Π) a random discrete distribution on the infinite
simplex using a similar procedure as in (1.2).

Definition 2.1 (PK(r)(ρ)). For each r > 0 let B(r) be distributed as BN (r,Π) and
suppose Π admits a density ρ. The vector

(2.2) W := (W1,W2, . . . , ) =

(
J(1)

T (B(r))
,

J(2)

T (B(r))
, . . .

)
,

is said to follow a Poisson-Kingman distribution generated by BN (r, ρ), which we denote

as PK(r)(ρ).

Just as BN (r, ρ) can be characterised as a PPP(Γrρ), so an equivalent construction of

the PK(r)(ρ) sequence can be made from Gamma subordinated Lévy processes. Let X =
(Xt)t>0 be a driftless subordinator with Lévy density ρ and let (σr)r>0 be an independent
gamma subordinator, i.e., a subordinator having Lévy density Πσ(dz) = e−zz−1dz,

z > 0. Denote the ranked jumps of X up till time t > 0 by ∆X
(1)
t > ∆X

(2)
t > · · · .

From (1.3) we immediately obtain

(2.3)

(
∆X

(1)
σr

Xσr

,
∆X

(2)
σr

Xσr

,
∆X

(3)
σr

Xσr

, . . .

)
∼ PK(r)(ρ).

One may generalise this further by considering PPP(ξρ) with any positive random
variate ξ replacing Γr. See for example [8] for a generalisation of the Indian Buffet
process using scaled subordinators. Our emphasis on the negative binomial class is due
to its natural derivation from an r-trimmed stable subordinator (see Section 5), but it

also turns out that PK(r)(ρ) defined in (2.2) includes the well-known two parameter
Poisson-Dirichlet distributions PD(α, θ), when θ > 0.
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Class PD(α, θ) is defined in [13] through a stick-breaking representation of size-biased
permutations of vectors having those distributions. Thus, V = (Vi)i≥1 is said to have

law PD(α, θ) with size-biased permutation Ṽ = (Ṽi)i≥1 if for each n ∈ N

Ṽn = Un

n−1∏
i=1

(1− Ui),

where the Ui are independent and distributed as Beta(θ+iα, 1−α). When θ > 0, PD(α, θ)
has a subordinator representation in terms of the generalised Gamma subordinator. Take
0 < α < 1 and denote the Lévy density of the generalised Gamma subordinator as

ρG(x) =
α

Γ(1− α)
x−α−1e−x, x > 0 .

Let (Xt)t≥0 be a subordinator with Lévy density ρG and let (σr)r>0 be an independent
gamma subordinator. Then, by [13, Prop.21],

(2.4) V =
(∆X

(1)
T

XT
,

∆X
(2)
T

XT
, . . .

)
∼ PD(α, θ) if T = σθ/α.

Comparing (2.3) with (2.4), we see that for each θ > 0, PK(θ/α)(ρG) has the same law
as PD(α, θ). In particular, XT is independent of V in (2.4).

Remark 2.1. It is possible to enlarge the current class PK(r)(·) to include PD(α, θ)
when 0 > θ > −α by using a 2-variate mixing measure η2(·, ·) on (0,∞) × (0,∞) such
that

PK(ρ, η2(·, ·)) =

∫
s>0

∫
t>0

PK(sρ | t) η2(ds,dt).

Then the mixed class PK(ρ, η(·)) defined in Definition 3 of [12] is included in the enlarged
class with mixing measure η2(ds,dt) = δ1(ds) η(dt) trivially. So we have a generalisation
of PD(α, θ) for the entire parameter range.

In the following sections, many interesting properties of PK(r)(ρ) are derived through
the corresponding Poisson formulae in [11] and [13].

3. Joint Density of the Size-biased Permutation

The size-biased permutation of a sequence J := (J(i))i∈N, denoted by (J̃i)i∈N, is

defined as follows. Conditional on J , J̃1 takes value J(i) with probability J(i)/T (B(r));

for n ≥ 1, conditional on J and {J̃1, . . . , J̃n}, J̃n+1 takes value J(j) ∈ J \ {J̃1, . . . , J̃n}
with probability J(j)/

(
T (B(r))−

∑n
i=1 J̃i

)
.

Let the sum of the points remaining after each size-biased pick from B(r) be the
sequence ((r)Tn), n ≥ 0; thus, (r)T := (r)T0 := T (B(r)), and, for each n ∈ N,

(3.1) (r)Tn := (r)Tn−1 − J̃n .
For each r > 0, denote the density of the random variable T (B(r)) by

(3.2) gr(t) := P
(
T (B(r)) ∈ dt

)
/dt = P

(
(r)T ∈ dt

)
/dt, t > 0.

By (2.1), gr exists and satisfies, for each λ > 0,∫ ∞
0

e−λxgr(x)dx =
(

1 +

∫ ∞
0

(1− e−λx)Π(dx)
)−r

.

Furthermore, we always have

(3.3) gr(t) =

∫
v>0

fv(t)P(Γr ∈ dv)

where fv is the density of the sum of Poisson points T (X) with Lévy density vρ.
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Since PK(r)(ρ) = PK(Γrρ), we can derive the joint densities of the sequence of remain-
ing sums ((r)Ti, i ≥ 0) by applying the Poisson formulae in [11]. (This is also derived
from first principles through Palm characterisation in [6].) Write the ascending factorial
of base r and order n ∈ N as r[n] = r(r + 1)(r + 2) · · · (r + n− 1) with r[0] = 1.

Theorem 3.1. Let r > 0 and Θ(x) := xρ(x), x > 0.

(i) The joint density of
(

(r)T, (r)T1,
(r)T2, . . . ,

(r)Tn
)

with respect to Lebesgue measure
is, for t0 > t1 > · · · > tn > 0 and n ∈ N,

(3.4) f(t0, t1, . . . , tn) = r[n]gr+n(tn)

n−1∏
i=0

Θ(ti − ti+1)

ti
.

(ii) {(r)T, (r)T1,
(r)T2, . . .} is a non-homogeneous Markov chain with transition density

(3.5) P
(

(r)Tn+1 ∈ t1
∣∣ (r)Tn = t

)
= (r + n)

Θ(t− t1)

t

gr+n+1(t1)

gr+n(t)
dt1,

for each n = 0, 1, 2, . . ., t > 0 and 0 < t1 < t.

Proof of Theorem 3.1. Recall in (3.3) that fv is the density of the sum of Poisson points
with Lévy density vρ(x). By [11, Theorem 2.1], the joint density of the corresponding
remaining sum (Ti, i = 0, . . . , n) is

fv(tn)

n∏
i=1

vnΘ(ti−1 − ti)
ti

.

Randomising v by a Gamma(r, 1) distribution, we see that
(

(r)Ti, i = 0, . . . , n
)

has joint
density ∫

v>0

fv(tn)vnP(Γr ∈ dv)

n∏
i=1

Θ(ti−1 − ti)
ti

.

Here we note by (3.3) that∫
v>0

fv(tn)vnP(Γr ∈ dv) =
Γ(r + n)

Γ(r)

∫
v>0

fv(tn)P(Γr+n ∈ dv) = r[n]gr+n(tn).

This proves (3.4). Part (ii) follows immediately from Part (i) as

P
(

(r)Tn+1 ∈ dtn+1

∣∣ (r)T = t0,
(r)T1 = t1,

(r)T2 = t2, . . . ,
(r)Tn = tn

)
= (r + n)

Θ(tn − tn+1)

tn

gr+n+1(tn+1)

gr+n(tn)
dtn+1,

which does not depend on t0, t1, . . . , tn−1. Thus (3.5) is established. �

We next write down some interesting consequences of Theorem 3.1. Suppose W =
(Wi)i∈N is defined as in (2.2) with size-biased permutation of (Wi) as (W̃i). Let the

distribution of W conditional on {T (B(r)) = t} be PK(r)(ρ | t).

Corollary 3.1. For each r > 0 and t > 0, the following statements hold.
(i) The joint density of (J̃1,

(r)T ) is

(3.6) P
(
J̃1 ∈ dv, (r)T ∈ dt

)
= r

v

t
ρ(v) gr+1(t− v) dv dt, t > 0, 0 < v < t.

(ii) gr satisfies the following integral recursion equation:

(3.7) gr(t) = r

∫ t

0

ρ(v)gr+1(t− v)
v

t
dv, t > 0.
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(iii) The first size-biased pick from PK(r)(ρ | t) has density

(3.8) f̃r(w | t) = P
(
W̃1 ∈ dw

∣∣ (r)T = t
)
/dw = r tw ρ(tw)

gr+1(tw̄)

gr(t)
,

where w̄ = 1− w and w ∈ (0, 1).

(iv) Let Gi+1 = J̃i+1/
(r)Ti. For each i = 0, 1, . . ., w ∈ (0, 1),

(3.9) P
(
Gi+1 ∈ dw

∣∣ (r)T0, . . . ,
(r)Ti = t

)
= P

(
Gi+1 ∈ dw

∣∣(r)Ti = t
)

= f̃r+i(w | t)dw.

Proof of Corollary 3.1. (i) The lefthand side of (3.6) equals P
(

(r)T ∈ dt, (r)T1 ∈ d(t−v)
)
.

Apply the density formulae in (3.4) with f(t, t− v) to get the righthand side of (3.6).
(ii) Integrate (3.6) with respect to dv to obtain (3.7).
(iii) Noting that P((r)T ∈ dt) = gr(t)dt, (3.8) follows from (3.6) by a change of

variable.
(iv) It can be read from (3.5) that

P
(
Gi+1 ∈ dw

∣∣(r)Ti = t
)

= (r + i)Θ(tw)
gr+i+1(tw̄)

gr+i(t)
dw .

Comparing this with (3.8), we obtain (3.9). �

Comparing (3.8) and (3.9), we see that, conditional on {(r)Ti = t}, Gi+1 has the same

density as the first size-biased pick from PK(r+i)(ρ | t). This means that the (i + 1)st

size-biased pick from the remaining point process B(r)
i := B(r) −

∑i
j=1 δJ̃j has the same

distribution as the first size-biased pick from an independent point process B(r+i) after
conditioning on their sums. This gives a characterisation of the sequence obtained by
removing the first k size-biased jumps and then renormalising it as

W̃k :=

(
J̃k+1

(r)Tk
,
J̃k+2

(r)Tk
,
J̃k+3

(r)Tk
, · · ·

)
,

as stated in the next corollary.

Corollary 3.2. For each t > 0, r > 0 and k ∈ N, we have, for wi ∈ (0, 1), i ∈ N,

(3.10) P
(
J̃k+i

(r)Tk
∈ dwi, i ≥ 1

∣∣∣ (r)Tk = t

)
= P

(
J̃i

(r+k)T0
∈ dwi, i ≥ 1

∣∣∣ (r+k)T0 = t

)
.

Proof of Corollary 3.2. We compute the finite dimensional distribution for two terms.
The general case is similar. Fix t > 0, r > 0 and k ∈ N and recall (3.9). Then the
lefhand side of (3.10) is

P
( J̃k+1

(r)Tk
∈ dw1,

J̃k+2

(r)Tk
∈ dw2

∣∣∣ (r)Tk = t
)

= P
( J̃k+2

(r)Tk
∈ dw2

∣∣∣ (r)Tk = t, J̃k+1 = tw1

)
P
( J̃k+1

(r)Tk
∈ dw1

∣∣∣ (r)Tk = t
)

= P
( J̃k+2

(r)Tk+1
∈ dw2

w̄1

∣∣∣ (r)Tk+1 = tw̄1,
(r)Tk = t

)
f̃r+k(w1 | t) dw1

= f̃r+k+1

(w2

w̄1

∣∣∣ tw̄1

)
f̃r+k(w1 | t) dw1 dw2 .
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Here w̄1 := 1−w1. We can also compute the corresponding finite dimensional distribution
from the righthand side of (3.10) as

P
( J̃1

(r+k)T
∈ dw1,

J̃2

(r+k)T
∈ dw2

∣∣∣ (r+k)T = t
)

= P
( J̃2

(r+k)T
∈ dw2

∣∣∣ (r+k)T = t, J̃1 = tw1

)
P
( J̃1

(r+k)T
∈ dw1

∣∣∣ (r+k)T = t
)

= P
( J̃2

(r+k)T1
∈ dw2

w̄1

∣∣∣ (r+k)T1 = tw̄1,
(r+k)T = t

)
f̃r+k(w1 | t) dw1

= f̃r+k+1

(w2

w̄1

∣∣∣ tw̄1

)
f̃r+k(w1 | t) dw1 dw2.

Comparing these proves (3.10) for two terms, and analogously for n terms, hence for
an infinite number of terms, which may be rearranged into decreasing order. This gives
(3.10) as stated. �

4. Stick-Breaking Representations

Let V be defined as in (1.2) with size-biased permutation Ṽ = (Ṽ1, Ṽ2, . . .). Remark-

able stick-breaking properties exist for Ṽ when V is distributed as PK(ρθ) or PK(ρα).
Recall that for each x > 0,

ρθ(x) = θe−x/x, θ > 0, and ρα(x) = Cαx−α−1, 0 < α < 1, C > 0.

By [11, Thm.1.2], the nth term in Ṽ can be written in the product form

Ṽn = (1− Un)

n−1∏
i=1

Ui, n ∈ N

(with
∏0
i=1 ≡ 1). When V follows a PK(ρθ) distribution, the (Ui) are i.i.d. Beta(θ, 1)

variables. When V is distributed as PK(ρα), the (Ui) are independent Beta(iα, 1 − α)
variables.

To derive the corresponding stick-breaking representations for vectors having distribu-

tions in PK(r)(ρθ) and PK(r)(ρα), recall the sequence of sums remaining after successive
size-biased picks, ((r)Ti), i ∈ N, defined in (3.1), and denote the successive residual
fractions by

(r)Ui :=
(r)Ti

(r)Ti−1
, i ∈ N.

Then the nth term in W̃ can be represented as

(4.1) W̃n = (1− (r)Un)

n−1∏
i=1

(r)Ui, n ∈ N.

Theorem 4.1 (Stick-Breaking). Fix r > 0.

(i) Suppose W is distributed as PK(r)(ρθ). Then the stick-breaking factors in (4.1)
are distributed as

(4.2)
(

(r)Ui
)
i∈N

D
=
(
Bi(Γrθ, 1)

)
i∈N,

where, for each v > 0,
(
Bi(vθ, 1))i∈N are i.i.d. Beta(vθ, 1) variables, and Γr is a

Gamma(r, 1) random variable, independent of the (Bi).

(ii) Suppose W is distributed as PK(r)(ρα). Then the corresponding ((r)Ui) in (4.1)
are distributed as Beta(iα, 1− α), i ≥ 1, not depending on r.
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Proof of Theorem 4.1. We make use of the fact that PK(r)(ρ) has the same law as
PK(Γrρ). Recall from [11, Theorem 2.1] that if V has law PK(vρθ), then the corre-
sponding residual fractions (Ui) are independent Beta(vθ, 1) variables. Randomising v
by an independent Gamma(r, 1) random variable, we obtain (4.2).

Next suppose V has law PK(vρα). Then the corresponding residual fractions (Ui) are
independent Beta(iα, 1 − α) variables, whose distribution does not depend on v. Thus,
randomising v does not change the distribution. �

By Theorem 4.1, PK(r)(ρα) comprises the same laws as PK(ρα) for all values of r > 0.
Thus, as a characteristic of PK(ρα),

(r)Ti is independent of ((r)U1, . . . ,
(r)Ui) , i ∈ N.

However the sequence ((r)T, (r)T1, . . .) of remaining sums has different dynamics, as will
be elucidated next. Let ρ = ρα for the rest of this section. Recall the definition of gr in
(3.2).

Proposition 4.1. Fix r > 0 and ρ = ρα. Then

(4.3) P
(

(r)Tn ∈ dt
)

= Lnt
−nαgr+n(t)dt, where Ln = r[n](CΓ(1− α))n

Γ(nα+ 1)

Γ(n+ 1)
,

and thus

(4.4)
P
(

(r)Tn ∈ dt
)

P
(

(r+n)T ∈ dt
) = Lnt

−nα.

Proof of Proposition 4.1. Fix r > 0. For each n ∈ N, we first derive the joint den-
sity of

(
(r)Tn,

(r)U1,
(r)U2, . . . ,

(r)Un
)

by change of variables using the joint density of(
(r)T0,

(r)T1,
(r)T2, . . . ,

(r)Tn
)

in (3.4) with ρ = ρα. For simplicity, we only consider the
case n = 2. An analogous derivation holds for n > 2. For t2 > 0, 0 < ui < 1, 1 ≤ i ≤ 2,
the joint density of ((r)T2,

(r)U1,
(r)U2) is

h(t2, u1, u2) = f
( t2
u1u2

,
t2
u2
, t2

)
t22u
−2
1 u−3

2 ;

where f is defined in (3.4) and t22u
−2
1 u−3

2 is the Jacobian from the change of variables.
Expanding the expression in (3.4) with Θ(x) = Cαx−α, we get h(t2, u1, u2) equal to

r[2]gr+2(t2)u−1
1 u−1

2 Θ

(
t2
u1u2

ū1

)
Θ

(
t2
u2
ū2

)
= r[2]gr+2(t2)(Cα)2t−2α

2

(
u2α−1

2 ū−α2

)(
uα−1

1 ū−α1

)
=
r[2]

K2
gr+2(t2)t−2α

2 ·
[

Γ(1 + α)

Γ(2α)Γ(1− α)
u2α−1

2 ū−α2

][
Γ(1)

Γ(α)Γ(1− α)
uα−1

1 ū−α1

]
(4.5)

where

K2 =

∏1
i=0 Γ(1 + iα)

(Cα)2Γ2(1− α)
∏2
i=1 Γ(iα)

.

Integrate (4.5) with respect to u1, u2 to get (4.3). Equality (4.4) is immediate from
(4.3). �

The next corollary gives a moment formula for (r+n)T , n ∈ N.

Corollary 4.1. Fix r > 0 and keep ρ = ρα. For each n ∈ N,

(4.6) L−1
n = E

(
(r+n)T−nα

)
=

Γ(n+ 1)

Γ(nα+ 1)

1

(CΓ(1− α))nr[n]
=

1

r[n]
E
(
T−nα

)
.
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Proof of Corollary 4.1. For each n ∈ N, integrate (4.3) to get

1 =

∫ ∞
0

Ln gr+n(tn) t−nαn dtn = Ln E
(

(r+n)T−nα
)
,

with Ln = r[n] (CΓ(1−α))n Γ(nα+1)/Γ(n+1). This gives the first and second equalities
in (4.6). From [11, Eq. (2.n)],

E(T−nα) =
Γ(n+ 1)

Γ(nα+ 1)(CΓ(1− α))n
.

Comparing this with the value for L−1
n , we get the last equality in (4.6). �

5. PD(r)
α Arising from a Trimmed Stable Process

Recall the distribution PD(r)
α derived from the trimmed α-stable subordinator in (1.4).

Let ∆1 > ∆2 > . . . be the ordered jumps of an α-stable subordinator (St, 0 < t < 1).
Then

∑
i δ∆i

forms a Poisson process with intensity measure Λ(dx) := ρα(x)dx. For

r ∈ N, denoting the r-trimmed process up till time 1 by (r)S1 = S1 −
∑r
i=1 ∆i, we have

(5.1) (V (r)
n , n ≥ 1) :=

(
∆r+1

(r)S1
,

∆r+2

(r)S1
,

∆r+3

(r)S1
, . . .

)
∼ PD(r)

α .

In this section we derive some analogous properties for PD(r)
α . First note that PD(r)

α

has the same law as PK(r)(ρ∗α), for ρ∗α(x) := αx−α−110<x<1. To see this, we know from
[13, Lemma 24], that, conditionally on ∆r, the point process

(5.2) BT :=
∑
i∈N

δJ(i) , where J(i) = ∆r+i/∆r,

is a Poisson process with intensity measure (∆r)
−αΛ(dx)1{0<x<1}. Since (∆r)

−α D
=

Γr/C, BT is a negative binomial point process, BN (r, ρ∗α). Thus the vector(
J(1)

(r)S1/∆r
,

J(2)

(r)S1/∆r
,

J(3)

(r)S1/∆r
, . . .

)
,

which is equal to the lefthand side of (5.1), has distribution PK(r)(ρ∗α).

Due to the restriction to (0, 1) in ρ∗α, PD(r)
α is distinct from PD(α, 0) (unlike for

PK(r)(ρα)). The next theorem gives a characterisation of the stick breaking sequences
as in (4.1).

Theorem 5.1. The joint distribution of (r)Tn and (r)U1,
(r)U2, . . . ,

(r)Un for PD(r)
α can

be written as

(5.3)
(

(r)Tn,
(r)U1,

(r)U2, . . . ,
(r)Un

) D
=
(
Yd(U1,...,Un), U1, U2, . . . , Un

)
,

where the (Ui) are independent Beta(iα, 1− α) rvs,

d(u1, . . . , un) := min
1≤i≤n

n∏
j=i

uj/ūi,

with ūi := 1− ui, and for each c > 0, Yc := ((r+n)T )−nα1{(r+n)T<c}.
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Proof of Theorem 5.1. Let r > 0 and ρ = ρ∗α. Similar to (4.5), we can derive for tn > 0,
0 < ui < 1, 1 ≤ i ≤ n, and n ∈ N, the joint density of

(
(r)T0,

(r)T1,
(r)T2, . . . ,

(r)Tn
)

as

h(tn, u1, . . . , un) =
r[n]

Kn
g∗r+n(tn)t−nαn

×
n∏
i=1

Γ(iα+ 1− α)

Γ(iα)Γ(1− α)
uiα−1
i ū−αi 1{tn<

∏n
j=i uj/ūi}

=
r[n]

Kn
t−nαn g∗r+n(tn)1{tn<d(u1,...,un)} ×

n∏
i=1

βiα,1−α(ui).(5.4)

Here g∗r is the corresponding density of the sum of points in BN (r, ρ∗α), βa,b is the density
of a Beta(a,b) distribution, and

Kn =

∏n−1
i=0 Γ(1 + iα)

αnΓn(1− α)
∏n
i=1 Γ(iα)

=
Γ(n+ 1)

Γn(1− α)Γ(nα+ 1)
.

The indicator function in (5.4) reflects the restriction of x to the interval (0, 1) in ρ∗α. �

Remark 5.1. (i) By integrating (5.4), we get the identity

Kn = r[n]

∫ 1

u1=0

· · ·
∫ 1

un=0

∫ d(u1,...,un)

tn=0

t−nαn g∗r+n(tn)dtn

×
n∏
i=1

βiα,1−α(ui)du1 · · · dun.

(ii) For a stick-breaking representation, as in (4.1), the size-biased permutation of

(V
(r)
n ), denoted by (Ṽ

(r)
n ), can be written as

(5.5) Ṽ (r)
n = (1− (r)Un)

n−1∏
i=1

(r)Ui.

The joint distribution of ((r)Ui)1≤i≤n can be computed from (5.3), in which we note that
U1, U2, . . . , Un are individually independent, but dependence overall is introduced via
the connection with the Y term. In this respect the result is different from the PD(α, 0)

situation, as we would expect, but the distribution of Ṽ
(r)
n as given by (5.5) is sufficiently

explicit to enable computations or simulations.
(iii) Although motivated by the idea of trimming an integer number r of large jumps,

our formulae once derived are valid for r > 0, and available for modelling purposes in
this generality.

(iv) We may set r = 0 in (5.1) to have the distribution of PD(r)
α reduce to that of

PD(α, 0). But we cannot take r = 0 in (5.2) with the idea that the size-biased distribution

associated with PD(r)
α might then reduce to the one associated with PD(α, 0). Note that

BT is not defined for r = 0 (its points ∆r+i/∆i are not defined for r = 0). Setting r = 0
in (5.4), which results from an analysis of BT , is not permissible.

By restricting r to be an integer, we can further construct a vector (V
(r)
n ) from inde-

pendent beta random variables and characterise the law of the sequences in PD(r)
α as a

shifted version of PD(α, 0) which can in turn be characterised by a change of measure
formula.

Lemma 5.1. (i) Let (Ri, i ≥ 1) be a sequence of independent Beta((r+ i)α, 1) variables.
Define

V (r)
n :=

∏n−1
i=1 Ri

1 +R1 +R1R2 + · · ·
= Yn

n−1∏
i=1

(1− Yi),
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with stick-breaking factors Yn = (1 + Σn)−1 and Σn = Rn + RnRn+1 + · · · . Then

(V
(r)
n , n ≥ 1) has law PD(r)

α .

(ii) Let (V
(r)
i ) be distributed as PD(r)

α and (Vi) be distributed as PD(α, 0). Then for
any nonnegative measurable function f , we have

E{f(V
(r)
1 , V

(r)
2 , . . .)} = E

{Er1
r!
f(V1, V2, . . .)

}
,

where E1 = limn→∞ nV αn /V
α
1 , and the limit holds almost surely and in pth mean for all

p ≥ 1.

Proof of Lemma 5.1. (i) Recall that (∆1,∆2, . . .) comprise the points of a Poisson process
with intensity measure Λ(dx) = ρα(x)dx. Write Rn = ∆r+n+1/∆r+n. Then by [13,
Prop.8], the sequence of successive ratios (R1, R2, . . .) is of independent Beta((r + n)α, 1)
variables.

Since the sequence ( ∆r+1∑
i≥r+1 ∆i

,
∆r+2∑
i≥r+1 ∆i

, . . .
)
∼ PD(r)

α ,

the nth term can be expressed as

∆r+n/∆r+1

∆r+1/∆r+1 + ∆r+2/∆r+1 + · · ·
=

∏n−1
i=1 Ri

1 +R1 +R1R2 + . . .

=
∆r+n∑
i≥n ∆r+i

·
∑
i≥n ∆r+i∑
i≥n−1 ∆r+i

· · ·
∑
i≥2 ∆r+i∑
i≥1 ∆r+i

= Yn

n−1∏
i=1

(1− Yi)

where Yn = ∆r+n/
∑
i≥n ∆r+i = (1 + Σn)−1.

(ii) First consider the homogeneous Poisson point process
∑
i δΓi

, where Γn :=
∑n
i=1Ei

with (Ei, i ≥ 1) independent unit exponential random variables. Then for any nonnega-
tive measurable function f , the shifted sequence (Γr+i, i ≥ 1) can be characterised by a
change of measure from the original process as

E{f(Γr+1,Γr+2, . . .)} = E
{Γr1
r!
f(Γ1,Γ2, . . .)

}
.

Since for each i ≥ 1, ∆i
D
= Λ

←
(Γi), where Λ

←
(x) = C1/αx−1/α, then for each nonneg-

ative measurable function f , we again have

E{f(∆r+1,∆r+2, . . .)} = E
{Er1
r!
f(∆1,∆2, . . .)

}
where E1 = Λ(∆1,∞). Thus, normalising the jumps, we still get

E{f(V
(r)
1 , V

(r)
2 , . . .)} = E

{Er1
r!
f(V1, V2, . . .)

}
where E1 := Λ(∆1,∞) = C∆−α1 . To write C∆α

1 as a function of (V1, V2, . . .), we note
that by [13, Prop. 10], limn→∞ nV αn = CS1 almost surely and in pth mean for p ≥ 1.
Thus, we can write

E1 = C∆−α1 =
C

V α1 S
α
1

=
limn→∞ nV αn

V α1
,

concluding the proof of Lemma 5.1. �
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6. Discussion: Applications

We mention some possible applications of our results. A common tool in linguistics
studies is the “Zipf plot”: a plot of log frequencies of words, against their log-ranks. [4]
show such plots for some word counts in the Penn Wall St. journal. In their Figure 4,
half a dozen or so of the most frequent words appear as outliers, while the rest conform

closely to a PD(α, 0) fit. This suggests that a PD(r)
α distribution might provide a better

fit.
A similar situation occurs in [15], who shows “capital distribution curves” (a log plot

of normalized stock capitalizations ranked in descending order, against their log-ranks)
for over 20 countries listed on the NASDAQ stock exchange. The curves appear to be
very well fitted by a PD(α, 0) distribution over much of their range, but with a small
number of the largest stocks as outliers – as we might expect from this kind of data.

Known difficulties arise in fitting the general 2-parameter PD(α, θ) distribution to
data; the maximum likelihood estimator of θ is inconsistent ([1, Lemma 5.7]). Introducing

the extra parameter r in PK(r)(ρ) may help to improve estimation of θ, as well as allowing
extra flexibility in data description.

In general, we expect that our generalised PK(r)(·) distribution could be used to extend
analyses which are implicitly based on underlying Poisson point processes, to negative
binomial point processes, and thereby reveal interesting features of data. More research
along these lines would certainly prove profitable.
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