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K. IMECAOUDENE AND D. HAMADOUCHE

GAUSSIAN APPROXIMATION FOR RESIDUALS OF STATIONARY
AUTOREGRESSIVE PROCESS IN HOLDER NORM

The paper treats the holderian approximation for partial sums process of stationary
autoregressive residuals (AR(p), p > 1). We consider the polygonal smoothed pro-
cess of these partial sums and we prove the Holder convergence of this sequence of

processes to the Brownian motion for any order o < % A statistical application of

this convergence to detect epidemic change and simulation results are also presented.

1. INTRODUCTION

The study of the asymptotic behavior of stochastic processes is an important topic
in probability theory, widely used in applied statistics. In fact, in parametric and non-
parametric inference, many statistical applications (estimation, testing hypothesis) which
are usually based on continuous functionals of paths of processes as partial sums process,
empirical process and quantile process are solved using the weak convergence of stochastic
processes. The asymptotic behavior of these processes, in particular partial sums process,
was established. The well know invariance principle which is introduced by Donsker-
Prokhorov states that, for a sequence of independent identically distributed random
variables (X;);>1 with EX; = 0 and EX? = 1, the random polygonal lines

[nt]

= m(;& + (nt — [0t]) Xng41), t€[0,1],

converges in distribution to some Brownian motion in C[0,1]. Since the paths of the
processes used in statistics as partial sums process, empirical process, quantile process
and the limit process as Brownian motion, Brownian bridge have a better regularity than
the bare continuity (e.g. holderian), it is then legitimate to study these limit theorems in
Banach space H?[0,1]. Indeed, this hélderian topology provides more continuous func-
tionals of the paths, thus, more statistical applications. The first result in this direction
goes back to Lamperti [14], which extends the Donsker-Prohorov invariance principle to
Holder spaces. For more results in this area, see those of Rackauskas and Suquet [20, 21]
and Hamadouche [9, 10].

Among processes also used in statistical applications, we find linear processes, autore-
gressive processes, the partial sums process of residuals of autoregressive processes.

The theory of autoregressive models or more generally, time series theory is very studied
and has applications in different areas such as econometrics, medicine and biology. For a
detailed review, we refer to Gourieroux and Monfort [8], Brockwell and Davis [4], Csorgd
and Horvéath [6], etc.

The weak convergence of partial sums of the residuals in regression models were estab-
lished by MacNeil [15, 16]. MacNeil and Jandhyala [12, 17] studied the properties of the
residuals process for non-linear regression respectively for linear regression model and its
applications to change points detection. Further, Kulperger [13] extended the results of
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MacNeil to autoregressive model, while Bai [1] was interested to stationary ARMA (p,q)
models. These works are first established in the framework of the classical function space
C0,1] or the Skorokhod space D[0,1]. Since the weak Hélder convergence offers more
continuous functionals than C[0, 1] for statistical applications, some extensions have been
made in H). Rackauskas [19] developed Holder convergence of the partial sums of re-
functional theorems for the first order nearly non-stationary autoregressive process and
their applications in epidemic change. In the same direction, Rackauskas and Rastené
[22] derived the convergence, in Holder spaces, of polygonal line processes of partial sums
of residuals of the AR(1) model. These theoretical results found statistical applications
for solving many problems as epidemic change detection in the mean, variance, etc.
Our current contribution aims to study in holderian functional framework, the asymp-
totic behavior of polygonal line processes built on partial sums of residuals of a stationary
AR(p) model, for p > 1. The paper is organized as follows. Section 2 is devoted to hélde-
rian functional framework. Definitions and some properties on autoregressive processes
are presented in section 3. Section 4 treats our main result which is the hoélderian con-
vergence of partial sums of residual of autoregressive process to the Brownian motion.
In section 5, we present a statistical application for testing epidemic change in means
of the innovations of a stationary AR(p) and to illustrate our results, some numerical
simulations are also described in section 6.

2. HOLDERIAN FUNCTIONAL FRAMEWORK

2.1. Definitions. We define the Hélder space H,[0,1] (0 < a < 1), as the space of
functions f vanishing at 0 such that

”fHa — sup ‘f(t)_f(sﬂ

o<|t—s|<1 |t —s|”

We denote by wq(f,d) the Holder modulus of continuity of the function f:

5= s HOIG

o<fi—s|<s [t —s|"
Define the subspace H{[0,1] of H,[0,1] by
f € H2[0,1] if and only iff € H,[0,1] and lim wa(f,0) = 0.
—

< +00.

(Ha,|l-|l,) is a non-separable Banach space. For 0 < 8 < a, (Ha,||.||5) is separable
and H, is topologically embedded in Hg. (H2,|.||,) is a separable closed subspace of
(Ha, ||-|l,,) (cf. Ciesielski [5]).

The separability of the space H[0,1] allows us to prove tightness instead of relative
compacity of a sequence of distributions of random processes (cf. Billingsley [2]).

2.2. Weak convergence and tightness in H?. We consider stochastic process with
Holderian paths as random element of the functional space H,,. As the canonical injection
of HY in H, is continuous, weak convergence in HQ implies weak convergence in H,. The
study of weak convergence of random elements of H is based on the following result.

Proposition 1 (Hamadouche [9]). The weak convergence in HY of a sequence of pro-
cesses (E,,m > 1) is equivalent to the tightness in HO of the sequence of distributions
P, = P&;Y of random elements &, and the convergence of the finite-dimensional distri-
butions of &,.

So to prove the weak convergence in HO, we need tightness. Among sufficient condi-

tions of tightness, we have the well known result.
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Theorem 1 (Lamperti [14]). Let (§,)n>1 be a sequence of processes vanishing at 0 and
suppose there are § > 0, ~v >0 and ¢ > 0 such that

E[én(t) = &n(s) < e [t — s
Then the sequence (£,)n>1 4s tight in HY for 0 < a < %,

3. AUTOREGRESSIVE PROCESSES AND RESIDUALS
We consider the AR(p) model, (p > 1)
(1) Xl = plXi—l =+ pQX/L'_Q —+ .. + pri—p + Eiy 1= 1, N, n Z 1,
Xo=X_1=... =X, =0,

where {X;}? , is a set of observations, €1, ...,&, are independent identically distributed
random variables with mean zero and finite variance 0% = Ee? and (p1, ..., pp), pp # 0
are the parameters of model.

Similarly, we define the residuals (¢;,7 = 1,2,...,n) by

P
& = Xi—Y piXiy
j=1
p
(2) = & — Z(ﬁ] - pj)Xifja 1= ].,27 ey
j=1

where p = (p1, ..., pAp)l is the least squares estimator of p = (pq, ..., pp)l given by
(3) p=XX)"'XY,

with Y = (Xp11, ...,Xn)/ =Xp+Z,Z = (ept1, ...,gn)/ and X is (n— p) X p matrix given
by

Xp prl X1
P
anl Xn72 T anp

In order to get the autoregressive process AR (p) models more synthetic, we give some
properties of the backshift operator and operators derived therefrom. We use these
operators to manipulate AR (p) models and to determine the conditions under which
these processes admit a stationary and causal representation.

We define the backshift operator B with action is defined on the space random variables
as a linear function which operates on the time index of a series and shifts time back one
time unit to form a new series i.e

BX, =X, 1.

This operator has the following properties (cf. Bluduc [3], Gourieroux and Monfort [8]
and Brockwell and Davis [4]).
- The backshift operator B is invertible. Its inverse B~ = F is defined by

B lX; =FX; = X, (F is called forward operator).
- If B is composed j times with itself, we obtain,

BoBo...oB = B/,

(4) suchasVj €N, B'X; = X;_;.
More generally, by combining linearly these different powers, we built a new operator

(5) a(B)=1+aB+... +q,B".
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Under some conditions, the operator a(B) may be reversed. Indeed, by the following
proposition.

Proposition 2 (Gourieroux and Monfort [8]). Let a(B) the polynomial defined by (5).
If the norms of the roots of a(B) = 0 are not on the unit circle, then a(B) has a unique
inverse b(B) such that a(B).b(B) =1 and we have

+oo
bB)= Y b,B™,
+oo

such that > |bm| < 0o with by = 1.

m=—0o0

On the other hand, if the roots of a(B) = 0 are outside the unit disk, we have
+oo
b(B) =Y bnB™,
m=0

+oo
such that Y by, | < 0o with by = 1.

m=0

Then, we deduce that a(B)~! is well defined if the norms of the roots of a(B) are not
+o0
on the unit circle and for some sequence (b,,) such that > |by,| < oo,

m=—0o0

+oo
> bmB™||

la(B)~*]| = [Ibp(B)]

+o0
< Y lbnlIB™
+o00
< D bl <,
i.e, there exists a constant C such that
(6) [b(B)|| < C.
However, setting ap = 1, a;j = —p; for j = 1,...,p and using the polynomial a(B) =
14+ aB + ... + a,BP, we can write the process defined in (1) as follows
g, = X1+G,BXZ+ +G,poXi
a(B)X;, 1=,1,2,...,n,
or
(7) X; =a(B) e, 1=1,2,...,n,

if the norms of the roots of a(B) = 0 are not on the unit circle. The following theorem
gives necessary and sufficient conditions for the stationarity and causality of an AR(p)
process.

Theorem 2 (Brockwell and Davis [4]). The autoregressive process (X;) is causal and

P
stationary if and only if the polynomial a(z) = > amz™ with ag = 1 satisfies
m=0

(8) a(z) # 0 for all z € C such that |z| < 1.
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From this theorem, it follows that if (8) holds, the process (X;) is stationary. From
Proposition 2, the AR(p) process defined in (1) has a moving average M A(co) represen-
tation.

1

X, = — . —bBe;
i a(B)ez b(B)e;
= meBm€i

m=0

(9) = Z bm€i—m, 1=1,2,..,n,

with Z |bm| < 0o and by = 1, i.e., X; is expressed as a convergent infinite sum of past

terms of innovations ;.

4. HOLDERIAN CONVERGENCE OF PARTIAL SUMS PROCESS OF RESIDUALS OF AR(P)
PROCESS

We investigate the polygonal line processes vn(t) obtained by linear interpolation
Eoo.
between the points (£, 37 | ).

[nt]
Vo(t) = Zs, (nt — [nt])épng 41, t€[0,1], n=1,2,..
[”t P [nt]
= Zfz — ) — D (B — p)D_ Xiej + (nt — [n]) Xy 11

j=1 i=1
P
= W)= D00 -
j=1

where
[nt]

(10) ZQ (nt — ’I’Lt])E[m]

and
[nt]

05, = Xi_j+ (nt — [nt]) X1
=1

Theorem 3. Let 0 < o < 1/2. Suppose that tliJTrn t1/(A/12=0)P(|gy| > t) = 0 and all the
—+00

P
roots of equation a(z) = Y amz™ = 0, with ag = 1 are outside the unit disk, then the

process o~ 'n"1/2V,, converges weakly to the Brownian motion in HY.

The proof of this theorem is based on the following results.

Proposition 3 (Rackauskas and Suquet [20]). The process n~"/?W, defined by (10)
converges weakly to the Wiener process W in HO for all a < 1/2 if and only if

lim tY//2=) P(ley| > t) = 0.

t——+o0

Lemma 1 (Horvath [11]). If the condition (8) holds, then, as n — oo we have
n'2(p—p) = Op(1).
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Proof of Theorem 3. By Lamperti’s invariance principle, ¢~ n~%/2W,, converges weakly
to the Brownian motion in HY, Va < 1, then it is sufficient, to prove that

o~ 020, — o~ a2 W, | 0.
—>+oo
We have
||071n71/2‘7n - 071”71/2Wn||a = ||‘771”71/22 2 ZAIS
(11) < ot Z 02 (55 = pi)llln ™65 -

If the condition (8) holds, we get
1631l < 1b(B)[[[[Wola-
In fact

1<s<k<n

k s
16510 = maz |(k—s)/n|" D> Xy =D Xiyl,
=1 1=1
by (9), we have

E bmEi—m, With Z |bm| < 0o and by =1

m=0
ie
X = Ebm& m—j, with Z |bm| < 0o and by = 1.
m=0 =0

From (4), we deduce that

—+o00 —+o0
Xi—j = meei—m—j = meBm€i_j = b(B)E‘i_j,
m=0 m=0

thus, we get

k s
160l = maz |(k—s)/n|"" Z b(B)ei—j — Zb(B)Si—j\

1<s<k<n

S
ST R TIRL o i
1;;13]%”“ s)/n|"]b( Ei—j £ €i—j)l

< 0B, maz |k~ 5)/nl" |g—g|

_ o —« k_J o S—j

= 0B)I_maz_ [k~ s)nl W) w22,
(12) = [[oB)[[[Walla-

Hence, it follows that

p
o o®B)lIn ™ Walla Y 10255 = pj)l.

j=1

||071n71/2‘7n _ O,flnfl/ZWnHa

IN

We have by (6)

+oo
16(B)|| < C, with 3 |by| < 0.
m=0
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In addition, we can check that
rleni)O,
indeed,
n W, = nfl/znfl/QWn,

and from Proposition 3,

(13) n 2w, 2w, in HY.
n—-+oo

Using Slutsky’s theorem, it follows

(14) n W50, in HY.

On the other hand, by Lemma 1, we have
nl/2(5 — p) = 0,(1).

Thus, we get
1/2 he— | =
n= maz 1 — pjl = Op(1),
this implies
P
(15) n2> " 1p; = pjl = Op(1).
j=1

Finally, from (6), (14) and (15), we deduce that

_ _ =5 _ _ P
o™ n Y2V, — o V2 W, ||, — 0.
n—-+oo
this implies
D

oY, S W,
n—-+oo

in HY for all o such that 0 < o < 1/2. This achieves the proof of Theorem 3. O

5. APPLICATIONS FOR EPIDEMIC CHANGE

In this section, we investigate some epidemic change in the innovations of the p-order
autoregressive process.
We consider the same model as in section 2,

Xi = plXifl + pQXi,Q + .. + prifp + &

p
= ijXi,j +¢e, 1=12,...,n,,n>1
j=1

where {X;}I, is a set of observations and the innovations €1, ...,&, are independent

identically distributed random variables with mean zero and finite variance o? = Ee?.
We want to test the standard null hypothesis:

(Hp) : Eey =Eeg = ... =Ee,, = o =0,

against the epidemic alternative:

(Ha) : there exist 1 < k* < m* < n and some constant p # p such that

Ee; = ply, (i),1 <i<mn,

where [, = k* + 1,...,k* 4+ [* is the epidemic interval, 17, denotes its indicator function
and [* = m* — k* the length of the epidemic. We assume that [* go to infinity with n
and l; tends to zero when n go to infinity.
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To detect a short epidemic change in the mean of innovations of the p-order autoregres-
sive process, we build the a-Hélderian uniform increments statistics T'(n, ), 0 < o < 1/2
based on the residuals &;.

k—+1 n
~ l
— —« AL 2,
(16) T(n,a) = 1réllagxnl 15?235_1‘ i_gkﬂ g ;Zl il
Let
(17) T(a)= sup h™* sup |B(t+h)— B(t)],

0<h<l  0<t<l—h
where B(t) = W(t) — tW(1), t € [0,1] is the Brownian bridge associated to Winner
process W.

5.1. Convergence of T(n,a).

Proposition 4. Let 0 < a < 1/2. Assume that tli-T t1/A/12=)P(lgy| > t) = 0 and all
— 400

P
roots of equation a(z) = > amz™ =0, with ag = 1 are outside the unit disk, then under
m=0

Hy we have

(18) o ' 2T (na) 2 T(a).

n——+oo

The proof of this convergence is based on the following results.

Lemma 2 (Rackauskas, Suquet [21]). Let (1, )n>1 be a tight sequence of random elements
in the separable Banach space B and g,, g be continuous functionals B — R. Assume
that g, converges pointwise to g on B and (gn)n s equicontinuous. Then

9n () = g(nn) +op(1).

Lemma 3 (Rackauskas, Suquet [21]). Let (B,||.||) be a normed space and q : B — R
such that

(a) q is subadditive: q(z +y) < q(z) + q(y), =,y € B,

(b) q is symmetric: g(—x) = q(z), x € B,

(c¢) For some constant C, q(z) < C |z ||, =€ B.

Then q satisfies the Lipschitz condition

(19) lg(z+y)—qx) <Clyll, =yeB.

If F is any set of functionals q fulfilling (a), (b) end (c¢) with the same constant C, then
(a), (b) and (c) are inherited by g(x) = sup{q(z), ¢ € F}, which therefore satisfies (19).

Proof. Proof of Proposition 4 Consider the functionals g,, g, defined on H,[0, 1] by

i
20 n(x) = max I(x,—,>), x)=: sup I(x,s,t),
(20) gul) = e 1@ 2 0) gle) = swp Iz
where
—a(s) — (t—s)z(1
(21) I(x,s,t):|x(t) x(;)_s(i Doy s <t
We have

~

nT(n,o) =n® max ™% max |S(k+1)—S(k)— iS(n)\,

1<i<n 1<k<n-—l n
with S(t) = Y., &.
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Clearly the functional ¢ = I(x, s,t) satisfies conditions (a) and (b) of Lemma 3. For
condition (c) we have

|z(t) = x(s) = (t = s)(1)]
|t — sl

|z(t) — x(s)|

- [t — 5|« [t —

2[|z[| -

1
)]

IN

Then V 0 < s < t < 1, the functionals ¢(z) satisfy the conditions (a), (b) and (c) of
Lemma 3 with the same constant C' = 2. It follows by Lemma 2 that

- a b b 9 a d - S b 7t
Gn = 1<I}1<jx<nq(ww n) and g o<21i§<1q(m s,t)

are Lipschitz on HY with the same constant C.
Observe that

(22) T(n, @) = gn(Vy) and T(a) = g(W),
where V, (t), t € [0,1] is a polygonal line process built on residuals &;

[nt]

Z‘Sl (nt — [nt])épg41, te€0,1].

From Theorem 3, we have

(23) o V2, 2w
n—-+oo

Applying Lemma 2 with 7, = U‘ln_l/Q‘A/n, we get
(24) gn(c ™ 2V = g ' 2V,) + op(1).

Finally, the convergence of o~ 'n=1/2T(n,a) to T(«) follows by (22), (23), (24) and
continuous mapping theorem. O

5.2. Consistence of T(n, ).
Proposition 5. Let 0 < o < 1/2. Under Hs and (8), we assume that

lim tY/(/2=)P(|ey| > t) = 0,

t—+oo
and
lim o tn=1/2re) -0 = 4o,
n—-+o0o
Then
(25) o In~ V24T (n, ) L oo
n—oo
Proof. We have
k+1

f(n,a): max [”% max 26177252|

1<i<n  1<k<n-l
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Under H 4, we have

n k—1 p k+1 P
Y& = (e — > (p Ble; ;) + > (i —p— Y (pj — pj)bB)(eirj + 1))
i=1 i=1 j=1 i=k j=1
n p
+ Y (e = > (pj — p)b(B)eiy)
i=k+1+1 j=1
k— 1 p k+1 p
= i= > B)ei-j) +Z = (b — p)b(B)ei—;)
z:l j=1 j=1
p
+ Z Z i — pi)b(B)eij) +1u(l —b(B Z P = pj))
i=k+1+1 7j=1 j=1
n p p
= Z pi — p;i)b(B)ei—;) + (1 —b(B Z pi — pi))
i=1 _7:1 j=1
and
k+1 k+1
Yo&o= Y leitn- Z pi — p)b(B)(eij + 1)
i=k i=k
k4l p p
= > (ei =Y (5 — p)bB)eiy) + (1= b(B) > (p; — p;))-
i=k j=1 =1
So, we obtain
R k+1 n
Tlne) = ot~ gps |3 & -7l
k+1 P
g 2 2; ~ PibB)e-s)
=
p
+lu(l—bB Z
j=1
& P p
_g(z(@ = (pj — p)b(B)ei—;) +1u(1 — b(B) > (h; — py))|
i=1 j=1 j=1
P k41
_ a _ _ L
N 1I£la<xnl 1<hon— l\l,u( )(1—b(B Jz_; )+ Zgl ZEZl
1, I* L I &
> W(\l (1—* )(1—b(B Z - pj) |—|Z€z—* &il
Jj=1 =1
Hence
. I* L
o IR, 0) > 0 B (1 = D) (L= (B) D (0 — )
=1
I &
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By Theorem 3, we have

071n71/2+a(z € — r Zé‘}) = Op(1).

n

From (6), [[b(B)|| < oo and by Lemme 1, n*/2 30, [p; — p;| = Op(1).
Thus, we get

o~ InT24 e (n, ) L 400 when lim o In /2 e ()= = f oo,
n—o00 n—-+oo

6. NUMERICAL RESULTS

1 T T 1 T T T
091 q 09l ]
0.8 1 08l ]
07 1 07t R
0.6 1 06} ]
051 q 05f ]
0.4 q 0.4} ]
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FIGURE 1. Empirical distribution function of ||o=n"1/2V,,||, for o = 1
and different o = 1/16;3/16;1/4;5/16;6/16;7/16

29
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In this section, we illustrate our theoretical results discussed above with some simu-
lation results. First, to understand the behavior of the statistical test ||o~1n =12V, ||,
we investigate asymptotic approximations of the empirical cumulative distribution of
this process for ¢ = 1 and different values of . We present tabulated critical values
of the limit random variable T(«). We analyze the performance of the test statistic
o= n"Y/2V,||o, under Hy as well as under the alternative Hy. Since the epidemic
change operates in the mean of ¢;, therefore, to study the behavior of \|a‘1n_1/2‘7'n lo, we
simulate 2000 realizations of this random variable constructed from residuals of an AR(2)
model with parameters p; = 0.6, po = —0.3 for sample size n = 200; 500; 2000; 5000; 10000
respectively.

From Figure 1, we clearly see the convergence of the sampling distribution to the
limiting distribution as n increases. Also, we can see that the distribution function of
In=1/2V,,||o depend on a, in fact, we note that when « is closer to 1/2 the convergence
becomes slower.

To find an approximation of critical values for associated significance level ¢, we have
chosen several « values and generated 5000 random values of the limit statistic T'(«r) and
we took empirical quantiles of level 1 — ¢ to approximate the unknown critical values for
significance level ¢. Brownian bridge in each replication of T'(«) is approximated by the
partial sum process

[nt]

(26) &0 = <= (X~ 13w, 1L 60)=0,
1=0 1=0

Here y;, 7 = 1,...,n, are independent standard normal random variables and n = 5000.
The results are given in Table 1.

c=01 ¢=005 ¢=0.025 c=0.01 c¢=0.005

T(o=1/16) 1.6931 1.8188  1.9386  2.1099  2.1952
T(a=2/16) 1.7869 19188  2.0500  2.1979  2.3431
T(o=3/16) 1.9662 2.1057  2.2170  2.3715  2.4909
T(o=4/16) 2.1365 2.2729 24020 25768  2.6752
T(o=5/16) 2.3906 2.5401  2.6938  2.8470  2.9464
T(a=6/16) 27552 2.9093  3.0398  3.2174  3.3522
T(a=7/16) 3.3787 35290  3.6633  3.8114  3.9361

TABLE 1. Approximation of critical values of the limit statistic T'(«)

o n"2T(n, )

n a=1/16 a=4/16 «a=7/16
(cv =1.8188) (cv =2.2745) (cv = 3.5290)
10 0.7500 0.9893 1.3601
30 1.0444 1.3598 1.9824
50 1.1138 1.4677 2.1947
100 1.2014 1.5520 2.4250
500 1.2704 1.6712 2.7644
1000 1.2805 1.6712 2.8509
10000 1.3135 1.7635 2.9150

TABLE 2. Values of U’ln*%f(n, a) under Hy for level ¢ = 0.05 and for
different values of n and «
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Table 2 gives the values of the statistic a‘ln_%f(n, «) for several values of n and «.
cv is the critical value given by Table 1 for level ¢ = 0.05. The critical region is defined
by

W = {(z1, 22, ..., Tn) /a_ln_%f(n,a) > cv}.
So, if we calculate for different value of «, p and I* = m* — k* for level ¢ = 0.05, 1000
realizations of the statistic o= 'n=27T(n, ), with size n = 500 when (H,4) holds, we
obtain the values presented in Table 3.

o in"2T(n,a)

* nu a=1/16 a=4/16 a=7/16
(cv =1.8188) (cv=2.2745) (cv = 3.5290)
1 1.2810 1.7201 2.8128
3 1.3705 2.0994 4.6851
5 4 1.4312 2.5127 -
8 1.7494 - -
0.5 1.2879 1.6962 2.8014
1.5 1.3869 2.0011 3.6522
10 2 1.4829 2.2891 -
) 1.8752 - -
20 0.5 1.3500 1.7889 2.8950
1 1.5271 2.1736 3.6724
1.5 1.6938 2.6777 -
1.8 1.8219 - -
50 0.5 1.6357 2.1694 3.3225
0.6 1.7452 2.3679 3.5906
0.7 1.8757 - -

TABLE 3. Values of J_ln_%f(n, a) under Hy4 for level ¢ = 0.05

From Table 3, we observe that the statistic U’ln*%f(n, «) detects short epidemic and
when [* increases and « goes to 1/2, it detects very quickly this epidemic.

In the other hand, to evaluate the performance of the statistic U_ln_%f(m «), we will
estimate its power for different values of I*, k*, o and p. To this end, we have simulated
when (Hp) holds, 1000 realizations of this statistic of size n and we have computed the
reject proportion of (Hp) ( number of rejections of Hy/number of values). We define
then the basic parameter set (n = 1000, I*/n = 0.05, k*/n = 0.5, u = 0.8), modifying
the separate parameters, we obtain the test power presented in Table 4.

From Table 4, we see that the test power for all parameter values, is the lowest, when
a = 0 but it increases with « (i.e « is closer to 1/2). We also note that the test becomes
more powerful when the number of observations n and the duration of the epidemic
increase. However, the test power is not affected by the position of the epidemic and it
does appear that it detects significantly even small changes in the mean as p — o = 0.6.

For a more detailed illustration, we present the so called size-power curves on a correct
size-adjusted (not nominal size) basis (see Davidson and MacKinnon [7]). For every
parameters set (n, «, I* et u), we have computed replications of U‘ln_%f(ma) for a
number R = 1000 under (Hp) and a number R = 3000 under the alternative (H4) and
the corresponding p-value estimators noted p;

N
. 1
pj = N;l{Lk > 7}}3
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with Lg, k = 1,..., N (N = 5000), are the simulated values of the limit statistic T'(«) and
T;, j=1,..., R, are the values of the statistic U‘ln_%T(n, a). After that, we display, on

J

y-axis, the empirical distribution function for p-values under (H4) (which is the empirical
power function) and on x-axis, the empirical distribution function for p-values under (Hy)

K. IMECAOUDENE AND D. HAMADOUCHE

Modified parameters

a=1/16 a=4/16 a=17/16

pn=20.6

pn=0.38

p=1

n = 500
n = 1000
n = 2000
I*/m = 0.02
I*/n =0.05
*/n=0.1
k*/n=0.3
k*/mn=0.5
k*/n=0.7

0.274
0.514
0.808

0.199
0.514
0.968

0.096
0.514
0.996

0.492
0.514
0.493

0.543
0.865
0.996

0.434
0.865
1.000

0.128
0.865
0.998

0.890
0.865
0.880

0.682
0.947
1.000

0.624
0.947
1.000

0.389
0.947
1.000

0.952
0.947
0.955

(instead of the nominal size c).

TABLE 4. Empirical power for the significance level ¢ = 0.05
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FIGURE 2. The adjusted size-power curve plots



We

GAUSSIAN APPROXIMATION FOR RESIDUALS ... 33

clearly see from Figure 2, how for true size values from [0,0.25], the test power

increases quickly when « increases. Also, it appears that the test power increases with
the length of epidemic I* and the sample size n (with % constant).
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