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A. A. DOROGOVTSEV, IA. A. KORENOVSKA, AND E. V. GLINYANAYA

ON SOME RANDOM INTEGRAL OPERATORS GENERATED BY AN

ARRATIA FLOW

We study some properties of a random integral operator in L2(R) whose kernel is
generated by a stationary point process related to an Arratia flow. To prove that

this random operator is not bounded we estimate the rate of growth of the maximal
amount of clusters in Arratia flow on intervals of unit length.

1. Introduction

Let {x(u, s), u ∈ R, s ∈ [0; t]} be an Arratia flow [1] on the interval [0; t], t > 0, and
{y(u, s), u ∈ R, s ∈ [0; t]} be its conjugated Arratia flow [9]. Define a random operator
Tt in L2(R) which describes the shift of functions along x(·, t) : R→ R, i. e.

(Ttf)(·) = f(x(·, t)), f ∈ L2(R).

It is proved in [6] that the image under Tt of any boundedly supported function is a
zero function with positive probability. However, for any f 6= 0 the function Tt(f ∗ p),
where p(u) = 1√

2π
e−

u2

2 , is not zero almost surely. Moreover, by the formula of change of

variables for an Arratia flow [11], the following equality holds

(1) ‖Tt(f ∗ p)‖2L2(R) =

∫
R

∫
R
f(u)f(v)

∑
θ∈Θt

∆y(θ, t)p(u− θ)p(v − θ)dudv,

where Θt is a set of all points of discontinuity of the function y(·, t) : R → R, and
∆y(θ, t) = y(θ+, t)− y(θ−, t).

The right-hand side of (1) is a quadratic form of a random integral operator Kt in
L2(R) with the kernel

(2) kt(u, v) =
∑
θ∈Θt

∆y(θ, t)p(u− θ)p(v − θ).

In this paper we prove that Kt is a strong random operator [15] in L2(R), and is not
a bounded one. However, for an orthogonal projector Qa,b, a < b, from L2(R) onto
L2([a; b]) random operators KtQa,b, Qa,bKt are bounded. Moreover, with probabil-
ity one Qa,bKtQa,b is nuclear. In the article we estimate the rate of convergence of
‖Q−n;nKtQ−n;n‖ to infinity when n→∞.

2. Random integral operators and point processes

For a fixed t > 0 let us define the set

Θt = x(R, t).

Since {y(u, r), u ∈ R, r ∈ [0; t]} is an Arratia flow on the interval [0; t] in the backward
time, and its trajectories don’t cross trajectories of {x(u, r), u ∈ R, r ∈ [0; t]}, the set
Θt consists of all points of discontinuity of the function y(·, t) : R→ R.
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Thus, the stationarity of {x(u, r), u ∈ R, r ∈ [0; t]} with respect to the spatial variable
implies the stationarity of the point process Θt. Let us build a random measure on B(R)
in the following way

ηt(B) =
∑
θ∈Θt

∆y(θ, t)δθ(B), B ∈ B(R).

Since Θt is stationary, ηt is a stationary random measure.

Lemma 2.1. For any bounded set B ∈ B(R)

Eηt(B) = λ(B),

where λ is the Lebesgue measure on R.

Proof. By the definition of ηt

Eηt(B) = E
∑

θ∈Θt∩B

∆y(θ, t).

Using the formula of change of variables for an Arratia flow [11] one can check equalities

E
∑

θ∈Θt∩B

∆y(θ, t) = E

∫
R

1IB(x(u, t))du = E‖Tt1IB‖2L2(R).

It is proved in [2] that for any function f ∈ L2(R)

E‖Ttf‖2L2(R) = ‖f‖2L2(R).

Hence,

E‖Tt1IB‖2L2(R) = λ(B),

which proves the lemma. �

Corollary 2.1. An analog of Campbell’s formula for a point process [12] holds

(3) E
∑
θ∈Θt

∆y(θ, t)h(θ) =

∫
R
h(u)du

for any non-negative function h ∈ L1(R).

Let us consider a random integral operator Kt in L2(R) mentioned in the introduction.

Theorem 2.1. For any t > 0 Kt is a strong random operator in L2(R).

Proof. Let us show that for any f ∈ L2(R)

E

∫
R

(Ktf(u))
2
du < +∞.

Denote by pa(u) = 1√
2πa

e−
u2

2a , a > 0. Hence, the following relations hold

E

∫
R

(Ktf(u))
2
du = E

∫
R

∫
R
p2(u− v)(f ∗ p)(u)(f ∗ p)(v)ηt(du)ηt(dv) ≤

≤
∫
R

∫
R
|f(r1)| · |f(r2)|E

∫
R

∫
R
p2(u− v)p(u− r1)p(v − r2)ηt(du)ηt(dv)dr1dr2.

One can check that

E

∫
R

∫
R
p2(u− v)p(u− r1)p(v − r2)ηt(du)ηt(dv) =

= E
∑

k1,k2∈Z

∑
θ1∈Θt∩[k1;k1+1)
θ2∈Θt∩[k2;k2+1)

p2(θ1 − θ2)p(θ1 − r1)p(θ2 − r2)∆y(θ1, t)∆y(θ2, t) ≤



10 A. A. DOROGOVTSEV, IA. A. KORENOVSKA, AND E. V. GLINYANAYA

≤
∑

k1,k2∈Z
max

u∈[k1;k1+1)
v∈[k2;k2+1)

p2(u− v)p(u− r1)p(v − r2) · E
∑

θ1∈Θt∩[k1;k1+1)
θ2∈Θt∩[k2;k2+1)

∆y(θ1, t)∆y(θ2, t).

Let {w(a, r), r ≥ 0} be a Wiener process, w(a, 0) = a. Define

τ = inf{ s ≥ 0 | w(a, s) = 0 },
and consider a new process w̃(a, r) = w(a, r ∧ τ), r ≥ 0. Then

E
∑

θ1∈Θt∩[k1;k1+1)
θ2∈Θt∩[k2;k2+1)

∆y(θ1, t)∆y(θ2, t) ≤
(
E
(
y(k1 + 1, t)− y(k1, t)

)2
) 1

2

×

×
(
E
(
y(k2 + 1, t)− y(k2, t)

)2
) 1

2

= Ew̃(1, 2t)2.

Consequently,

E

∫
R

∫
R
p2(u− v)p(u− r1)p(v − r2)ηt(du)ηt(dv) ≤

(4) ≤ Ct
∑

k1,k2∈Z
max

u∈[k1;k1+1)
v∈[k2;k2+1)

p2(u− v)p(u− r1)p(v − r2),

where
Ct = Ew̃(1, 2t)2 < +∞.

It suffices to show that expression in the right-hand side (4) is a kernel, which generates
a bounded integral operator in L2(R). Let us notice that the following inequality is true

max
u∈[k1;k1+1)
v∈[k2;k2+1)

p2(u− v)p(u− r1)p(v − r2) ≤ [p(r1 − k1) + p(r1 − k1 − 1)]×

(5) × [p(r2 − k2) + p(r2 − k2 − 1)]×[2p2(k1 − k2) + p2(k1 − k2 − 1) + p2(k1 + 1− k2)] .

For any a, b ∈ R there exists positive constant C such that∑
k∈Z

p(a− k)p(k − b) ≤ Cp2(a− b).

Thus, with some constants C̃i > 0, i = 1, 2, the following relations hold∑
k1,k2∈Z

p(a− k1)p(b− k2)p2(k1 − k2) =

= C̃1

∑
k1,k2∈Z

p(a− k1)p(b− k2)

∫
R
p(k1 − r)p(r − k2)dr =

= C̃1

∫
R

∑
k1∈Z

p(a− k1)p(k1 − r)×
∑
k2∈Z

p(b− k2)p(k2 − r)dr ≤

≤ C̃2

∫
R
p2(a− r)p2(b− r)dr = C̃2p4(a− b).

Hence, by (5), the right-hand side (4) is bounded by the kernel p4(r1 − r2) with some
constant. This kernel generates a bounded operator in L2(R). Consequently, there exists

C̃t > 0 such that for any function f ∈ L2(R)

E

∫
R

(Ktf(u))
2
du ≤ C̃t

∫
R

∫
R
|f(r1)| · |f(r2)| · p4(r1 − r2)dr2dr2 < +∞,

which proves the statement. �

Lemma 2.2. Kt is not a bounded random operator in L2(R).
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Proof. It suffices to show that

sup
n∈N
‖Kt1I[n;n+1]‖L2(R) = +∞ a. s.

One can check that there exists b > 0 such that the following relations are true

‖Kt1I[n;n+1]‖2L2(R) ≥
∫
R

 ∑
θ∈Θt∩[n;n+1]

∆y(θ, t)

∫ n+1

n

p(u− θ)dup(v − θ)

2

dv ≥

(6) ≥ b
∑

θ∈Θt∩[n;n+1]

(∆y(θ, t))
2
.

Let us consider random variables

ζn =
∑

θ∈Θt∩[n;n+1]

(∆y(θ, t))
2
, n ∈ N.

One can check that

(7) sup
n∈N

ζn = +∞ a. s.

Really, since the trajectories of {x(u, r), u ∈ R, r ∈ [0; t]} and {y(u, r), u ∈ R, r ∈ [0; t]}
don’t cross, for any m ∈ N and uniform partition {uj , j = 1, 2M + 2} of [−M ;M ]

P{ζ1 ≥M} = P

 ∑
θ∈Θt∩[1;2]

(∆y(θ, t))
2 ≥M

 ≥
≥ P { 1 ≤ x(u1, t) = x(u2, t) < x(u3, t) = x(u4, t) < . . .

. . . < x(u2M+1, t) = x(u2M+2, t) ≤ 2} > 0.

Thus, essup ζ1 = +∞, which, by stationarity and mixing property [10] of the sequence
{ζn}n∈N, proves (7). Hence,

sup
n∈N
‖Kt1I[n;n+1]‖2L2(R) ≥ b sup

n∈N
ζn = +∞ a. s.

�

For a fixed a < b consider an orthogonal projector Qa,b of L2(R) onto L2([a; b]), which
we identify with the subspace of L2(R) of functions supported on [a; b].

Lemma 2.3. Random operators Qa,bKt and KtQa,b are bounded in L2(R).

Proof. One can check, by Hölder inequality, that for any f, g ∈ L2(R)

(8) (KtQa,bf, g)L2(R) ≤ (b− a)
1
2 ‖f‖L2(R)‖g‖L2(R)

∑
θ∈Θt

∆y(θ, t) max
u∈[a;b]

p(u− θ).

Let us notice that the same upper estimation of (Qa,bKtf, g)L2(R) is true.

Due to (3) the following equality holds

E
∑
θ∈Θt

∆y(θ, t) max
u∈[a;b]

p(u− θ) =

∫
R

max
u∈[a;b]

p(u− v)dv < +∞.

Lemma is proved. �

Lemma 2.4. For any a < b with probability one the random operator Qa,bKtQa,b is
nuclear in L2(R).
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Proof. For a fixed θ ∈ Θt denote by Bθ an integral operator in L2(R) with the kernel

hθ(u, v) = p(u− θ)p(v − θ)1I[a;b](u)1I[a;b](v).

The nuclear norm of Bθ equals to ‖p(· − θ)1I[a;b](·)‖2L2(R). Since

Qa,bKtQa,b =
∑
θ∈Θt

∆y(θ, t)Bθ,

the nuclear norm of Qa,bKtQa,b is the value

(9)
∑
θ∈Θt

∆y(θ, t)‖p(· − θ)1I[a;b](·)‖2L2(R).

By (3), the following relations are true

E
∑
θ∈Θt

∆y(θ, t)‖p(· − θ)1I[a;b](·)‖2L2(R) =

∫
R
‖p(· − u)1I[a;b](·)‖2L2(R)du =

=

∫
R

∫ b

a

p2(u− v)dudv < +∞.

Consequently, the value (9) is finite with probability one, which proves the lemma. �

Since Kt is not a bounded random operator, the operator norm of Q−n,nKtQ−n,n
tends to infinity when n→∞. Let us notice, that the rate of growth of ‖Q−n,nK̃Q−n,n‖
was investigated in [7], where K̃ is a random integral operator in L2(R) with the kernel
generated by a stationary point process Θ

k(u, v) =
∑
θ∈Θ

p(u− θ)p(v − θ).

It was proved in [7] that

(10) ‖Q−n,nK̃Q−n,n‖2 ≥ max
k=0,n

|Θ ∩ [k; k + 1]|.

In the next section, in the case of the point process Θt, we estimate the rate of growth
not only of the value in the right-hand side (10), but also of

max
k=0,n

∑
θ∈Θt∩[k;k+1]

(∆y(θ, t))2.

Using this one can estimate the rate of growth of ‖Q−n,nKtQ−n,n‖ to infinity, because

(11) ‖Q−n,nKtQ−n,n‖2 ≥ max
k=0,n

∑
θ∈Θt∩[k;k+1]

(∆y(θ, t))2.

3. Rate of growth of ‖Q−n,nKtQ−n,n‖ to infinity

For any n ∈ N ∪ {0} let us consider a random variable

ξn = |x([n;n+ 1], t)|,

where |A| is a cardinality of the set A. Since Arratia flow is stationary with respect to a
spatial variable, {ξn}n∈N∪{0} is a stationary sequence.

Theorem 3.1. There exist positive C0 and R such that for any C ≥ C0

(12)
1

C4
lnP {ξ0 ≥ C} ≥ −Rt.
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Proof. Consider an integer C > 0. Denote by
{
uk, k = 0, C + 1

}
the uniform partition

of [0; 1]. Thus,

P {ξ0 ≥ C} = P {|x([0; 1], t)| ≥ C} ≥

(13) ≥ P {x(u0, t) < x(u1, t) < . . . < x(uC+1, t)} .

Consider a Wiener process ~w(~u, ·) in RC+2 which starts from the point

~u = (u0, u1, . . . , uC+1).

Denote by

∆C+2 =
{
~v ∈ RC+2| v0 ≤ v1 ≤ . . . ≤ vC+1

}
.

Let us notice that

P {x(u0, t) < x(u1, t) < . . . < x(uC+1, t)} =

(14) = P { for any s ≤ t ~w(~u, s) /∈ ∂∆C+2} .

Since 1√
2(C+1)

is a distance from the point ~u to any

Hi = {~v ∈ RC+2| vi = vi+1}, i = 0, C,

the probability in the right-hand side of (14) is not less than

P
{

for any s ≤ t ‖~w(~0, s)‖RC+2 <
1√

2(C + 1)

}
,

where ~w(~0, ·) is a Wiener process in RC+2, ~w(~0, 0) = ~0. Hence,

P {x(u0, t) < x(u1, t) < . . . < x(uC+1, t)} ≥

≥ P

{
sup
s∈[0;t]

‖~w(~0, s)‖RC+2 ≤ 1

2(C + 1)

}
,

and

P

{
sup
s∈[0;t]

‖~w(~0, s)‖RC+2 ≤ 1

2(C + 1)

}
≥

≥ P

{
for any j = 0, C + 1 sup

s∈[0;t]

|wj(0, s)| ≤
1

2(C + 2)
3
2

}
,

where {wj(0, ·)}j=0,C+1 are independent Wiener processes in R, wj(0, 0) = 0. Conse-

quently,

P

{
sup
s∈[0;t]

‖~w(~0, s)‖RC+2 ≤ 1

2(C + 1)

}
≥

≥

(
P

{
sup
s∈[0;t]

|w0(0, s)| ≤ 1

2(C + 2)
3
2

})C+2

.

Due to [13] ((3), p.261),

P

{
sup
s∈[0;t]

|w0(0, s)| ≤ 1

2(C + 2)
3
2

}
∼ 4

π
e−

π2

8 4t(C+2)3 , C →∞.

Thus, there exists C0 > 0 such that for any C ≥ C0

P

{
sup
s∈[0;t]

|w0(0, s)| ≤ 1

2(C + 2)
3
2

}
≥ 2

π
e−

π2

2 t(C+2)3 .
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Hence, there exists R > 0 such that for arbitrary C ≥ C0

1

C4
lnP {|x([0; 1], t)| ≥ C} ≥ C + 2

C4

(
ln

2

π
+ ln e−

π2

2 t(C+2)3
)
≥ −Rt,

which proves the theorem. �

Using Theorem 3.1 one can prove that with probability one maxk=0,n ξn tends to
infinity when n→∞.

Theorem 3.2. For any β ∈ (0; 1
4 ) almost surely

(15)

max
k=0,n

ξk

(lnn)
1
4−β

→ +∞, n→∞.

Proof. For an integer n ≥ 3 define Nn =
[

n
[
√

8 lnn]

]
. For any j = 0, Nn denote by

knj = j · [
√

8 lnn].

To prove (15) it suffices to show that with probability one

(16)

max
j=0,Nn

ξknj

(lnn)
1
4−β

→ +∞, n→∞.

Due to Borel-Cantelli lemma, to prove (16) it is enough to check a convergence of the
series

(17)

∞∑
n=3

P
{

max
j=0,Nn

ξknj ≤ C(lnn)
1
4−β

}
for any C > 0. Denote by

α(h) = sup {|P(B ∩D)− P(B)P(D)|,

B ∈ Fu−∞, D ∈ F+∞
u+h, u ∈ R

}
,

where Fvu = σ{x(w, ·), w ∈ [u; v]}, h > 0. It was proved in [10] (Lemma 4.2) that for
any h > 0

(18) α(h) ≤ 2

√
2

π

∫ +∞

h

e−
v2

2 dv.

The process {x(u, t), u ∈ R} is stationary. Thus, for any j = 0, Nn

P
{
ξknj ≤ C(lnn)

1
4−β

}
= P

{
ξ0 ≤ C(lnn)

1
4−β

}
,

which implies the following relations

P
{

max
j=0,Nn

ξknj ≤ C(lnn)
1
4−β

}
≤

≤ α([
√

8 lnn])

Nn−1∑
j=0

P
{
ξ0 ≤ C(lnn)

1
4−β

}j
+ P

{
ξ0 ≤ C(lnn)

1
4−β

}Nn
.

To show a convergence of the series (17) it suffices to check that series

(19)

∞∑
n=3

α([
√

8 lnn])

Nn−1∑
j=0

P
{
ξ0 ≤ C(lnn)

1
4−β

}j
,

(20)

∞∑
n=3

P
{
ξ0 ≤ C(lnn)

1
4−β

}Nn
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converge. For any h > 0, by [14] (Lemma 12.9, p.349), the inequality is true

(21)
1√
2π

∫ +∞

h

e−
v2

2 dv ≤ 1

h
√

2π
e−

h2

2 .

Due to (21), the following relations hold

∞∑
n=3

α([
√

8 lnn])

Nn−1∑
j=0

P
{
ξ0 ≤ C(lnn)

1
4−β

}j
≤

≤
∞∑
n=3

α([
√

8 lnn])Nn ≤ 4

∞∑
n=3

n

[
√

8 lnn]
· 1

[
√

8 lnn]
√

2π
e−

[
√

8 lnn]2

2 < +∞.

Hence, the series (19) converges.
By Theorem 3.1, for any n ≥ n1 the following inequalities hold

n√
8 lnn

P
{
ξ0 > C (lnn)

1
4−β

}
≥

(22) ≥ n√
8 lnn

e
−Rπ2

2 t
(
C(lnn)

1
4
−β

)4

≥ n
1
2

(8 lnn)
1
2

.

Consequently, by (22), the series (20) converges. �

In the next we estimate a rate of growth ‖Q−n,nKtQ−n,n‖ to infinity, when n → ∞.
To do this, by (11), we consider a random variable

ζk =
∑

θ∈Θt∩[k;k+1]

(∆y(θ, t))2

for k ∈ N ∪ {0}, and prove that with probability one maxk=0,n ζk tends to infinity when
n→∞.

Theorem 3.3. With probability one

(23)
ln lnn

lnn
· max
k=0,n

ζk → +∞, n→∞.

Proof. For a natural number n ≥ 3 consider values Nn and knj , j = 0, Nn, which are
defined in the proof of Theorem 3.2. Let us show that almost surely

(24)
ln lnn

lnn
· max
j=0,Nn

ζknj → +∞, n→∞.

By Borel-Cantelli lemma, it is sufficient to prove that

(25)

∞∑
n=3

P
{

max
j=0,Nn

ζknj ≤ C
lnn

ln lnn

}
< +∞

for any C > 0. Since the process {y(u, t), u ∈ R} is stationary,

P
{
ζknj ≤ C

lnn

ln lnn

}
= P

{
ζ0 ≤ C

lnn

ln lnn

}
.

As in the proof of Theorem 3.2, the following inequality holds

P
{

max
j=0,Nn

ζknj ≤ C
lnn

ln lnn

}
≤

≤ α([
√

8 lnn])

Nn−1∑
j=0

P
{
ζ0 ≤ C

lnn

ln lnn

}j
+ P

{
ζ0 ≤ C

lnn

ln lnn

}Nn
.
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Due to (18), the series
∑∞
n=3 α([

√
8 lnn])Nn converges. Thus,

∞∑
n=3

α([
√

8 lnn])

Nn−1∑
j=0

P
{
ζ0 ≤ C

lnn

ln lnn

}j
< +∞.

Let us check that

(26)

∞∑
n=3

P
{
ζ0 ≤ C

lnn

ln lnn

}Nn
< +∞.

To do this we will use the following theorem.

Theorem 3.4. For any t > 0 there exists at > 0 such that for any C ≥ t

P{ζ0 ≥ C} ≥ at
1√
C
e−

C
2t .

Proof. Since the trajectories of conjugated flows

{y(u, r), u ∈ R, r ∈ [0; t]} and {x(u, r), u ∈ R, r ∈ [0; t]}

don’t cross, for any C ≥ 0

P{ζ0 ≥ C} = P

 ∑
θ∈Θt∩[0;1]

(∆y(θ, t))2 ≥ C

 ≥
(27) ≥ P

{
x(0, t) = x(

√
C, t), x(0; t) ∈ [0; 1]

}
.

Let {w1(s), s ≥ 0}, {w2(s), s ≥ 0} be independent Wiener processes, and w1(0) =
w2(0) = 0. Denote by

τ = inf
{
r ≥ 0 : w1(r) =

√
C + w2(r)

}
.

Then, to estimate (27) one can notice

P
{
x(0, t) = x(

√
C, t), x(0; t) ∈ [0; 1]

}
= P {τ ≤ t, w1(t) ∈ [0; 1]} ≥

≥ P
{√

C + w2(t) ≤ 0, w1(t) ∈ [0; 1]
}

=

∫ 1

0

1√
2πt

e−
u2

2t du ·
∫ +∞

√
C

1√
2πt

e−
u2

2t du.

For any h > 0, due to [14] (Lemma 12.9, p.349), the inequality is true

1√
2π

∫ +∞

h

e−
v2

2 dv ≥ h

h2 + 1
· 1√

2π
e−

h2

2 .

Hence, for all C ≥ t the following estimation holds∫ 1

0

1√
2πt

e−
u2

2t du ·
∫ +∞

√
C

1√
2πt

e−
u2

2t du ≥ at
1√
C
e−

C
2t ,

where

at =
1

8π

∫ 1

0

e−
u2

2t du.

The theorem is proved.
�
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Due to Theorem 3.4 relations hold

NnP
{
ζ0 ≥ C

lnn

ln lnn

}
=

n

[
√

8 lnn]
P
{
ζ0 ≥ C

lnn

ln lnn

}
≥

(28) ≥ at√
8C
· n
√

ln lnn

lnn
e−

C lnn
2t ln lnn .

Hence, by (28), (26) is true. Consequently, for any C > 0 the series (25) converges, which
proves (24). Thus, (23) holds. �

Due to Theorem 3.4 and inequality (11) the following estimation holds

(29)
ln lnn

lnn
·
∥∥Q[−n;n]KtQ[−n;n]

∥∥2 →∞, n→∞ a. s.

Let us notice that in the case of a random operator K̃t, which is generated by a stationary

Poisson point process with intensity one, the same estimation of ‖Q[−n;n]K̃tQ[−n;n]‖2 as

in (29) was proved in [7]. The rate of growth of this value is different in the case K̃t

generated by Θt. Really, by Theorem 3.2, for any β ∈ (0; 1
4 )

1

(lnn)
1
4−β
· ‖Q[−n;n]K̃tQ[−n;n]‖2 →∞, n→∞ a. s.
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