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GEORGII A. ALEKSEEV AND EKATERINA V. YUROVA

ON GAUSSIAN CONDITIONAL MEASURES DEPENDING ON

A PARAMETER

We prove that if a family of Gaussian measures µα on the product of two Souslin

locally convex spaces X and Y depends measurably on a parameter α, then it is
possible to find conditional measures µyα on X jointly measurable in y and α.

1. Introduction

Suppose we are given two locally convex spaces X and Y and a Radon probability
measure µ on X × Y . By a system of conditional measures for µ we shall understand a
family of Radon probability measures µy on X satisfying the following conditions:

(1) for every Borel subset B of the space X × Y , the function µy(By) is Borel
measurable, where By is the projection onto X of the cross-section of B at the
level y, i.e.,

By = {x ∈ X : (x, y) ∈ B};
(2) for every bounded Borel function f on X×Y , the integral of f with respect to µ

equals ∫
Y

∫
X

f(x, y)µy(dx) ν(dy),

where ν is the projection of the measure µ to Y .

It is known that conditional measures exist under broad assumptions, e.g., in case of
Souslin spaces.

Suppose now that we are given a family {µα} of Radon measures on the product X×Y
depending measurably on a parameter α taking values in a measurable space (A,A). The
measurability of measures is associated with the weak topology and is understood as the
A-measurability in α of the integrals of bounded continuous functions. In case of Souslin
spaces, this is also equivalent to theA-measurability in α of the integrals of bounded Borel
functions. A naturally arising question is whether it is possible to choose conditional
measures so that they depend measurably on (α, y). It has been shown by I.I. Malofeev
[8] that if X, Y and A are completely regular Souslin spaces (i.e., continuous images
of complete separable metric spaces), and A = B(A) is the Borel σ-algebra, then there
is a version of conditional measures µyα such that it depends measurably on (α, y) with
respect to the σ-algebra S(Y ×A) generated by Souslin sets (see Remark 2 below for his
precise statement and its corollary). The latter is larger than the Borel σ-algebra, so the
corresponding measurability is weaker. It is likely that in the general result of Malofeev
the Borel measurability cannot be always guaranteed. In this paper, we show that a Borel
measurable choice of conditional measures exists for centered Radon Gaussian measures.
In case of Gaussian measures, conditional measures can be constructed explicitly, see [1],
[3], [7], and [9].
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Let us state the main result of this paper.

Theorem 1.1. Suppose we are given a family of centered Gaussian measures µα on the
product X ×Y of two Souslin locally convex spaces that depends measurably on a param-
eter α taking values in a measurable space (A,A). Then there are Gaussian conditional
measures µyα that depend B(Y )⊗A-measurably on (y, α).

The proof is given in the last section. Note that the projections να of the measures
µα to Y are obviously measurable in α.

2. Notation, terminology, and auxiliary results

Let us recall that a probability measure µ on the Borel σ-algebra of a locally convex
space X is called Radon if, for every Borel set B and for every ε > 0, there exists a
compact set K contained in B such that µ(B \K) < ε. If X is Souslin, then all Borel
measures on X are Radon (see [2, Theorem 7.4.3]). The measure µ is called centered
Gaussian if every continuous linear functional l on X is a centered Gaussian random
variable on

(
X,B(X), µ

)
, i.e., the image measure µ◦ l−1 is either concentrated at zero or

has a density of the form (2πσ)−1/2 exp(−t2/(2σ)). The density with σ = 1 is called the
standard Gaussian density and the corresponding measure is called standard Gaussian on
the real line. An important example of a Gaussian measure is the product of countably
many copies of the standard Gaussian measure on the real line defined on the space R∞
of all real sequences. This measure is called the standard Gaussian measure on R∞. For
a survey of Radon and Gaussian measures, see [2], [1], and [3].

We recall that the weak topology on the space M(X) of Borel measures on a com-
pletely regular space X is generated by the seminorms

m 7→
∣∣∣∣∫
X

f(x)m(dx)

∣∣∣∣, f ∈ Cb(X),

where Cb(X) is the space of bounded continuous functions on X. If X is Souslin, the
space M(X) equipped with the weak topology is Souslin as well (see [2, Chapter 8]).
Furthermore, the Borel σ-algebra of M(X) is generated by the integrals of bounded
continuous functions on X, and the integrals of bounded Borel functions are Borel func-
tionals on M(X). Therefore, in this case the measurability on the space of measures
we discuss is precisely the Borel measurability for the Borel σ-algebra generated by the
weak topology.

The subset of probability measures will be denoted by P(X).
According to the well-known Tsirelson theorem (see [1]), every centered Radon Gauss-

ian measure µ is concentrated on a Souslin subspace and is the image of the standard
Gaussian measure on R∞ under a linear measurable mapping (more precisely, a Borel
measurable linear mapping defined on a Borel linear subspace of full measure). Moreover,
if µ is not concentrated on a finite-dimensional subspace, this mapping can be taken to
be an isomorphism of Borel linear subspaces of measure 1. That is why we shall assume
that spaces X and Y are Souslin although for our purposes it does not follow from the
Tsirelson theorem since the subspace may depend on the parameter.

So suppose that spaces X and Y are Souslin locally convex spaces and let us consider
the Borel structure of P(X × Y ). A Souslin locally convex space can be mapped into
R∞ by a continuous injective linear operator. By doing so, in addition to the original
topology, one obtains the topology induced from R∞. Since the coordinate functions are
continuous in both topologies and separate points, the said topologies generate the same
Borel structure (see [2, Theorem 6.8.9]). Moreover, the same reasoning holds true for
the space of probability measures with the respective weak topologies (in this case one
can find a countable family of bounded continuous functions separating measures). This
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reduces the general case of Souslin spaces X and Y to that of R∞. For this reason we
further consider the latter case.

Points of the space R∞ × R∞ will be denoted by (x, y), their components will be
denoted by xi and yi, respectively.

It is known (see, e.g., [3, Theorem 5.14] or [1, Section 3.10]) that for a centered
Gaussian measure µ on the product X × Y there exists a centered Gaussian measure σ
on X such that conditional measures for µ can be found in the form

µy = σ( · −Ay), A = E(x | y),

where E(x | y) is the conditional expectation of the first component with respect to the
σ-algebra generated by the second one. In other words,

A : Y → X, Ay = (ξ1(y), ξ2(y), . . .),

where ξk is the conditional expectation of xk with respect to the σ-algebra BY generated
by coordinate functions yi. This conditional expectation is the projection in L2(µ) of
the coordinate function xk onto the closed linear subspace generated by the coordinate
functions yi. If {ηi} is the orthogonalization of {yi} in L2(µ), then

ξk =

∞∑
i=1

(xk, ηi)L2(µ)ηi,

where the sum converges almost everywhere and in L2(µ).
The measure σ coincides with the image of the measure µ under the measurable linear

mapping T : (x, y) 7→ x−Ay. Indeed, let us show that the measure µ coincides with the
measure

γ =

∫
Y

µ ◦ T−1( · −Ay) ν(dy).

The measure on the right can be written as the convolution of two centered Gaussian
measures (µ ◦ T−1 and ν ◦A−1). Hence it is centered Gaussian. Therefore, it suffices to
verify that µ and γ have equal covariances, i.e., assign equal integrals to every continuous
linear functional on X × Y . Such a functional can be written in the form (x, y) 7→
f(x) + g(y) with two continuous linear functions f and g on X (in our case these are
linear combinations of coordinate functions). It is readily seen that f◦A is the conditional
expectation of f with respect to σY . Hence the function f(x) − f(Ay) is orthogonal to
all yj in L2(µ) and so is independent with the σ-algebra σY . By the orthogonality of
f(x)− f(Ay) and f(Ay) in L2(µ) we have∫

X×Y
|f(x) + g(y)|2 µ(dx dy)

=

∫
X×Y

|f(x)− f(Ay)|2 µ(dx dy) +

∫
X×Y

|f(Ay) + g(y)|2 µ(dx dy).

On the other hand,∫
X×Y

|f(x) + g(y)|2 γ(dx dy) =

∫
Y

∫
X+Y

|f(x−Az +Ay) + g(y)|2 µ(dx dz) ν(dy)

=

∫
Y

∫
X×Y

(
|f(x−Az)|2 + |f(Ay) + g(y)|2

)
µ(dx dz) ν(dy),

which coincides with the previous expression, since ν is the projection of µ on Y .
Therefore, the integral of a bounded Borel function f with respect to σ is calculated

by the formula ∫
X

f(x)σ(dx) =

∫
X×Y

f(x−Az)µ(dx dz),
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and the integral with respect to µy is given by the formula∫
X

f(x)µy(dx) =

∫
X×Y

f(x−Az +Ay)µ(dx dz).

Thus, for the proof of the theorem it suffices to show that the Gaussian measures
σα( · − Aαy) depend measurably on (y, α), which reduces everything to considering the
integrals ∫

X×Y
f(x−Aαz +Aαy)µα(dx dz).

Lemma 2.1. For every separable metrizable topological vector space X, the mapping

S : X × P(X)→ P(X), (h,m) 7→ mh,

with mh(B) = m(B − h), is continuous.

Proof. The weak topology on the space of probability measures on X = R∞ is generated
by the Kantorovich–Rubinstein norm

‖m‖KR = sup

{∫
f dm : f ∈ Lip1, sup

x∈X
|f(x)| ≤ 1

}
,

where Lip1 is the class of 1-Lipschitz functions with respect to a fixed translation invariant
metric % on X generating the topology (such a metric always exists, see, e.g., [5]). Let
x, y ∈ X and µ, ν ∈ P(X). Let f be a 1-Lipschitz function such that |f | ≤ 1. Its integral
with respect to µ( · − x)− ν( · − y) equals∫

X

f(z + x)µ(dz)−
∫
X

f(z + y) ν(dz),

which can be bounded as follows:∫
X

|f(z + x)− f(z + y)|µ(dz) +

∣∣∣∣∫
X

f(z + y) (µ− ν)(dz)

∣∣∣∣
≤ %(x, y) + ‖µ− ν‖KR.

This shows that the mapping S is Lipschitz. �

It should be noted that this assertion is true for general topological vector spaces, we
have required additional assumptions just for the sake of simplicity.

3. Proof of the theorem

Using the facts mentioned in the previous section, we construct a jointly measurable
conditional expectation depending on α and then provide an explicit expression for a
measurable version of conditional measures.

Proof of Theorem 1. The conditional expectation associated with µα will be denoted
by Eα. As explained above, we have

Eα(x | y) =
(
Eα(x1 | y),Eα(x2 | y), . . .

)
,

where the conditional expectation Eα(xi | y) coincides with the projection of the co-
ordinate function xi onto the closure of the linear span of the coordinate functions yi
in L2(µα). Certainly, for any fixed α, we have many versions of the conditional expec-
tation. We now show that Eα(xi | y) can be obtained as a limit of continuous functions
of y depending measurably on α.

Let Ln be the linear span of y1, . . . , yn. Let us show that, for any fixed i and n, for
every α one can choose an element lni,α ∈ Ln in such a way that it is the nearest element
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in Ln to the function xk with respect to the norm of L2(µα) and the mapping α 7→ lni,α
is measurable in the sense that

lni,α =

n∑
j=1

ci,n,j(α)yj ,

where the functions α 7→ ci,n,j(α) are A-measurable.
At this step, we omit the indication of i and n in the notation for the element lα and

the corresponding coefficients cj(α). If the matrix

G(α) =
(

(yi, yj)L2(µα)

)
i,j≤n

is positive-definite, then the coefficients cj(α) are uniquely determined from the linear
system obtained by taking the inner products of lα with y1, . . . , yn and are expressed by
means of an explicit formula, from which the measurability with respect to α is obvious.
The set of values α for which the determinant of G(α) is positive is in A. The remaining
values of α belong to finitely many disjoint subsets from A such that on each subset the
rank of G(α) equals some k < n and certain k coordinate functions from y1, . . . , yn are
linearly independent in L2(µα). On the set where G(α) = 0 we let lα = 0. On the set
where yi1 , . . . , yik are linearly independent in L2(µα) we repeat the same procedure as
above with n independent coordinates.

As a result, we obtain elements lni,α that serve as conditional expectations of the
coordinate functions xi with respect to the measure µα and the σ-algebra generated
by y1, . . . , yn and have the property that their coefficients ci,j,n(α) are measurable in α.
Let us set

Anαy =
( n∑
j=1

c1,j,n(α)yj ,

n∑
j=1

c2,j,n(α)yj , . . .
)
.

It is well-known (see [2, Chapter 10]) that the functions
∑n
j=1 ci,j,n(α)yj converge µα-

almost everywhere and in L2(µα) to the functions Eα(xi | y) as n → ∞. For the
desired version of Eα(xi | y) we take the pointwise limit whenever it exists and take
zero otherwise. This version is jointly measurable in (y, α) with respect to the σ-algebra
B(Y )⊗A.

By Lemma 2.1, in order to ensure the measurability of µyα with respect to (y, α), it is
enough to establish the measurability in α of the function∫

X×Y
f(x−Aαz)µα(dx dz)

for every bounded continuous function f on X. Moreover, one can easily see from the
monotone class theorem (see, e.g., [2, p. 146]) that it suffices to do this for continuous
functions in finitely many variables. Moreover, it suffices to consider functions that are
linear combinations of exponents exp(i(v, x)). Therefore, we can assume that f(x) =
f(x1, . . . , xN ) is a function on RN of the form f(x) = exp(i(v, x)). By the Lebesgue
dominated convergence theorem, the integral we are interested in equals the limit of the
integrals ∫

X×Y
f(x−Anαy)µα(dx dy).

Therefore, everything reduces to the finite-dimensional case. Now our assertion becomes
obvious, since we deal with the situation where f(x) = exp(i(Tαv, x)) with an operator Tα
depending measurably on α and the covariance Qα(x, x) of µα also depends measurably
on α, so our integral equals exp(−Qα(Tαv, Tαv)). It should be noted that the reason
for using finite-dimensional approximations is that the measurable linear operator Aαy
is not continuous in y, so that we have to take care of a jointly measurable version (in
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case of a continuous mapping in y, in order to ensure the joint measurability it would be
enough to have the A-measurability for every fixed y). �

Remark 3.1. Since the measure σ plays the crucial role in the expression for conditional
measures, it is worth noting that its covariance can be expressed as follows:∫

X

l(x)2 σ(dx) = inf
c1,...,cn

∫
X×Y

|l(x− c1y1 − · · · − cnyn)|2 µ(dx dy),

where l(x) = k1x1 + · · · + knxn, n ∈ N. In the case of a general locally convex space,
a similar formula holds true:∫

X

l(x)2 σ(dx) = inf
g∈Y ∗

∫
X×Y

|l(x)− g(y)|2 µ(dx dy),

where l ∈ X∗. This expression can be used for proving the measurability of σ with
respect to a parameter. For measures on Rn (or on a Hilbert space), this formula can be
written in a more explicit form (see, for example, [6]).

Remark 3.2. Let us recall the precise formulation of Malofeev’s result from [8]. Suppose
that we are given a Borel mapping

f : (x, z) 7→ fz(x), X × Z → Y,

where X,Y, Z are Souslin spaces. Suppose also that for every z ∈ Z we are given a Borel
probability measure µz on X such that the mapping

z 7→ µz, Z → P(X)

is Borel measurable provided that the space P(X) is equipped with the weak topology.
Then, there exist conditional Borel probability measures {µyz}y∈Y for all pairs (µz, fz)
such that (i) µyz(f−1z (y)) = 1 for all y ∈ fz(X) for all z (such conditional measures are
called proper), (ii) for each Borel set B in X, the function

(y, z) 7→ µyz(B)

on Y ×Z is measurable with respect to the σ-algebra S(Y ×Z) generated by all Souslin
sets in Y × Z, or, equivalently, the mapping

(y, z) 7→ µyz , Y × Z → P(X)

is measurable when Y ×Z is equipped with the σ-algebra S(Y ×Z) and P(X) is equipped
with the Borel σ-algebra.

A closer look at the proof in [8] shows that in the case where f does not depend on z
and is a Borel surjection possessing a Borel right inverse mapping g (which is not always
the case), there exists a jointly Borel measurable version of conditional measures µyz .
Indeed, according to that proof, if fz = f , then there are only two possible obstacles
to obtaining the Borel measurability: either f does not have a Borel right inverse or its
image f(X) is not Borel in Y . Therefore, if X is the product of two Souslin spaces X1

and X2, fz = f is the standard projection onto X2, and z 7→ µz is Borel measurable,
the reasoning in [8] yields existence of jointly Borel measurable conditional measures µyz ,
since the projection is obviously surjective and, picking an arbitrary element x0 ∈ X1,
one obtains a Borel right inverse y 7→ (x0, y) for it.

In contrast to this setting, the space A we consider is a general measurable space and
conditional measures are described constructively. In a separate paper, we shall consider
the case of a more general linear conditioning defined by a measurable linear mapping
also depending on a parameter.

Investigation of dependence of conditional measures on a parameter can be useful for
various optimization problems including optimal transportation and stochastic approxi-
mation (see, for example, [4], [9], and [10]).
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